cb7b3a3685
55 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Johannes Weiner
|
2b487e59f0 |
mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
a7ca12f9d9 |
mm/workingset: remove unused @mapping argument in workingset_eviction()
workingset_eviction() doesn't use and never did use the @mapping argument. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Arun KS
|
ca79b0c211 |
mm: convert totalram_pages and totalhigh_pages variables to atomic
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
dad4f140ed |
Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ... |
||
Johannes Weiner
|
4b85afbdac |
mm: zero-seek shrinkers
The page cache and most shrinkable slab caches hold data that has been read from disk, but there are some caches that only cache CPU work, such as the dentry and inode caches of procfs and sysfs, as well as the subset of radix tree nodes that track non-resident page cache. Currently, all these are shrunk at the same rate: using DEFAULT_SEEKS for the shrinker's seeks setting tells the reclaim algorithm that for every two page cache pages scanned it should scan one slab object. This is a bogus setting. A virtual inode that required no IO to create is not twice as valuable as a page cache page; shadow cache entries with eviction distances beyond the size of memory aren't either. In most cases, the behavior in practice is still fine. Such virtual caches don't tend to grow and assert themselves aggressively, and usually get picked up before they cause problems. But there are scenarios where that's not true. Our database workloads suffer from two of those. For one, their file workingset is several times bigger than available memory, which has the kernel aggressively create shadow page cache entries for the non-resident parts of it. The workingset code does tell the VM that most of these are expendable, but the VM ends up balancing them 2:1 to cache pages as per the seeks setting. This is a huge waste of memory. These workloads also deal with tens of thousands of open files and use /proc for introspection, which ends up growing the proc_inode_cache to absurdly large sizes - again at the cost of valuable cache space, which isn't a reasonable trade-off, given that proc inodes can be re-created without involving the disk. This patch implements a "zero-seek" setting for shrinkers that results in a target ratio of 0:1 between their objects and IO-backed caches. This allows such virtual caches to grow when memory is available (they do cache/avoid CPU work after all), but effectively disables them as soon as IO-backed objects are under pressure. It then switches the shrinkers for procfs and sysfs metadata, as well as excess page cache shadow nodes, to the new zero-seek setting. Link: http://lkml.kernel.org/r/20181009184732.762-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Domas Mituzas <dmituzas@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
68d48e6a2d |
mm: workingset: add vmstat counter for shadow nodes
Make it easier to catch bugs in the shadow node shrinker by adding a counter for the shadow nodes in circulation. [akpm@linux-foundation.org: assert that irqs are disabled, for __inc_lruvec_page_state()] [akpm@linux-foundation.org: s/WARN_ON_ONCE/VM_WARN_ON_ONCE/, per Johannes] Link: http://lkml.kernel.org/r/20181009184732.762-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
505802a535 |
mm: workingset: use cheaper __inc_lruvec_state in irqsafe node reclaim
No need to use the preemption-safe lruvec state function inside the reclaim region that has irqs disabled. Link: http://lkml.kernel.org/r/20181009184732.762-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1899ad18c6 |
mm: workingset: tell cache transitions from workingset thrashing
Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
95f9ab2d59 |
mm: workingset: don't drop refault information prematurely
Patch series "psi: pressure stall information for CPU, memory, and IO", v4. Overview PSI reports the overall wallclock time in which the tasks in a system (or cgroup) wait for (contended) hardware resources. This helps users understand the resource pressure their workloads are under, which allows them to rootcause and fix throughput and latency problems caused by overcommitting, underprovisioning, suboptimal job placement in a grid; as well as anticipate major disruptions like OOM. Real-world applications We're using the data collected by PSI (and its previous incarnation, memdelay) quite extensively at Facebook, and with several success stories. One usecase is avoiding OOM hangs/livelocks. The reason these happen is because the OOM killer is triggered by reclaim not being able to free pages, but with fast flash devices there is *always* some clean and uptodate cache to reclaim; the OOM killer never kicks in, even as tasks spend 90% of the time thrashing the cache pages of their own executables. There is no situation where this ever makes sense in practice. We