IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
writes the FPU state to the alternate stack without checking whether
the stack is large enough to accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
updated despite the fact that the FPU state which is stored on the
signal stack has grown over time which causes trouble in the field
when AVX512 is available on a CPU. The kernel does not expose the
minimum requirements for the alternate stack size depending on the
available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well
- A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
related issues unearthed quite some inconsistencies, duplicated code
and other issues.
The fine granular overhaul addresses this, makes the code more robust
and maintainable, which allows to integrate upcoming XSTATE related
features in sane ways.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
/TbbRZu7nXDN2w==
=Mq1m
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
PKRU is currently partly XSAVE-managed and partly not. It has space
in the task XSAVE buffer and is context-switched by XSAVE/XRSTOR.
However, it is switched more eagerly than FPU because there may be a
need for PKRU to be up-to-date for things like copy_to/from_user() since
PKRU affects user-permission memory accesses, not just accesses from
userspace itself.
This leaves PKRU in a very odd position. XSAVE brings very little value
to the table for how Linux uses PKRU except for signal related XSTATE
handling.
Prepare to move PKRU away from being XSAVE-managed. Allocate space in
the thread_struct for it and save/restore it in the context-switch path
separately from the XSAVE-managed features. task->thread_struct.pkru
is only valid when the task is scheduled out. For the current task the
authoritative source is the hardware, i.e. it has to be retrieved via
rdpkru().
Leave the XSAVE code in place for now to ensure bisectability.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.399107624@linutronix.de
SEV-ES guests require properly setup task register with which the TSS
descriptor in the GDT can be located so that the IST-type #VC exception
handler which they need to function properly, can be executed.
This setup needs to happen before attempting to load microcode in
ucode_cpu_init() on secondary CPUs which can cause such #VC exceptions.
Simplify the machinery by running that exception setup from a new function
cpu_init_secondary() and explicitly call cpu_init_exception_handling() for
the boot CPU before cpu_init(). The latter prepares for fixing and
simplifying the exception/IST setup on the boot CPU.
There should be no functional changes resulting from this patch.
[ tglx: Reworked it so cpu_init_exception_handling() stays seperate ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Lai Jiangshan <laijs@linux.alibaba.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/87k0o6gtvu.ffs@nanos.tec.linutronix.de
Some AMD Ryzen generations has different calculation method on maximum
performance. 255 is not for all ASICs, some specific generations should use 166
as the maximum performance. Otherwise, it will report incorrect frequency value
like below:
~ → lscpu | grep MHz
CPU MHz: 3400.000
CPU max MHz: 7228.3198
CPU min MHz: 2200.0000
[ mingo: Tidied up whitespace use. ]
[ Alexander Monakov <amonakov@ispras.ru>: fix 225 -> 255 typo. ]
Fixes: 41ea667227ba ("x86, sched: Calculate frequency invariance for AMD systems")
Fixes: 3c55e94c0ade ("cpufreq: ACPI: Extend frequency tables to cover boost frequencies")
Reported-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Fixed-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210425073451.2557394-1-ray.huang@amd.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211791
Signed-off-by: Ingo Molnar <mingo@kernel.org>
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline how
one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery around
selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack
ops. Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
=bm4S
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
-----BEGIN PGP SIGNATURE-----
iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBhB7AeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGCPUH+KKkSoOlN2YNu1oc
iy2nznwZoSQTk5ZLz7PypO/WWmmtgzudkObG7yqIURdrncsAkHR17Wu2P7rdBr1j
Ma+VhF9MQ+xx+r86upH7c3gYfhyfdUMvzuLy0rwLQ1Yrzrb7xFcVkj3BHk54TAQA
w05sRPuVJ3/c/HPYV2iXkkdnnMbXSTCebeDDwjFb9D3qagr4vcd/PjDHmGbfNF8R
o6gLpbK5Ly6ww1nth9gGGUjzrW95yVItvcroP6vQWljxhuy+NE1lXRm8LsGhxqtW
foFFptJup5nhSNJXWtQt/U3huVD6mZ3W3y9cOThPjXZRy2wva3I1IpBKoEFReUpG
/Tq8EA==
=tPUY
-----END PGP SIGNATURE-----
Merge tag 'v5.12-rc5' into WIP.x86/core, to pick up recent NOP related changes
In particular we want to have this upstream commit:
b90829704780: ("bpf: Use NOP_ATOMIC5 instead of emit_nops(&prog, 5) for BPF_TRAMP_F_CALL_ORIG")
... before merging in x86/cpu changes and the removal of the NOP optimizations, and
applying PeterZ's !retpoline objtool series.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpu_current_top_of_stack is currently stored in TSS.sp1. TSS is exposed
through the cpu_entry_area which is visible with user CR3 when PTI is
enabled and active.
This makes it a coveted fruit for attackers. An attacker can fetch the
kernel stack top from it and continue next steps of actions based on the
kernel stack.
