IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
SLAB allows us to tune a particular cache behavior with tunables. When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.
This could be done by an explicit call to do_tune_cpucache() after the
cache is created. But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.
Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization. We can just preset the values, and then
things work as expected.
It can also happen that a root cache has its tunables updated during
normal system operation. In this case, we will propagate the change to
all caches that are already active.
This change will require us to move the assignment of root_cache in
memcg_params a bit earlier. We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create caches in memcgs, we need to display their usage
information somewhere. We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.
For the time being, only reads are allowed in the per-group cache.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This means that when we destroy a memcg cache that happened to be empty,
those caches may take a lot of time to go away: removing the memcg
reference won't destroy them - because there are pending references, and
the empty pages will stay there, until a shrinker is called upon for any
reason.
In this patch, we will call kmem_cache_shrink() for all dead caches that
cannot be destroyed because of remaining pages. After shrinking, it is
possible that it could be freed. If this is not the case, we'll schedule
a lazy worker to keep trying.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This enables us to remove all the children of a kmem_cache being
destroyed, if for example the kernel module it's being used in gets
unloaded. Otherwise, the children will still point to the destroyed
parent.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement destruction of memcg caches. Right now, only caches where our
reference counter is the last remaining are deleted. If there are any
other reference counters around, we just leave the caches lying around
until they go away.
When that happens, a destruction function is called from the cache code.
Caches are only destroyed in process context, so we queue them up for
later processing in the general case.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are able to match a cache allocation to a particular memcg. If the
task doesn't change groups during the allocation itself - a rare event,
this will give us a good picture about who is the first group to touch a
cache page.
This patch uses the now available infrastructure by calling
memcg_kmem_get_cache() before all the cache allocations.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a mechanism that skip memcg allocations during certain pieces of
our core code. It basically works in the same way as
preempt_disable()/preempt_enable(): By marking a region under which all
allocations will be accounted to the root memcg.
We need this to prevent races in early cache creation, when we
allocate data using caches that are not necessarily created already.
Signed-off-by: Glauber Costa <glommer@parallels.com>
yCc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator is able to bind a page to a memcg when it is
allocated. But for the caches, we'd like to have as many objects as
possible in a page belonging to the same cache.
This is done in this patch by calling memcg_kmem_get_cache in the
beginning of every allocation function. This function is patched out by
static branches when kernel memory controller is not being used.
It assumes that the task allocating, which determines the memcg in the
page allocator, belongs to the same cgroup throughout the whole process.
Misaccounting can happen if the task calls memcg_kmem_get_cache() while
belonging to a cgroup, and later on changes. This is considered
acceptable, and should only happen upon task migration.
Before the cache is created by the memcg core, there is also a possible
imbalance: the task belongs to a memcg, but the cache being allocated from
is the global cache, since the child cache is not yet guaranteed to be
ready. This case is also fine, since in this case the GFP_KMEMCG will not
be passed and the page allocator will not attempt any cgroup accounting.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every cache that is considered a root cache (basically the "original"
caches, tied to the root memcg/no-memcg) will have an array that should be
large enough to store a cache pointer per each memcg in the system.
Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
in the 64k pointers range. Most of the time, we won't be using that much.
What goes in this patch, is a simple scheme to dynamically allocate such
an array, in order to minimize memory usage for memcg caches. Because we
would also like to avoid allocations all the time, at least for now, the
array will only grow. It will tend to be big enough to hold the maximum
number of kmem-limited memcgs ever achieved.
We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have
more than that, we'll start doubling the size of this array every time the
limit is reached.
Because we are only considering kmem limited memcgs, a natural point for
this to happen is when we write to the limit. At that point, we already
have set_limit_mutex held, so that will become our natural synchronization
mechanism.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow a memcg parameter to be passed during cache creation. When the slub
allocator is being used, it will only merge caches that belong to the same
memcg. We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache
Default function is created as a wrapper, passing NULL to the memcg
version. We only merge caches that belong to the same memcg.