wrote a <100 line POC python script to monitor memory pressure and kill stuff way before such pathological thrashing leads to full system losses that would require forcible hard resets. We've since extended and deployed this code into other places to guarantee latency and throughput SLAs, since they're usually violated way before the kernel OOM killer would ever kick in. It is available here: https://github.com/facebookincubator/oomd Eventually we probably want to trigger the in-kernel OOM killer based on extreme sustained pressure as well, so that Linux can avoid memory livelocks - which technically aren't deadlocks, but to the user indistinguishable from them - out of the box. We'd continue using OOMD as the first line of defense to ensure workload health and implement complex kill policies that are beyond the scope of the kernel. We also use PSI memory pressure for loadshedding. Our batch job infrastructure used to use heuristics based on various VM stats to anticipate OOM situations, with lackluster success. We switched it to PSI and managed to anticipate and avoid OOM kills and lockups fairly reliably. The reduction of OOM outages in the worker pool raised the pool's aggregate productivity, and we were able to switch that service to smaller machines. Lastly, we use cgroups to isolate a machine's main workload from maintenance crap like package upgrades, logging, configuration, as well as to prevent multiple workloads on a machine from stepping on each others' toes. We were not able to configure this properly without the pressure metrics; we would see latency or bandwidth drops, but it would often be hard to impossible to rootcause it post-mortem. We now log and graph pressure for the containers in our fleet and can trivially link latency spikes and throughput drops to shortages of specific resources after the fact, and fix the job config/scheduling. PSI has also received testing, feedback, and feature requests from Android and EndlessOS for the purpose of low-latency OOM killing, to intervene in pressure situations before the UI starts hanging. How do you use this feature? A kernel with CONFIG_PSI=y will create a /proc/pressure directory with 3 files: cpu, memory, and io. If using cgroup2, cgroups will also have cpu.pressure, memory.pressure and io.pressure files, which simply aggregate task stalls at the cgroup level instead of system-wide. The cpu file contains one line: some avg10=2.04 avg60=0.75 avg300=0.40 total=157656722 The averages give the percentage of walltime in which one or more tasks are delayed on the runqueue while another task has the CPU. They're recent averages over 10s, 1m, 5m windows, so you can tell short term trends from long term ones, similarly to the load average. The total= value gives the absolute stall time in microseconds. This allows detecting latency spikes that might be too short to sway the running averages. It also allows custom time averaging in case the 10s/1m/5m windows aren't adequate for the usecase (or are too coarse with future hardware). What to make of this "some" metric? If CPU utilization is at 100% and CPU pressure is 0, it means the system is perfectly utilized, with one runnable thread per CPU and nobody waiting. At two or more runnable tasks per CPU, the system is 100% overcommitted and the pressure average will indicate as much. From a utilization perspective this is a great state of course: no CPU cycles are being wasted, even when 50% of the threads were to go idle (as most workloads do vary). From the perspective of the individual job it's not great, however, and they would do better with more resources. Depending on what your priority and options are, raised "some" numbers may or may not require action. The memory file contains two lines: some avg10=70.24 avg60=68.52 avg300=69.91 total=3559632828 full avg10=57.59 avg60=58.06 avg300=60.38 total=3300487258 The some line is the same as for cpu, the time in which at least one task is stalled on the resource. In the case of memory, this includes waiting on swap-in, page cache refaults and page reclaim. The full line, however, indicates time in which *nobody* is using the CPU productively due to pressure: all non-idle tasks are waiting for memory in one form or another. Significant time spent in there is a good trigger for killing things, moving jobs to other machines, or dropping incoming requests, since neither the jobs nor the machine overall are making too much headway. The io file is similar to memory. Because the block layer doesn't have a concept of hardware contention right now (how much longer is my IO request taking due to other tasks?), it reports CPU potential lost on all IO delays, not just the potential lost due to competition. FAQ Q: How is PSI's CPU component different from the load average? A: There are several quirks in the load average that make it hard to impossible to tell how overcommitted the CPU really is. 1. The load average is reported as a raw number of active tasks. You need to know how many CPUs there are in the system, how many CPUs the workload is allowed to use, then think about what the proportion between load and the number of CPUs mean for the tasks trying to run. PSI reports the percentage of wallclock time in which tasks are waiting for a CPU to run on. It doesn't matter how many CPUs are present or usable. The number always tells the quality of life of tasks in the system or in a particular cgroup. 