But it is actualy not necessary to be stored in the TSS. It is only
accessed after the entry code switched to kernel CR3 and kernel GS_BASE
which means it can be in any regular percpu variable.
The reason why it is in TSS is historical (pre PTI) because TSS is also
used as scratch space in SYSCALL_64 and therefore cache hot.
A syscall also needs the per CPU variable current_task and eventually
__preempt_count, so placing cpu_current_top_of_stack next to them makes it
likely that they end up in the same cache line which should avoid
performance regressions. This is not enforced as the compiler is free to
place these variables, so these entry relevant variables should move into
a data structure to make this enforceable.
The seccomp_benchmark doesn't show any performance loss in the "getpid
native" test result. Actually, the result changes from 93ns before to 92ns
with this change when KPTI is disabled. The test is very stable and
although the test doesn't show a higher degree of precision it gives enough
confidence that moving cpu_current_top_of_stack does not cause a
regression.
[ tglx: Removed unneeded export. Massaged changelog ]
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210125173444.22696-2-jiangshanlai@gmail.com
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
Move TS_COMPAT back to asm/thread_info.h, close to TS_I386_REGS_POKED.
It was moved to asm/processor.h by b9d989c7218a ("x86/asm: Move the
thread_info::status field to thread_struct"), then later 37a8f7c38339
("x86/asm: Move 'status' from thread_struct to thread_info") moved the
'status' field back but TS_COMPAT was forgotten.
Preparatory patch to fix the COMPAT case for get_nr_restart_syscall()
Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174649.GA17880@redhat.com
On 32-bit kernels, the stackprotector canary is quite nasty -- it is
stored at %gs:(20), which is nasty because 32-bit kernels use %fs for
percpu storage. It's even nastier because it means that whether %gs
contains userspace state or kernel state while running kernel code
depends on whether stackprotector is enabled (this is
CONFIG_X86_32_LAZY_GS), and this setting radically changes the way
that segment selectors work. Supporting both variants is a
maintenance and testing mess.
Merely rearranging so that percpu and the stack canary
share the same segment would be messy as the 32-bit percpu address
layout isn't currently compatible with putting a variable at a fixed
offset.
Fortunately, GCC 8.1 added options that allow the stack canary to be
accessed as %fs:__stack_chk_guard, effectively turning it into an ordinary
percpu variable. This lets us get rid of all of the code to manage the
stack canary GDT descriptor and the CONFIG_X86_32_LAZY_GS mess.
(That name is special. We could use any symbol we want for the
%fs-relative mode, but for CONFIG_SMP=n, gcc refuses to let us use any
name other than __stack_chk_guard.)
Forcibly disable stackprotector on older compilers that don't support
the new options and turn the stack canary into a percpu variable. The
"lazy GS" approach is now used for all 32-bit configurations.
Also makes load_gs_index() work on 32-bit kernels. On 64-bit kernels,
it loads the GS selector and updates the user GSBASE accordingly. (This
is unchanged.) On 32-bit kernels, it loads the GS selector and updates
GSBASE, which is now always the user base. This means that the overall
effect is the same on 32-bit and 64-bit, which avoids some ifdeffery.
[ bp: Massage commit message. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c0ff7dba14041c7e5d1cae5d4df052f03759bef3.1613243844.git.luto@kernel.org
The per CPU hardirq_stack_ptr contains the pointer to the irq stack in the
form that it is ready to be assigned to [ER]SP so that the first push ends
up on the top entry of the stack.
But the stack switching on 64 bit has the following rules:
1) Store the current stack pointer (RSP) in the top most stack entry
to allow the unwinder to link back to the previous stack
2) Set RSP to the top most stack entry
3) Invoke functions on the irq stack
4) Pop RSP from the top most stack entry (stored in #1) so it's back
to the original stack.
That requires all stack switching code to decrement the stored pointer by 8
in order to be able to store the current RSP and then set RSP to that
location. That's a pointless exercise.
Do the -8 adjustment right when storing the pointer and make the data type
a void pointer to avoid confusion vs. the struct irq_stack data type which
is on 64bit only used to declare the backing store. Move the definition
next to the inuse flag so they likely end up in the same cache
line. Sticking them into a struct to enforce it is a seperate change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002512.354260928@linutronix.de
The recursion protection for hard interrupt stacks is an unsigned int per
CPU variable initialized to -1 named __irq_count.
The irq stack switching is only done when the variable is -1, which creates
worse code than just checking for 0. When the stack switching happens it
uses this_cpu_add/sub(1), but there is no reason to do so. It simply can
use straight writes. This is a historical leftover from the low level ASM
code which used inc and jz to make a decision.
Rename it to hardirq_stack_inuse, make it a bool and use plain stores.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210210002512.228830141@linutronix.de
The Last Level Cache ID is returned by amd_get_nb_id(). In practice,
this value is the same as the AMD NodeId for callers of this function.
The NodeId is saved in struct cpuinfo_x86.cpu_die_id.