A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs. Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A lot of the initialization we do in mem_cgroup_create() is done with
softirqs enabled. This include grabbing a css id, which holds
&ss->id_lock->rlock, and the per-zone trees, which holds
rtpz->lock->rlock. All of those signal to the lockdep mechanism that
those locks can be used in SOFTIRQ-ON-W context.
This means that the freeing of memcg structure must happen in a
compatible context, otherwise we'll get a deadlock, like the one below,
caught by lockdep:
free_accounted_pages+0x47/0x4c
free_task+0x31/0x5c
__put_task_struct+0xc2/0xdb
put_task_struct+0x1e/0x22
delayed_put_task_struct+0x7a/0x98
__rcu_process_callbacks+0x269/0x3df
rcu_process_callbacks+0x31/0x5b
__do_softirq+0x122/0x277
This usage pattern could not be triggered before kmem came into play.
With the introduction of kmem stack handling, it is possible that we call
the last mem_cgroup_put() from the task destructor, which is run in an rcu
callback. Such callbacks are run with softirqs disabled, leading to the
offensive usage pattern.
In general, we have little, if any, means to guarantee in which context
the last memcg_put will happen. The best we can do is test it and try to
make sure no invalid context releases are happening. But as we add more
code to memcg, the possible interactions grow in number and expose more
ways to get context conflicts. One thing to keep in mind, is that part of
the freeing process is already deferred to a worker, such as vfree(), that
can only be called from process context.
For the moment, the only two functions we really need moved away are:
* free_css_id(), and
* mem_cgroup_remove_from_trees().
But because the later accesses per-zone info,
free_mem_cgroup_per_zone_info() needs to be moved as well. With that, we
are left with the per_cpu stats only. Better move it all.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Tested-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because the ultimate goal of the kmem tracking in memcg is to track slab
pages as well, we can't guarantee that we'll always be able to point a
page to a particular process, and migrate the charges along with it -
since in the common case, a page will contain data belonging to multiple
processes.
Because of that, when we destroy a memcg, we only make sure the
destruction will succeed by discounting the kmem charges from the user
charges when we try to empty the cgroup.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use static branches to patch the code in or out when not used.
Because the _ACTIVE bit on kmem_accounted is only set after the increment
is done, we guarantee that the root memcg will always be selected for kmem
charges until all call sites are patched (see memcg_kmem_enabled). This
guarantees that no mischarges are applied.
Static branch decrement happens when the last reference count from the
kmem accounting in memcg dies. This will only happen when the charges
drop down to 0.
When that happens, we need to disable the static branch only on those
memcgs that enabled it. To achieve this, we would be forced to complicate
the code by keeping track of which memcgs were the ones that actually
enabled limits, and which ones got it from its parents.
It is a lot simpler just to do static_key_slow_inc() on every child
that is accounted.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because kmem charges can outlive the cgroup, we need to make sure that we
won't free the memcg structure while charges are still in flight. For
reviewing simplicity, the charge functions will issue mem_cgroup_get() at
every charge, and mem_cgroup_put() at every uncharge.
This can get expensive, however, and we can do better. mem_cgroup_get()
only really needs to be issued once: when the first limit is set. In the
same spirit, we only need to issue mem_cgroup_put() when the last charge
is gone.
We'll need an extra bit in kmem_account_flags for that:
KMEM_ACCOUNTED_DEAD. it will be set when the cgroup dies, if there are
charges in the group. If there aren't, we can proceed right away.
Our uncharge function will have to test that bit every time the charges
drop to 0. Because that is not the likely output of res_counter_uncharge,
this should not impose a big hit on us: it is certainly much better than a
reference count decrease at every operation.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce infrastructure for tracking kernel memory pages to a given
memcg. This will happen whenever the caller includes the flag
__GFP_KMEMCG flag, and the task belong to a memcg other than the root.
In memcontrol.h those functions are wrapped in inline acessors. The idea
is to later on, patch those with static branches, so we don't incur any
overhead when no mem cgroups with limited kmem are being used.