2. The shortest averaging window is 1m, which is extremely coarse, and it's sampled in 5s intervals. A *lot* can happen on a CPU in 5 seconds. This *may* be able to identify persistent long-term trends and very clear and obvious overloads, but it's unusable for latency spikes and more subtle overutilization. PSI's shortest window is 10s. It also exports the cumulative stall times (in microseconds) of synchronously recorded events. 3. On Linux, the load average for historical reasons includes all TASK_UNINTERRUPTIBLE tasks. This gives a broader sense of how busy the system is, but on the flipside it doesn't distinguish whether tasks are likely to contend over the CPU or IO - which obviously requires very different interventions from a sys admin or a job scheduler. PSI reports independent metrics for CPU and IO. You can tell which resource is making the tasks wait, but in conjunction still see how overloaded the system is overall. Q: What's the cost / performance impact of this feature? A: PSI's primary cost is in the scheduler, in particular task wakeups and sleeps. I benchmarked this code using Facebook's two most scheduling sensitive workloads: memcache and webserver. They handle a ton of small requests - lots of wakeups and sleeps with little actual work in between - so they tend to be canaries for scheduler regressions. In the tests, the boxes were handling live traffic over the course of several hours. Half the machines, the control, ran with CONFIG_PSI=n. For memcache I used eight machines total. They're 2-socket, 14 core, 56 thread boxes. The test runs for half the test period, flips the test and control kernels on the hardware to rule out HW factors, DC location etc., then runs the other half of the test. For the webservers, I used 32 machines total. They're single socket, 16 core, 32 thread machines. During the memcache test, CPU load was nopsi=78.05% psi=78.98% in the first half and nopsi=77.52% psi=78.25%, so PSI added between 0.7 and 0.9 percentage points to the CPU load, a difference of about 1%. UPDATE: I re-ran this test with the v3 version of this patch set and the CPU utilization was equivalent between test and control. UPDATE: v4 is on par with v3. As far as end-to-end request latency from the client perspective goes, we don't sample those finely enough to capture the requests going to those particular machines during the test, but we know the p50 turnaround time in this workload is 54us, and perf bench sched pipe on those machines show nopsi=5.232666 us/op and psi=5.587347 us/op, so this doesn't add much here either. The profile for the pipe benchmark shows: 0.87% sched-pipe [kernel.vmlinux] [k] psi_group_change 0.83% perf.real [kernel.vmlinux] [k] psi_group_change 0.82% perf.real [kernel.vmlinux] [k] psi_task_change 0.58% sched-pipe [kernel.vmlinux] [k] psi_task_change The webserver load is running inside 4 nested cgroup levels. The CPU load with both nopsi and psi kernels was indistinguishable at 81%. For comparison, we had to disable the cgroup cpu controller on the webservers because it added 4 percentage points to the CPU% during this same exact test. Versions of this accounting code now run on 80% of our fleet. None of our workloads have reported regressions during the rollout. Daniel Drake said: : I just retested the latest version at : http://git.cmpxchg.org/cgit.cgi/linux-psi.git (Linux 4.18) and the results : are great. : : Test setup: : Endless OS : GeminiLake N4200 low end laptop : 2GB RAM : swap (and zram swap) disabled : : Baseline test: open a handful of large-ish apps and several website : tabs in Google Chrome. : : Results: after a couple of minutes, system is excessively thrashing, mouse : cursor can barely be moved, UI is not responding to mouse clicks, so it's : impractical to recover from this situation as an ordinary user : : Add my simple killer: : https://gist.github.com/dsd/a8988bf0b81a6163475988120fe8d9cd : : Results: when the thrashing causes the UI to become sluggish, the killer : steps in and kills something (usually a chrome tab), and the system : remains usable. I repeatedly opened more apps and more websites over a 15 : minute period but I wasn't able to get the system to a point of UI : unresponsiveness. Suren said: : Backported to 4.9 and retested on ARMv8 8 code system running Android. : Signals behave as expected reacting to memory pressure, no jumps in : "total" counters that would indicate an overflow/underflow issues. Nicely : done! This patch (of 9): If we keep just enough refault information to match the *current* page cache during reclaim time, we could lose a lot of events when there is only a temporary spike in non-cache memory consumption that pushes out all the cache. Once cache comes back, we won't see those refaults. They might not be actionable for LRU aging, but we want to know about them for measuring memory pressure. [hannes@cmpxchg.org: switch to NUMA-aware lru and slab counters] Link: http://lkml.kernel.org/r/20181009184732.762-2-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <jweiner@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Christopher Lameter <cl@linux.com> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