Replace calls to amd_get_nb_id() with the logical CPU's cpu_die_id and
remove the function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-3-Yazen.Ghannam@amd.com
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
The IDT on 64-bit contains vectors which use paranoid_entry() and/or IST
stacks. To make these vectors work, the TSS and the getcpu GDT entry need
to be set up before the IDT is loaded.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-68-joro@8bytes.org
Stop providing the possibility to override the address space using
set_fs() now that there is no need for that any more. To properly
handle the TASK_SIZE_MAX checking for 4 vs 5-level page tables on
x86 a new alternative is introduced, which just like the one in
entry_64.S has to use the hardcoded virtual address bits to escape
the fact that TASK_SIZE_MAX isn't actually a constant when 5-level
page tables are enabled.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
At least for 64-bit this moves them closer to some of the defines
they are based on, and it prepares for using the TASK_SIZE_MAX
definition from assembly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Current usage of thread.debugreg6 is convoluted at best. It starts life as
a copy of the hardware DR6 value, but then various bits are cleared and
set.
Replace this with a new variable thread.virtual_dr6 that is initialized to
0 when DR6 is read and only gains bits, at the same time the actual (on
stack) dr6 value which is read from the hardware only gets bits cleared.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20200902133201.415372940@infradead.org
this has been brought into a shape which is maintainable and actually
works.
This final version was done by Sasha Levin who took it up after Intel
dropped the ball. Sasha discovered that the SGX (sic!) offerings out there
ship rogue kernel modules enabling FSGSBASE behind the kernels back which
opens an instantanious unpriviledged root hole.
The FSGSBASE instructions provide a considerable speedup of the context
switch path and enable user space to write GSBASE without kernel
interaction. This enablement requires careful handling of the exception
entries which go through the paranoid entry path as they cannot longer rely
on the assumption that user GSBASE is positive (as enforced via prctl() on
non FSGSBASE enabled systemn). All other entries (syscalls, interrupts and
exceptions) can still just utilize SWAPGS unconditionally when the entry
comes from user space. Converting these entries to use FSGSBASE has no
benefit as SWAPGS is only marginally slower than WRGSBASE and locating and
retrieving the kernel GSBASE value is not a free operation either. The real
benefit of RD/WRGSBASE is the avoidance of the MSR reads and writes.
The changes come with appropriate selftests and have held up in field
testing against the (sanitized) Graphene-SGX driver.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pGnoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoTYJD/9873GkwvGcc/Vq/dJH1szGTgFftPyZ
c/Y9gzx7EGBPLo25BS820L+ZlynzXHDxExKfCEaD10TZfe5XIc1vYNR0J74M2NmK
IBgEDstJeW93ai+rHCFRXIevhpzU4GgGYJ1MeeOgbVMN3aGU1g6HfzMvtF0fPn8Y
n6fsLZa43wgnoTdjwjjikpDTrzoZbaL1mbODBzBVPAaTbim7IKKTge6r/iCKrOjz
Uixvm3g9lVzx52zidJ9kWa8esmbOM1j0EPe7/hy3qH9DFo87KxEzjHNH3T6gY5t6
NJhRAIfY+YyTHpPCUCshj6IkRudE6w/qjEAmKP9kWZxoJrvPCTWOhCzelwsFS9b9
gxEYfsnaKhsfNhB6fi0PtWlMzPINmEA7SuPza33u5WtQUK7s1iNlgHfvMbjstbwg
MSETn4SG2/ZyzUrSC06lVwV8kh0RgM3cENc/jpFfIHD0vKGI3qfka/1RY94kcOCG
AeJd0YRSU2RqL7lmxhHyG8tdb8eexns41IzbPCLXX2sF00eKNkVvMRYT2mKfKLFF
q8v1x7yuwmODdXfFR6NdCkGm9IU7wtL6wuQ8Nhu9UraFmcXo6X6FLJC18FqcvSb9
jvcRP4XY/8pNjjf44JB8yWfah0xGQsaMIKQGP4yLv4j6Xk1xAQKH1MqcC7l1D2HN
5Z24GibFqSK/vA==
=QaAN
-----END PGP SIGNATURE-----
Merge tag 'x86-fsgsbase-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fsgsbase from Thomas Gleixner:
"Support for FSGSBASE. Almost 5 years after the first RFC to support
it, this has been brought into a shape which is maintainable and
actually works.
This final version was done by Sasha Levin who took it up after Intel
dropped the ball. Sasha discovered that the SGX (sic!) offerings out
there ship rogue kernel modules enabling FSGSBASE behind the kernels
back which opens an instantanious unpriviledged root hole.
The FSGSBASE instructions provide a considerable speedup of the
context switch path and enable user space to write GSBASE without
kernel interaction. This enablement requires careful handling of the
exception entries which go through the paranoid entry path as they
can no longer rely on the assumption that user GSBASE is positive (as
enforced via prctl() on non FSGSBASE enabled systemn).
All other entries (syscalls, interrupts and exceptions) can still just
utilize SWAPGS unconditionally when the entry comes from user space.