Users of this functionality shall interact with the memcg core code
through the following functions:
memcg_kmem_newpage_charge: will return true if the group can handle the
allocation. At this point, struct page is not
yet allocated.
memcg_kmem_commit_charge: will either revert the charge, if struct page
allocation failed, or embed memcg information
into page_cgroup.
memcg_kmem_uncharge_page: called at free time, will revert the charge.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for the accounting of kernel memory. To
control that, the following files are created:
* memory.kmem.usage_in_bytes
* memory.kmem.limit_in_bytes
* memory.kmem.failcnt
* memory.kmem.max_usage_in_bytes
They have the same meaning of their user memory counterparts. They
reflect the state of the "kmem" res_counter.
Per cgroup kmem memory accounting is not enabled until a limit is set for
the group. Once the limit is set the accounting cannot be disabled for
that group. This means that after the patch is applied, no behavioral
changes exists for whoever is still using memcg to control their memory
usage, until memory.kmem.limit_in_bytes is set for the first time.
We always account to both user and kernel resource_counters. This
effectively means that an independent kernel limit is in place when the
limit is set to a lower value than the user memory. A equal or higher
value means that the user limit will always hit first, meaning that kmem
is effectively unlimited.
People who want to track kernel memory but not limit it, can set this
limit to a very high number (like RESOURCE_MAX - 1page - that no one will
ever hit, or equal to the user memory)
[akpm@linux-foundation.org: MEMCG_MMEM only works with slab and slub]
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just a cleanup patch for clarity of expression. In earlier
submissions, people asked it to be in a separate patch, so here it is.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_do_charge() was written before kmem accounting, and expects
three cases: being called for 1 page, being called for a stock of 32
pages, or being called for a hugepage. If we call for 2 or 3 pages (and
both the stack and several slabs used in process creation are such, at
least with the debug options I had), it assumed it's being called for
stock and just retried without reclaiming.
Fix that by passing down a minsize argument in addition to the csize.
And what to do about that (csize == PAGE_SIZE && ret) retry? If it's
needed at all (and presumably is since it's there, perhaps to handle
races), then it should be extended to more than PAGE_SIZE, yet how far?
And should there be a retry count limit, of what? For now retry up to
COSTLY_ORDER (as page_alloc.c does) and make sure not to do it if
__GFP_NORETRY.
v4: fixed nr pages calculation pointed out by Christoph Lameter.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently have a percpu stock cache scheme that charges one page at a
time from memcg->res, the user counter. When the kernel memory controller
comes into play, we'll need to charge more than that.
This is because kernel memory allocations will also draw from the user
counter, and can be bigger than a single page, as it is the case with the
stack (usually 2 pages) or some higher order slabs.
[glommer@parallels.com: added a changelog ]
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
The mm given to __mem_cgroup_count_vm_event() cannot be NULL because the
function is either called from the page fault path or vma->vm_mm is used.
So the check can be dropped.
The check was introduced by commit 456f998ec817 ("memcg: add the
pagefault count into memcg stats") because the originally proposed patch
used current->mm for shmem but this has been changed to vma->vm_mm later
on without the check being removed (thanks to Hugh for this
recollection).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While profiling numa/core v16 with cgroup_disable=memory on the command
line, I noticed mem_cgroup_count_vm_event() still showed up as high as
0.60% in perftop.
This occurs because the function is called extremely often even when memcg
is disabled.
To fix this, inline the check for mem_cgroup_disabled() so we avoid the
unnecessary function call if memcg is disabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup changes from Tejun Heo:
"A lot of activities on cgroup side. The big changes are focused on
making cgroup hierarchy handling saner.