a97e7904c0 |
mm: Convert workingset to XArray
We construct an XA_STATE and use it to delete the node with xas_store() rather than adding a special function for this unique use case. Includes a test that simulates this usage for the test suite. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Matthew Wilcox
|
01959dfe77 |
xarray: Define struct xa_node
This is a direct replacement for struct radix_tree_node. A couple of struct members have changed name, so convert those. Use a #define so that radix tree users continue to work without change. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com> |
||
Matthew Wilcox
|
3159f943aa |
xarray: Replace exceptional entries
Introduce xarray value entries and tagged pointers to replace radix tree exceptional entries. This is a slight change in encoding to allow the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a value entry). It is also a change in emphasis; exceptional entries are intimidating and different. As the comment explains, you can choose to store values or pointers in the xarray and they are both first-class citizens. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com> |
||
Sebastian Andrzej Siewior
|
6b51e88199 |
mm/list_lru: introduce list_lru_shrink_walk_irq()
Provide list_lru_shrink_walk_irq() and let it behave like list_lru_walk_one() except that it locks the spinlock with spin_lock_irq(). This is used by scan_shadow_nodes() because its lock nests within the i_pages lock which is acquired with IRQ. This change allows to use proper locking promitives instead hand crafted lock_irq_disable() plus spin_lock(). There is no EXPORT_SYMBOL provided because the current user is in-kernel only. Add list_lru_shrink_walk_irq() which acquires the spinlock with the proper locking primitives. Link: http://lkml.kernel.org/r/20180716111921.5365-5-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9b996468cf |
mm: add SHRINK_EMPTY shrinker methods return value
We need to distinguish the situations when shrinker has very small amount of objects (see vfs_pressure_ratio() called from super_cache_count()), and when it has no objects at all. Currently, in the both of these cases, shrinker::count_objects() returns 0. The patch introduces new SHRINK_EMPTY return value, which will be used for "no objects at all" case. It's is a refactoring mostly, as SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this patch, and all the magic will happen in further. Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
c92e8e10ca |
fs: propagate shrinker::id to list_lru
Add list_lru::shrinker_id field and populate it by registered shrinker id. This will be used to set correct bit in memcg shrinkers map by lru code in next patches, after there appeared the first related to memcg element in list_lru. Link: http://lkml.kernel.org/r/153063059758.1818.14866596416857717800.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
39887653aa |
mm/workingset.c: refactor workingset_init()
Use prealloc_shrinker()/register_shrinker_prepared() instead of register_shrinker(). This will be used in next patch. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112550112.4097.16606173020912323761.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063057666.1818.17625951186610808734.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
6ca342d020 |
mm: workingset: make shadow_lru_isolate() use locking suffix
shadow_lru_isolate() disables interrupts and acquires a lock. It could use spin_lock_irq() instead. It also uses local_irq_enable() while it could use spin_unlock_irq()/xa_unlock_irq(). Use proper suffix for lock/unlock in order to enable/disable interrupts during release/acquire of a lock. Link: http://lkml.kernel.org/r/20180622151221.28167-3-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
ae1e16da14 |
mm: workingset: remove local_irq_disable() from count_shadow_nodes()
Patch series "mm: use irq locking suffix instead local_irq_disable()".
A small series which avoids using local_irq_disable()/local_irq_enable()
but instead does spin_lock_irq()/spin_unlock_irq() so it is within the
context of the lock which it belongs to. Patch #1 is a cleanup where
local_irq_.*() remained after the lock was removed.