Converting these entries to use FSGSBASE has no benefit as SWAPGS is
only marginally slower than WRGSBASE and locating and retrieving the
kernel GSBASE value is not a free operation either. The real benefit
of RD/WRGSBASE is the avoidance of the MSR reads and writes.
The changes come with appropriate selftests and have held up in field
testing against the (sanitized) Graphene-SGX driver"
* tag 'x86-fsgsbase-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/fsgsbase: Fix Xen PV support
x86/ptrace: Fix 32-bit PTRACE_SETREGS vs fsbase and gsbase
selftests/x86/fsgsbase: Add a missing memory constraint
selftests/x86/fsgsbase: Fix a comment in the ptrace_write_gsbase test
selftests/x86: Add a syscall_arg_fault_64 test for negative GSBASE
selftests/x86/fsgsbase: Test ptracer-induced GS base write with FSGSBASE
selftests/x86/fsgsbase: Test GS selector on ptracer-induced GS base write
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
x86/entry/64: Handle FSGSBASE enabled paranoid entry/exit
x86/entry/64: Introduce the FIND_PERCPU_BASE macro
x86/entry/64: Switch CR3 before SWAPGS in paranoid entry
x86/speculation/swapgs: Check FSGSBASE in enabling SWAPGS mitigation
x86/process/64: Use FSGSBASE instructions on thread copy and ptrace
x86/process/64: Use FSBSBASE in switch_to() if available
x86/process/64: Make save_fsgs_for_kvm() ready for FSGSBASE
x86/fsgsbase/64: Enable FSGSBASE instructions in helper functions
x86/fsgsbase/64: Add intrinsics for FSGSBASE instructions
x86/cpu: Add 'unsafe_fsgsbase' to enable CR4.FSGSBASE
...
Having sync_core() in processor.h is problematic since it is not possible
to check for hardware capabilities via the *cpu_has() family of macros.
The latter needs the definitions in processor.h.
It also looks more intuitive to relocate the function to sync_core.h.
This changeset does not make changes in functionality.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20200727043132.15082-3-ricardo.neri-calderon@linux.intel.com
Marco crashed in bad_iret with a Clang11/KCSAN build due to
overflowing the stack. Now that we run C code on it, expand it to a
full page.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200618144801.819246178@infradead.org
save_fsgs_for_kvm() is invoked via
vcpu_enter_guest()
kvm_x86_ops.prepare_guest_switch(vcpu)
vmx_prepare_switch_to_guest()
save_fsgs_for_kvm()
with preemption disabled, but interrupts enabled.
The upcoming FSGSBASE based GS safe needs interrupts to be disabled. This
could be done in the helper function, but that function is also called from
switch_to() which has interrupts disabled already.
Disable interrupts inside save_fsgs_for_kvm() and rename the function to
current_save_fsgs() so it can be invoked from other places.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200528201402.1708239-7-sashal@kernel.org
Add cpu feature conditional FSGSBASE access to the relevant helper
functions. That allows to accelerate certain FS/GS base operations in
subsequent changes.
Note, that while possible, the user space entry/exit GSBASE operations are
not going to use the new FSGSBASE instructions. The reason is that it would
require additional storage for the user space value which adds more
complexity to the low level code and experiments have shown marginal
benefit. This may be revisited later but for now the SWAPGS based handling
in the entry code is preserved except for the paranoid entry/exit code.
To preserve the SWAPGS entry mechanism introduce __[rd|wr]gsbase_inactive()
helpers. Note, for Xen PV, paravirt hooks can be added later as they might
allow a very efficient but different implementation.