- cgroup_rmdir() had peculiar semantics - it allowed cgroup
destruction to be vetoed by individual controllers and tried to
drain refcnt synchronously. The vetoing never worked properly and
caused good deal of contortions in cgroup. memcg was the last
reamining user. Michal Hocko removed the usage and cgroup_rmdir()
path has been simplified significantly. This was done in a
separate branch so that the memcg people can base further memcg
changes on top.
- The above allowed cleaning up cgroup lifecycle management and
implementation of generic cgroup iterators which are used to
improve hierarchy support.
- cgroup_freezer updated to allow migration in and out of a frozen
cgroup and handle hierarchy. If a cgroup is frozen, all descendant
cgroups are frozen.
- netcls_cgroup and netprio_cgroup updated to handle hierarchy
properly.
- Various fixes and cleanups.
- Two merge commits. One to pull in memcg and rmdir cleanups (needed
to build iterators). The other pulled in cgroup/for-3.7-fixes for
device_cgroup fixes so that further device_cgroup patches can be
stacked on top."
Fixed up a trivial conflict in mm/memcontrol.c as per Tejun (due to
commit bea8c150a7 ("memcg: fix hotplugged memory zone oops") in master
touching code close to commit 2ef37d3fe4 ("memcg: Simplify
mem_cgroup_force_empty_list error handling") in for-3.8)
* 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (65 commits)
cgroup: update Documentation/cgroups/00-INDEX
cgroup_rm_file: don't delete the uncreated files
cgroup: remove subsystem files when remounting cgroup
cgroup: use cgroup_addrm_files() in cgroup_clear_directory()
cgroup: warn about broken hierarchies only after css_online
cgroup: list_del_init() on removed events
cgroup: fix lockdep warning for event_control
cgroup: move list add after list head initilization
netprio_cgroup: allow nesting and inherit config on cgroup creation
netprio_cgroup: implement netprio[_set]_prio() helpers
netprio_cgroup: use cgroup->id instead of cgroup_netprio_state->prioidx
netprio_cgroup: reimplement priomap expansion
netprio_cgroup: shorten variable names in extend_netdev_table()
netprio_cgroup: simplify write_priomap()
netcls_cgroup: move config inheritance to ->css_online() and remove .broken_hierarchy marking
cgroup: remove obsolete guarantee from cgroup_task_migrate.
cgroup: add cgroup->id
cgroup, cpuset: remove cgroup_subsys->post_clone()
cgroup: s/CGRP_CLONE_CHILDREN/CGRP_CPUSET_CLONE_CHILDREN/
cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offline/free()
...
mem_cgroup_out_of_memory() is only referenced from within file scope, so
it can be marked static.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Note: This is very heavily based on a patch from Peter Zijlstra with
fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch
put a lot of migration logic into mm/huge_memory.c where it does
not belong. This version puts tries to share some of the migration
logic with migrate_misplaced_page. However, it should be noted
that now migrate.c is doing more with the pagetable manipulation
than is preferred. The end result is barely recognisable so as
before, the signed-offs had to be removed but will be re-added if
the original authors are ok with it.
Add THP migration for the NUMA working set scanning fault case.
It uses the page lock to serialize. No migration pte dance is
necessary because the pte is already unmapped when we decide
to migrate.
[dhillf@gmail.com: Fix memory leak on isolation failure]
[dhillf@gmail.com: Fix transfer of last_nid information]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are. Also, update documentation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
When MEMCG is configured on (even when it's disabled by boot option),
when adding or removing a page to/from its lru list, the zone pointer
used for stats updates is nowadays taken from the struct lruvec. (On
many configurations, calculating zone from page is slower.)
But we have no code to update all the lruvecs (per zone, per memcg) when
a memory node is hotadded. Here's an extract from the oops which
results when running numactl to bind a program to a newly onlined node:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60
IP: __mod_zone_page_state+0x9/0x60
Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs
Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0)
Call Trace:
__pagevec_lru_add_fn+0xdf/0x140
pagevec_lru_move_fn+0xb1/0x100
__pagevec_lru_add+0x1c/0x30
lru_add_drain_cpu+0xa3/0x130
lru_add_drain+0x2f/0x40
...