This patch (of 2):
In
|
||
Matthew Wilcox
|
b93b016313 |
page cache: use xa_lock
Remove the address_space ->tree_lock and use the xa_lock newly added to the radix_tree_root. Rename the address_space ->page_tree to ->i_pages, since we don't really care that it's a tree. [willy@infradead.org: fix nds32, fs/dax.c] Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c7df8ad291 |
mm, truncate: do not check mapping for every page being truncated
During truncation, the mapping has already been checked for shmem and dax so it's known that workingset_update_node is required. This patch avoids the checks on mapping for each page being truncated. In all other cases, a lookup helper is used to determine if workingset_update_node() needs to be called. The one danger is that the API is slightly harder to use as calling workingset_update_node directly without checking for dax or shmem mappings could lead to surprises. However, the API rarely needs to be used and hopefully the comment is enough to give people the hint. sparsetruncate (tiny) 4.14.0-rc4 4.14.0-rc4 oneirq-v1r1 pickhelper-v1r1 Min Time 141.00 ( 0.00%) 140.00 ( 0.71%) 1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%) 2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%) Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%) Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%) Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%) Max Time 230.00 ( 0.00%) 205.00 ( 10.87%) Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%) Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%) Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%) Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%) Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%) Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%) Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%) Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%) Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%) As you'd expect, the gain is marginal but it can be detected. The differences in bonnie are all within the noise which is not surprising given the impact on the microbenchmark. radix_tree_update_node_t is a callback for some radix operations that optionally passes in a private field. The only user of the callback is workingset_update_node and as it no longer requires a mapping, the private field is removed. Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Johannes Weiner
|
00f3ca2c2d |
mm: memcontrol: per-lruvec stats infrastructure
lruvecs are at the intersection of the NUMA node and memcg, which is the scope for most paging activity. Introduce a convenient accounting infrastructure that maintains statistics per node, per memcg, and the lruvec itself. Then convert over accounting sites for statistics that are already tracked in both nodes and memcgs and can be easily switched. [hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code] Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org [hannes@cmpxchg.org: don't track uncharged pages at all Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org [hannes@cmpxchg.org: add missing free_percpu()] Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org [linux@roeck-us.net: hexagon: fix build error caused by include file order] Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
ccda7f4360 |
mm: memcontrol: use node page state naming scheme for memcg
The memory controllers stat function names are awkwardly long and arbitrarily different from the zone and node stat functions. The current interface is named: mem_cgroup_read_stat() mem_cgroup_update_stat() mem_cgroup_inc_stat() mem_cgroup_dec_stat() mem_cgroup_update_page_stat() mem_cgroup_inc_page_stat() mem_cgroup_dec_page_stat() This patch renames it to match the corresponding node stat functions: memcg_page_state() [node_page_state()] mod_memcg_state() [mod_node_state()] inc_memcg_state() [inc_node_state()] dec_memcg_state() [dec_node_state()] mod_memcg_page_state() [mod_node_page_state()] inc_memcg_page_state() [inc_node_page_state()] dec_memcg_page_state() [dec_node_page_state()] Link: http://lkml.kernel.org/r/20170404220148.28338-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
71cd31135d |
mm: memcontrol: re-use node VM page state enum
The current duplication is a high-maintenance mess, and it's painful to add new items or query memcg state from the rest of the VM. This increases the size of the stat array marginally, but we should aim to track all these stats on a per-cgroup level anyway. Link: http://lkml.kernel.org/r/20170404220148.28338-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
2a2e48854d |
mm: vmscan: fix IO/refault regression in cache workingset transition
Since commit |
||
Johannes Weiner
|
0cefabdaf7 |
mm: workingset: fix premature shadow node shrinking with cgroups
Commit |
||
Linus Torvalds
|
cf393195c3 |
Merge branch 'idr-4.11' of git://git.infradead.org/users/willy/linux-dax