[ tglx: Massaged changelog, convert it to noinstr and force inline
native_swapgs() ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-7-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-5-sashal@kernel.org
- Speed up objtool significantly, especially when there are large number of sections
- Improve objtool's understanding of special instructions such as IRET,
to reduce the number of annotations required
- Implement 'noinstr' validation
- Do baby steps for non-x86 objtool use
- Simplify/fix retpoline decoding
- Add vmlinux validation
- Improve documentation
- Fix various bugs and apply smaller cleanups
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VHvcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gEfBAAhvPWljUmfQsetYq4q9BdbuC4xPSQN9ra
e+2zu1MQaohkjAdFM1boNVhCCGKFUvlTEEw3GJR141Us6Y/ZRS8VIo70tmVSku6I
OwuR5i8SgEKwurr1SwLxrI05rovYWRLSaDIRTHn2CViPEjgriyFGRV8QKam3AYmI
dx47la3ELwuQR68nIdIMzDRt49oZVy+ZKW8Pjgjklzrd5KMYsPy7HPtraHUMeDg+
GdoC7RresIt5AFiDiIJzKTT/jROI7KuHFnM6blluKHoKenWhYBFCz3sd6IvCdQWX
JGy+KKY6H+YDMSpgc4FRP56M3GI0hX14oCd7L72epSLfOuzPr9Tmf6wfyQ8f50Je
LGLD47tyltIcQR9H85YdR8UQspkjSW6xcql4ByCPTEqp0UzSGTsVntvsHzwsgz6A
Csh3s+DVdv0rk5ZjMCu8STA2oErpehJm7fmugt2oLx+nsCNCBUI25lilw5JGeq5c
+cO0IRxRxHPeRvMWvItTjbixVAHOHYlB00ilDbvsm+GnTJgu/5cMqpXdLvfXI2Rr
nl360bSS3t3J4w5rX0mXw4x24vjQmVrA69jU+oo8RSHje2X8Y4Q7sFHNjmN0YAI3
Re8aP6HSLQjioJxGz9aISlrxmPOXe0CMp8JE586SREVgmS/olXtidMgi7l12uZ2B
cRdtNYcn31U=
=dbCU
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
"There are a lot of objtool changes in this cycle, all across the map:
- Speed up objtool significantly, especially when there are large
number of sections
- Improve objtool's understanding of special instructions such as
IRET, to reduce the number of annotations required
- Implement 'noinstr' validation
- Do baby steps for non-x86 objtool use
- Simplify/fix retpoline decoding
- Add vmlinux validation
- Improve documentation
- Fix various bugs and apply smaller cleanups"
* tag 'objtool-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
objtool: Enable compilation of objtool for all architectures
objtool: Move struct objtool_file into arch-independent header
objtool: Exit successfully when requesting help
objtool: Add check_kcov_mode() to the uaccess safelist
samples/ftrace: Fix asm function ELF annotations
objtool: optimize add_dead_ends for split sections
objtool: use gelf_getsymshndx to handle >64k sections
objtool: Allow no-op CFI ops in alternatives
x86/retpoline: Fix retpoline unwind
x86: Change {JMP,CALL}_NOSPEC argument
x86: Simplify retpoline declaration
x86/speculation: Change FILL_RETURN_BUFFER to work with objtool
objtool: Add support for intra-function calls
objtool: Move the IRET hack into the arch decoder
objtool: Remove INSN_STACK
objtool: Make handle_insn_ops() unconditional
objtool: Rework allocating stack_ops on decode
objtool: UNWIND_HINT_RET_OFFSET should not check registers
objtool: is_fentry_call() crashes if call has no destination
x86,smap: Fix smap_{save,restore}() alternatives
...
The original Memory Bandwidth Monitoring (MBM) architectural
definition defines counters of up to 62 bits in the
IA32_QM_CTR MSR while the first-generation MBM implementation
uses statically defined 24 bit counters.
Expand the MBM CPUID enumeration properties to include the MBM
counter width. The previously undefined EAX output register contains,
in bits [7:0], the MBM counter width encoded as an offset from
24 bits. Enumerating this property is only specified for Intel
CPUs.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/afa3af2f753f6bc301fb743bc8944e749cb24afa.1588715690.git.reinette.chatre@intel.com
Teach objtool a little more about IRET so that we can avoid using the
SAVE/RESTORE annotation. In particular, make the weird corner case in
insn->restore go away.
The purpose of that corner case is to deal with the fact that
UNWIND_HINT_RESTORE lands on the instruction after IRET, but that
instruction can end up being outside the basic block, consider:
if (cond)
sync_core()
foo();
Then the hint will land on foo(), and we'll encounter the restore
hint without ever having seen the save hint.
By teaching objtool about the arch specific exception frame size, and
assuming that any IRET in an STT_FUNC symbol is an exception frame
sized POP, we can remove the use of save/restore hints for this code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20200416115118.631224674@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cleanups from Ingo Molnar:
"This topic tree contains more commits than usual:
- most of it are uaccess cleanups/reorganization by Al
- there's a bunch of prototype declaration (--Wmissing-prototypes)
cleanups
- misc other cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm/set_memory: Fix -Wmissing-prototypes warnings
x86/efi: Add a prototype for efi_arch_mem_reserve()
x86/mm: Mark setup_emu2phys_nid() static
x86/jump_label: Move 'inline' keyword placement
x86/platform/uv: Add a missing prototype for uv_bau_message_interrupt()
kill uaccess_try()
x86: unsafe_put-style macro for sigmask
x86: x32_setup_rt_frame(): consolidate uaccess areas
x86: __setup_rt_frame(): consolidate uaccess areas
x86: __setup_frame(): consolidate uaccess areas
x86: setup_sigcontext(): list user_access_{begin,end}() into callers
x86: get rid of put_user_try in __setup_rt_frame() (both 32bit and 64bit)
x86: ia32_setup_rt_frame(): consolidate uaccess areas
x86: ia32_setup_frame(): consolidate uaccess areas
x86: ia32_setup_sigcontext(): lift user_access_{begin,end}() into the callers
x86/alternatives: Mark text_poke_loc_init() static
x86/cpu: Fix a -Wmissing-prototypes warning for init_ia32_feat_ctl()
x86/mm: Drop pud_mknotpresent()
x86: Replace setup_irq() by request_irq()
x86/configs: Slightly reduce defconfigs
...