The natural solution might be to use a memcg callback whenever memory is
hotadded; but that solution has not been scoped out, and it happens that
we do have an easy location at which to update lruvec->zone. The lruvec
pointer is discovered either by mem_cgroup_zone_lruvec() or by
mem_cgroup_page_lruvec(), and both of those do know the right zone.
So check and set lruvec->zone in those; and remove the inadequate
attempt to set lruvec->zone from lruvec_init(), which is called before
NODE_DATA(node) has been allocated in such cases.
Ah, there was one exceptionr. For no particularly good reason,
mem_cgroup_force_empty_list() has its own code for deciding lruvec.
Change it to use the standard mem_cgroup_zone_lruvec() and
mem_cgroup_get_lru_size() too. In fact it was already safe against such
an oops (the lru lists in danger could only be empty), but we're better
proofed against future changes this way.
I've marked this for stable (3.6) since we introduced the problem in 3.5
(now closed to stable); but I have no idea if this is the only fix
needed to get memory hotadd working with memcg in 3.6, and received no
answer when I enquired twice before.
Reported-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_badness() takes a totalpages argument which says how many pages are
available and it uses it as a base for the score calculation. The value
is calculated by mem_cgroup_get_limit which considers both limit and
total_swap_pages (resp. memsw portion of it).
This is usually correct but since fe35004fbf9e ("mm: avoid swapping out
with swappiness==0") we do not swap when swappiness is 0 which means
that we cannot really use up all the totalpages pages. This in turn
confuses oom score calculation if the memcg limit is much smaller than
the available swap because the used memory (capped by the limit) is
negligible comparing to totalpages so the resulting score is too small
if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj).
A wrong process might be selected as result.
The problem can be worked around by checking mem_cgroup_swappiness==0
and not considering swap at all in such a case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull rmdir updates into for-3.8 so that further callback updates can
be put on top. This pull created a trivial conflict between the
following two commits.
8c7f6edbda ("cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them")
ed95779340 ("cgroup: kill cgroup_subsys->__DEPRECATED_clear_css_refs")
The former added a field to cgroup_subsys and the latter removed one
from it. They happen to be colocated causing the conflict. Keeping
what's added and removing what's removed resolves the conflict.
Signed-off-by: Tejun Heo <tj@kernel.org>
All ->pre_destory() implementations return 0 now, which is the only
allowed return value. Make it return void.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Now that pre_destroy callbacks are called from the context where neither
any task can attach the group nor any children group can be added there
is no other way to fail from mem_cgroup_pre_destroy.
mem_cgroup_pre_destroy doesn't have to take a reference to memcg's css
because all css' are marked dead already.
tj: Remove now unused local variable @cgrp from
mem_cgroup_reparent_charges().
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
CGRP_WAIT_ON_RMDIR is another kludge which was added to make cgroup
destruction rollback somewhat working. cgroup_rmdir() used to drain
CSS references and CGRP_WAIT_ON_RMDIR and the associated waitqueue and
helpers were used to allow the task performing rmdir to wait for the
next relevant event.
Unfortunately, the wait is visible to controllers too and the
mechanism got exposed to memcg by 887032670d ("cgroup avoid permanent
sleep at rmdir").
Now that the draining and retries are gone, CGRP_WAIT_ON_RMDIR is
unnecessary. Remove it and all the mechanisms supporting it. Note
that memcontrol.c changes are essentially revert of 887032670d
("cgroup avoid permanent sleep at rmdir").
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
CSS_REMOVED is one of the several contortions which were necessary to
support css reference draining on cgroup removal. All css->refcnts
which need draining should be deactivated and verified to equal zero
atomically w.r.t. css_tryget(). If any one isn't zero, all refcnts
needed to be re-activated and css_tryget() shouldn't fail in the
process.
