IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This patch allows the VFP support code to run correctly on CPUs
compatible with the common VFP subarchitecture specification (Appendix
B in the ARM ARM v7-A and v7-R edition). It implements support for VFP
subarchitecture 2 while being backwards compatible with
subarchitecture 1.
On VFP subarchitecture 1, the arithmetic exceptions are asynchronous
(or imprecise as described in the old ARM ARM) unless the FPSCR.IXE
bit is 1. The exceptional instructions can be read from FPINST and
FPINST2 registers. With VFP subarchitecture 2, the arithmetic
exceptions can also be synchronous and marked by the FPEXC.DEX bit
(the FPEXC.EX bit is cleared). CPUs implementing the synchronous
arithmetic exceptions don't have the FPINST and FPINST2 registers and
accessing them would trigger and undefined exception.
Note that FPEXC.EX bit has an additional meaning on subarchitecture 1
- if it isn't set, there is no additional information in FPINST and
FPINST2 that needs to be saved at context switch or when lazy-loading
the VFP state of a different thread.
The patch also removes the clearing of the cumulative exception flags in
FPSCR when additional exceptions were raised. It is up to the user
application to clear these bits.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The current lazy saving of the VFP registers is no longer possible
with thread migration on SMP. This patch implements a per-CPU
vfp-state pointer and the saving of the VFP registers at every context
switch. The registers restoring is still performed in a lazy way.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Daniel Jacobowitz
vfp_put_double didn't work in a CONFIG_AEABI kernel. By swapping
the arguments, we arrange for them to be in the same place regardless
of ABI. I made the same change to vfp_put_float for consistency.
Signed-off-by: Daniel Jacobowitz <dan@codesourcery.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we pass flags to the compiler to control code generation based
on the least capable selected CPU, if we want to include VFP support,
we must tweak the assembler flags to allow the VFP instructions.
Moreover, we must not use the mrrc/mcrr versions since these will not
be recognised by the assembler.
We do not convert all instructions to the VFP-equivalent (yet) since
binutils appears to barf on "fmrx rn, fpinst" and doesn't provide any
other way (other than using the mrc equivalent) to encode this
instruction - which is rather a problem when you have a VFP
implementation which requires these instructions.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
This patch changes the double registers numbering to 0-15 from even 0-30,
in preparation for future VFP extensions. It also fixes the VFP_REG_ZERO
bug (value 16 actually represents the 8th double register with the original
numbering).
The original mcrr/mrrc on CP10 were generating FMRRS/FMSRR instead of
FMRRD/FMDRR. The patch changes to CP11 for the correct instructions.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Catalin Marinas
The current VFP code corrupts the VFP registers (including the control
ones) if more than one floating point application is executed at the same
time. This patch fixes the updating of the load/store base addresses for
the VFP registers.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!