Unfortunately, GCC 9.1 is expected to be be released without support for
MPX. This means that there was only a relatively small window where
folks could have ever used MPX. It failed to gain wide adoption in the
industry, and Linux was the only mainstream OS to ever support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge window.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCAAGBQJeK1/pAAoJEGg1lTBwyZKwgC8QAIiVn1d7A9Uj/WpnpgfCChCZ
9XiV6Ak999qD9fbAcrgNfPjieaD4mtokocSRVJuRgJu5iLnIJCINlozLPe4yVl7P
7zebnxkLq0CIA8d56bEUoFlC0J+oWYlDVQePZzNQsSk5KHVGXVLpF6U4vDVzZeQy
cprgvdeY+ehB7G6IIo0MWTg5ylKYAsOAyVvK8NIGpKY2k6/YqCnsptnsVE7bvlHy
TrEOiUWLv+hh0bMkZdP1PwKQKEuMO/IZly0HtviFbMN7T4TB1spfg7ELoBucEq3T
s4EVbYRe+nIE4tuEAveaX3CgxJek8cY5MlticskdaKSEACBwabdOF55qsZy0u+WA
PYC4iUIXfbOH8OgieKWtGX4IuSkRYdQ2nP4BOpe4ZX4+zvU7zOCIyVSKRrwkX8cc
ADtWI5FAtB36KCgUuWnHGHNZpOxPTbTLBuBataFY4Q2uBNJEBJpscZ5H9ObtyGFU
ZjlzqFnM0nFNDKEI1EEtv9jLzgZTU1RQ46s7EFeSeEQ2/s9wJ3+s5sBlVbljsmus
o658bLOEaRWC/aF15dgmEXW9GAO6uifNdmbzGnRn7oEMYyFQPTWbZvi1zGz58QaG
Y6WTtigVtsSrHS4wpYd+p+n1W06VnB6J3BpBM4G1VQv1Vm0dNd1tUOfkqOzPjg7c
33Itmsz2LaW1mb67GlgZ
=g4cC
-----END PGP SIGNATURE-----
Merge tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx
Pull x86 MPX removal from Dave Hansen:
"MPX requires recompiling applications, which requires compiler
support. Unfortunately, GCC 9.1 is expected to be be released without
support for MPX. This means that there was only a relatively small
window where folks could have ever used MPX. It failed to gain wide
adoption in the industry, and Linux was the only mainstream OS to ever
support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge
window when the MPX prctl()s were removed. XSAVE support is left in
place, which allows MPX-using KVM guests to continue to function"
* tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx:
x86/mpx: remove MPX from arch/x86
mm: remove arch_bprm_mm_init() hook
x86/mpx: remove bounds exception code
x86/mpx: remove build infrastructure
x86/alternatives: add missing insn.h include
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
This removes all the remaining (dead at this point) MPX handling
code remaining in the tree. The only remaining code is the XSAVE
support for MPX state which is currently needd for KVM to handle
VMs which might use MPX.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Add an entry in struct cpuinfo_x86 to track VMX capabilities and fill
the capabilities during IA32_FEAT_CTL MSR initialization.
Make the VMX capabilities dependent on IA32_FEAT_CTL and
X86_FEATURE_NAMES so as to avoid unnecessary overhead on CPUs that can't
possibly support VMX, or when /proc/cpuinfo is not available.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-11-sean.j.christopherson@intel.com
Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually
supplant the synthetic VMX flags defined in cpufeatures word 8. Use the
Intel-defined layouts for the major VMX execution controls so that their
word entries can be directly populated from their respective MSRs, and
so that the VMX_FEATURE_* flags can be used to define the existing bit
definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE
flag when adding support for a new hardware feature.
The majority of Intel's (and compatible CPU's) VMX capabilities are
enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't
naturally provide any insight into the virtualization capabilities of
VMX enabled CPUs. Commit
e38e05a85828d ("x86: extended "flags" to show virtualization HW feature
in /proc/cpuinfo")
attempted to address the issue by synthesizing select VMX features into
a Linux-defined word in cpufeatures.
Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic
because there is no sane way for a user to query the capabilities of
their platform, e.g. when trying to find a platform to test a feature or
debug an issue that has a hardware dependency. Lack of reporting is
especially problematic when the user isn't familiar with VMX, e.g. the
format of the MSRs is non-standard, existence of some MSRs is reported
by bits in other MSRs, several "features" from KVM's point of view are
enumerated as 3+ distinct features by hardware, etc...
The synthetic cpufeatures approach has several flaws:
- The set of synthesized VMX flags has become extremely stale with
respect to the full set of VMX features, e.g. only one new flag
(EPT A/D) has been added in the the decade since the introduction of
the synthetic VMX features. Failure to keep the VMX flags up to
date is likely due to the lack of a mechanism that forces developers
to consider whether or not a new feature is worth reporting.