This was achieved by letting css_tryget() busy-loop until either the
refcnt is reactivated (failed removal attempt) or CSS_REMOVED is set
(committing to removal).
Now that css refcnt draining is no longer used, there's no need for
atomic rollback mechanism. css_tryget() simply can look at the
reference count and fail if it's deactivated - it's never getting
re-activated.
This patch removes CSS_REMOVED and updates __css_tryget() to fail if
the refcnt is deactivated. As deactivation and removal are a single
step now, they no longer need to be protected against css_tryget()
happening from irq context. Remove local_irq_disable/enable() from
cgroup_rmdir().
Note that this removes css_is_removed() whose only user is VM_BUG_ON()
in memcontrol.c. We can replace it with a check on the refcnt but
given that the only use case is a debug assert, I think it's better to
simply unexport it.
v2: Comment updated and explanation on local_irq_disable/enable()
added per Michal Hocko.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
mem_cgroup_force_empty_list currently tries to remove all pages from
the given LRU. To prevent from temoporary failures (EBUSY returned by
mem_cgroup_move_parent) it uses a margin to the current LRU pages and
returns the true if there are still some pages left on the list.
If we consider that mem_cgroup_move_parent fails only when it is racing
with somebody else removing (uncharging) the page or when the page is
migrated then it is obvious that all those failures are only temporal
and so we can safely retry later.
Let's get rid of the safety margin and make the loop really wait for
the empty LRU. The caller should still make sure that all charges have
been removed from the res_counter because mem_cgroup_replace_page_cache
might add a page to the LRU after the list_empty check (it doesn't touch
res_counter though).
This catches most of the cases except for shmem which might call
mem_cgroup_replace_page_cache with a page which is not charged and on
the LRU yet but this was the case also without this patch. In order to
fix this we need a guarantee that try_get_mem_cgroup_from_page falls
back to the current mm's cgroup so it needs css_tryget to fail. This
will be fixed up in a later patch because it needs a help from cgroup
core (pre_destroy has to be called after css is cleared).
Although mem_cgroup_pre_destroy can still fail (if a new task or a new
sub-group appears) there is no reason to retry pre_destroy callback from
the cgroup core. This means that __DEPRECATED_clear_css_refs has lost
its meaning and it can be removed.
Changes since v2
- remove __DEPRECATED_clear_css_refs
Changes since v1
- use kerndoc
- be more specific about mem_cgroup_move_parent possible failures
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The root cgroup cannot be destroyed so we never hit it down the
mem_cgroup_pre_destroy path and mem_cgroup_force_empty_write shouldn't
even try to do anything if called for the root.
This means that mem_cgroup_move_parent doesn't have to bother with the
root cgroup and it can assume it can always move charges upwards.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
mem_cgroup_force_empty did two separate things depending on free_all
parameter from the very beginning. It either reclaimed as many pages as
possible and moved the rest to the parent or just moved charges to the
parent. The first variant is used as memory.force_empty callback while
the later is used from the mem_cgroup_pre_destroy.
The whole games around gotos are far from being nice and there is no
reason to keep those two functions inside one. Let's split them and
also move the responsibility for css reference counting to their callers
to make to code easier.
This patch doesn't have any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
kmem code uses this function and it is better to not use forward
declarations for static inline functions as some (older) compilers don't
like it:
gcc version 4.3.4 [gcc-4_3-branch revision 152973] (SUSE Linux)
mm/memcontrol.c:421: warning: `mem_cgroup_is_root' declared inline after being called
mm/memcontrol.c:421: warning: previous declaration of `mem_cgroup_is_root' was here
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
TCP kmem accounting is currently guarded by CONFIG_MEMCG_KMEM ifdefs but
the code is not used if !CONFIG_INET so we should rather test for both.
The same applies to net/sock.h, net/ip.h and net/tcp_memcontrol.h but
let's keep those outside of any ifdefs because it is considered safer wrt.
future maintainability.