- The synthetic flags may incorrectly be misinterpreted as affecting
kernel behavior, i.e. KVM, the kernel's sole consumer of VMX,
completely ignores the synthetic flags.
- New CPU vendors that support VMX have duplicated the hideous code
that propagates VMX features from MSRs to cpufeatures. Bringing the
synthetic VMX flags up to date would exacerbate the copy+paste
trainwreck.
Define separate VMX_FEATURE flags to set the stage for enumerating VMX
capabilities outside of the cpu_has() framework, and for adding
functional usage of VMX_FEATURE_* to help ensure the features reported
via /proc/cpuinfo is up to date with respect to kernel recognition of
VMX capabilities.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
There are three problems with the current layout of the doublefault
stack and TSS. First, the TSS is only cacheline-aligned, which is
not enough -- if the hardware portion of the TSS (struct x86_hw_tss)
crosses a page boundary, horrible things happen [0]. Second, the
stack and TSS are global, so simultaneous double faults on different
CPUs will cause massive corruption. Third, the whole mechanism
won't work if user CR3 is loaded, resulting in a triple fault [1].
Let the doublefault stack and TSS share a page (which prevents the
TSS from spanning a page boundary), make it percpu, and move it into
cpu_entry_area. Teach the stack dump code about the doublefault
stack.
[0] Real hardware will read past the end of the page onto the next
*physical* page if a task switch happens. Virtual machines may
have any number of bugs, and I would consider it reasonable for
a VM to summarily kill the guest if it tries to task-switch to
a page-spanning TSS.
[1] Real hardware triple faults. At least some VMs seem to hang.
I'm not sure what's going on.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 64-bit doublefault handler is much nicer than the 32-bit one.
As a first step toward unifying them, make the 64-bit handler
self-contained. This should have no effect no functional effect
except in the odd case of x86_64 with CONFIG_DOUBLEFAULT=n in which
case it will change the logging a bit.
This also gets rid of CONFIG_DOUBLEFAULT configurability on 64-bit
kernels. It didn't do anything useful -- CONFIG_DOUBLEFAULT=n
didn't actually disable doublefault handling on x86_64.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the following commit:
05b042a19443: ("x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert precise")
'struct cpu_entry_area' has to be Kconfig invariant, so that we always
have a matching CPU_ENTRY_AREA_PAGES size.
This commit added a CONFIG_X86_IOPL_IOPERM dependency to tss_struct:
111e7b15cf10: ("x86/ioperm: Extend IOPL config to control ioperm() as well")
Which, if CONFIG_X86_IOPL_IOPERM is turned off, reduces the size of
cpu_entry_area by two pages, triggering the assert:
./include/linux/compiler.h:391:38: error: call to ‘__compiletime_assert_202’ declared with attribute error: BUILD_BUG_ON failed: (CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE
Simplify the Kconfig dependencies and make cpu_entry_area constant
size on 32-bit kernels again.
Fixes: 05b042a19443: ("x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert precise")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 iopl updates from Ingo Molnar:
"This implements a nice simplification of the iopl and ioperm code that
Thomas Gleixner discovered: we can implement the IO privilege features
of the iopl system call by using the IO permission bitmap in
permissive mode, while trapping CLI/STI/POPF/PUSHF uses in user-space
if they change the interrupt flag.
This implements that feature, with testing facilities and related
cleanups"
[ "Simplification" may be an over-statement. The main goal is to avoid
the cli/sti of iopl by effectively implementing the IO port access
parts of iopl in terms of ioperm.
This may end up not workign well in case people actually depend on
cli/sti being available, or if there are mixed uses of iopl and
ioperm. We will see.. - Linus ]
* 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
x86/ioperm: Fix use of deprecated config option
x86/entry/32: Clarify register saving in __switch_to_asm()
selftests/x86/iopl: Extend test to cover IOPL emulation
x86/ioperm: Extend IOPL config to control ioperm() as well
x86/iopl: Remove legacy IOPL option
x86/iopl: Restrict iopl() permission scope
x86/iopl: Fixup misleading comment
selftests/x86/ioperm: Extend testing so the shared bitmap is exercised
x86/ioperm: Share I/O bitmap if identical
x86/ioperm: Remove bitmap if all permissions dropped
x86/ioperm: Move TSS bitmap update to exit to user work
x86/ioperm: Add bitmap sequence number
x86/ioperm: Move iobitmap data into a struct
x86/tss: Move I/O bitmap data into a seperate struct
x86/io: Speedup schedule out of I/O bitmap user
x86/ioperm: Avoid bitmap allocation if no permissions are set
x86/ioperm: Simplify first ioperm() invocation logic
x86/iopl: Cleanup include maze
x86/tss: Fix and move VMX BUILD_BUG_ON()
x86/cpu: Unify cpu_init()
...
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- Cross-arch changes to move the linker sections for NOTES and
EXCEPTION_TABLE into the RO_DATA area, where they belong on most
architectures. (Kees Cook)
- Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
trap jumps into the middle of those padding areas instead of
sliding execution. (Kees Cook)
- A thorough cleanup of symbol definitions within x86 assembler code.
The rather randomly named macros got streamlined around a
(hopefully) straightforward naming scheme:
SYM_START(name, linkage, align...)
SYM_END(name, sym_type)
SYM_FUNC_START(name)
SYM_FUNC_END(name)
SYM_CODE_START(name)
SYM_CODE_END(name)
SYM_DATA_START(name)
SYM_DATA_END(name)
etc - with about three times of these basic primitives with some
label, local symbol or attribute variant, expressed via postfixes.
No change in functionality intended. (Jiri Slaby)
- Misc other changes, cleanups and smaller fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
x86/entry/64: Remove pointless jump in paranoid_exit
x86/entry/32: Remove unused resume_userspace label
x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
m68k: Convert missed RODATA to RO_DATA
x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
x86/mm: Report actual image regions in /proc/iomem
x86/mm: Report which part of kernel image is freed
x86/mm: Remove redundant address-of operators on addresses
xtensa: Move EXCEPTION_TABLE to RO_DATA segment
powerpc: Move EXCEPTION_TABLE to RO_DATA segment
parisc: Move EXCEPTION_TABLE to RO_DATA segment
microblaze: Move EXCEPTION_TABLE to RO_DATA segment
ia64: Move EXCEPTION_TABLE to RO_DATA segment
h8300: Move EXCEPTION_TABLE to RO_DATA segment
c6x: Move EXCEPTION_TABLE to RO_DATA segment
arm64: Move EXCEPTION_TABLE to RO_DATA segment
alpha: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Actually use _etext for the end of the text segment
vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
...
Pull x86 cpu and fpu updates from Ingo Molnar:
- math-emu fixes
- CPUID updates
- sanity-check RDRAND output to see whether the CPU at least pretends
to produce random data
- various unaligned-access across cachelines fixes in preparation of
hardware level split-lock detection
- fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with
larger than 512 NR_CPUS
- misc FPU related cleanups
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Align the x86_capability array to size of unsigned long
x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
x86/umip: Make the comments vendor-agnostic
x86/Kconfig: Rename UMIP config parameter
x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK
x86/cpufeatures: Add feature bit RDPRU on AMD
x86/math-emu: Limit MATH_EMULATION to 486SX compatibles
x86/math-emu: Check __copy_from_user() result
x86/rdrand: Sanity-check RDRAND output
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers
x86/fpu: Shrink space allocated for xstate_comp_offsets
x86/fpu: Update stale variable name in comment
If iopl() is disabled, then providing ioperm() does not make much sense.
Rename the config option and disable/enable both syscalls with it. Guard
the code with #ifdefs where appropriate.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The IOPL emulation via the I/O bitmap is sufficient. Remove the legacy
cruft dealing with the (e)flags based IOPL mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com> (Paravirt and Xen parts)
Acked-by: Andy Lutomirski <luto@kernel.org>
The access to the full I/O port range can be also provided by the TSS I/O
bitmap, but that would require to copy 8k of data on scheduling in the
task. As shown with the sched out optimization TSS.io_bitmap_base can be
used to switch the incoming task to a preallocated I/O bitmap which has all
bits zero, i.e. allows access to all I/O ports.
Implementing this allows to provide an iopl() emulation mode which restricts
the IOPL level 3 permissions to I/O port access but removes the STI/CLI
permission which is coming with the hardware IOPL mechansim.
Provide a config option to switch IOPL to emulation mode, make it the
default and while at it also provide an option to disable IOPL completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Add a globally unique sequence number which is incremented when ioperm() is
changing the I/O bitmap of a task. Store the new sequence number in the
io_bitmap structure and compare it with the sequence number of the I/O
bitmap which was last loaded on a CPU. Only update the bitmap if the
sequence is different.
That should further reduce the overhead of I/O bitmap scheduling when there
are only a few I/O bitmap users on the system.
The 64bit sequence counter is sufficient. A wraparound of the sequence
counter assuming an ioperm() call every nanosecond would require about 584
years of uptime.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having all the data in thread_struct, especially as upcoming
changes add more.
Make the bitmap in the new struct accessible as array of longs and as array
of characters via a union, so both the bitmap functions and the update
logic can avoid type casts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the non hardware portion of I/O bitmap data into a seperate struct for
readability sake.
Originally-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no requirement to update the TSS I/O bitmap when a thread using it is
scheduled out and the incoming thread does not use it.
For the permission check based on the TSS I/O bitmap the CPU calculates the memory
location of the I/O bitmap by the address of the TSS and the io_bitmap_base member
of the tss_struct. The easiest way to invalidate the I/O bitmap is to switch the
offset to an address outside of the TSS limit.
If an I/O instruction is issued from user space the TSS limit causes #GP to be
raised in the same was as valid I/O bitmap with all bits set to 1 would do.
This removes the extra work when an I/O bitmap using task is scheduled out
and puts the burden on the rare I/O bitmap users when they are scheduled
in.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>