Tested with
- CONFIG_INET && CONFIG_MEMCG_KMEM
- !CONFIG_INET && CONFIG_MEMCG_KMEM
- CONFIG_INET && !CONFIG_MEMCG_KMEM
- !CONFIG_INET && !CONFIG_MEMCG_KMEM
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, cgroup hierarchy support is a mess. cpu related subsystems
behave correctly - configuration, accounting and control on a parent
properly cover its children. blkio and freezer completely ignore
hierarchy and treat all cgroups as if they're directly under the root
cgroup. Others show yet different behaviors.
These differing interpretations of cgroup hierarchy make using cgroup
confusing and it impossible to co-mount controllers into the same
hierarchy and obtain sane behavior.
Eventually, we want full hierarchy support from all subsystems and
probably a unified hierarchy. Users using separate hierarchies
expecting completely different behaviors depending on the mounted
subsystem is deterimental to making any progress on this front.
This patch adds cgroup_subsys.broken_hierarchy and sets it to %true
for controllers which are lacking in hierarchy support. The goal of
this patch is two-fold.
* Move users away from using hierarchy on currently non-hierarchical
subsystems, so that implementing proper hierarchy support on those
doesn't surprise them.
* Keep track of which controllers are broken how and nudge the
subsystems to implement proper hierarchy support.
For now, start with a single warning message. We can whine louder
later on.
v2: Fixed a typo spotted by Michal. Warning message updated.
v3: Updated memcg part so that it doesn't generate warning in the
cases where .use_hierarchy=false doesn't make the behavior
different from root.use_hierarchy=true. Fixed a typo spotted by
Glauber.
v4: Check ->broken_hierarchy after cgroup creation is complete so that
->create() can affect the result per Michal. Dropped unnecessary
memcg root handling per Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Add a mem_cgroup_from_css() helper to replace open-coded invokations of
container_of(). To clarify the code and to add a little more type safety.
[akpm@linux-foundation.org: fix extensive breakage]
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem knows for sure that the page is in swap cache when attempting to
charge a page, because the cache charge entry function has a check for it.
Only anon pages may be removed from swap cache already when trying to
charge their swapin.
Adjust the comment, though: '4969c11 mm: fix swapin race condition' added
a stable PageSwapCache check under the page lock in the do_swap_page()
before calling the memory controller, so it's unuse_pte()'s pte_same()
that may fail.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon and shmem pages in the swap cache are attempted to be charged
multiple times, from every swap pte fault or from shmem_unuse(). No other
pages require checking PageCgroupUsed().
Charging pages in the swap cache is also serialized by the page lock, and
since both the try_charge and commit_charge are called under the same page
lock section, the PageCgroupUsed() check might as well happen before the
counter charging, let alone reclaim.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shmem is charged upon swapin, it does not need to check twice whether
the memory controller is enabled.
Also, shmem pages do not have to be checked for everything that regular
anon pages have to be checked for, so let shmem use the internal version
directly and allow future patches to move around checks that are only
required when swapping in anon pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does not matter to __mem_cgroup_try_charge() if the passed mm is NULL
or init_mm, it will charge the root memcg in either case.
Also fix up the comment in __mem_cgroup_try_charge() that claimed the
init_mm would be charged when no mm was passed. It's not really
incorrect, but confusing. Clarify that the root memcg is charged in this
case.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem page charges have not needed a separate charge type to tell them
from regular file pages since 08e552c ("memcg: synchronized LRU").
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Charging cache pages may require swapin in the shmem case. Save the
forward declaration and just move the swapin functions above the cache
charging functions.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only anon pages that are uncharged at the time of the last page table
mapping vanishing may be in swapcache.
When shmem pages, file pages, swap-freed anon pages, or just migrated
pages are uncharged, they are known for sure to be not in swapcache.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not all uncharge paths need to check if the page is swapcache, some of
them can know for sure.
Push down the check into all callsites of uncharge_common() so that the
patch that removes some of them is more obvious.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>