Pull IDR rewrite from Matthew Wilcox: "The most significant part of the following is the patch to rewrite the IDR & IDA to be clients of the radix tree. But there's much more, including an enhancement of the IDA to be significantly more space efficient, an IDR & IDA test suite, some improvements to the IDR API (and driver changes to take advantage of those improvements), several improvements to the radix tree test suite and RCU annotations. The IDR & IDA rewrite had a good spin in linux-next and Andrew's tree for most of the last cycle. Coupled with the IDR test suite, I feel pretty confident that any remaining bugs are quite hard to hit. 0-day did a great job of watching my git tree and pointing out problems; as it hit them, I added new test-cases to be sure not to be caught the same way twice" Willy goes on to expand a bit on the IDR rewrite rationale: "The radix tree and the IDR use very similar data structures. Merging the two codebases lets us share the memory allocation pools, and results in a net deletion of 500 lines of code. It also opens up the possibility of exposing more of the features of the radix tree to users of the IDR (and I have some interesting patches along those lines waiting for 4.12) It also shrinks the size of the 'struct idr' from 40 bytes to 24 which will shrink a fair few data structures that embed an IDR" * 'idr-4.11' of git://git.infradead.org/users/willy/linux-dax: (32 commits) radix tree test suite: Add config option for map shift idr: Add missing __rcu annotations radix-tree: Fix __rcu annotations radix-tree: Add rcu_dereference and rcu_assign_pointer calls radix tree test suite: Run iteration tests for longer radix tree test suite: Fix split/join memory leaks radix tree test suite: Fix leaks in regression2.c radix tree test suite: Fix leaky tests radix tree test suite: Enable address sanitizer radix_tree_iter_resume: Fix out of bounds error radix-tree: Store a pointer to the root in each node radix-tree: Chain preallocated nodes through ->parent radix tree test suite: Dial down verbosity with -v radix tree test suite: Introduce kmalloc_verbose idr: Return the deleted entry from idr_remove radix tree test suite: Build separate binaries for some tests ida: Use exceptional entries for small IDAs ida: Move ida_bitmap to a percpu variable Reimplement IDR and IDA using the radix tree radix-tree: Add radix_tree_iter_delete ... |
||
Hugh Dickins
|
3a4f8a0b3f |
mm: remove shmem_mapping() shmem_zero_setup() duplicates
Remove the prototypes for shmem_mapping() and shmem_zero_setup() from linux/mm.h, since they are already provided in linux/shmem_fs.h. But shmem_fs.h must then provide the inline stub for shmem_mapping() when CONFIG_SHMEM is not set, and a few more cfiles now need to #include it. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702081658250.1549@eggly.anvils Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
fd53880373 |
mm, vmscan: cleanup lru size claculations
lruvec_lru_size returns the full size of the LRU list while we sometimes need a value reduced only to eligible zones (e.g. for lowmem requests). inactive_list_is_low is one such user. Later patches will add more of them. Add a new parameter to lruvec_lru_size and allow it filter out zones which are not eligible for the given context. Link: http://lkml.kernel.org/r/20170117103702.28542-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
d58275bc96 |
radix-tree: Store a pointer to the root in each node
Instead of having this mysterious private_data in each radix_tree_node, store a pointer to the root, which can be useful for debugging. This also relieves the mm code from the duty of updating it. Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> |
||
Johannes Weiner
|
ea07b862ac |
mm: workingset: fix use-after-free in shadow node shrinker
Several people report seeing warnings about inconsistent radix tree nodes followed by crashes in the workingset code, which all looked like use-after-free access from the shadow node shrinker. Dave Jones managed to reproduce the issue with a debug patch applied, which confirmed that the radix tree shrinking indeed frees shadow nodes while they are still linked to the shadow LRU: WARNING: CPU: 2 PID: 53 at lib/radix-tree.c:643 delete_node+0x1e4/0x200 CPU: 2 PID: 53 Comm: kswapd0 Not tainted 4.10.0-rc2-think+ #3 Call Trace: delete_node+0x1e4/0x200 __radix_tree_delete_node+0xd/0x10 shadow_lru_isolate+0xe6/0x220 __list_lru_walk_one.isra.4+0x9b/0x190 list_lru_walk_one+0x23/0x30 scan_shadow_nodes+0x2e/0x40 shrink_slab.part.44+0x23d/0x5d0 shrink_node+0x22c/0x330 kswapd+0x392/0x8f0 This is the WARN_ON_ONCE(!list_empty(&node->private_list)) placed in the inlined radix_tree_shrink(). The problem is with |
||
Johannes Weiner
|
b538899878 |
mm: workingset: update shadow limit to reflect bigger active list
Since commit
|
||
Johannes Weiner
|
14b468791f |
mm: workingset: move shadow entry tracking to radix tree exceptional tracking
Currently, we track the shadow entries in the page cache in the upper
bits of the radix_tree_node->count, behind the back of the radix tree
implementation. Because the radix tree code has no awareness of them,
we rely on random subtleties throughout the implementation (such as the
node->count != 1 check in the shrinking code, which is meant to exclude
multi-entry nodes but also happens to skip nodes with only one shadow
entry, as that's accounted in the upper bits). This is error prone and
has, in fact, caused the bug fixed in
|
||
Johannes Weiner
|
b936887e87 |
mm: workingset: turn shadow node shrinker bugs into warnings
When the shadow page shrinker tries to reclaim a radix tree node but finds it in an unexpected state - it should contain no pages, and non-zero shadow entries - there is no need to kill the executing task or even the entire system. Warn about the invalid state, then leave that tree node be. Simply don't put it back on the shadow LRU for future reclaim and move on. Link: http://lkml.kernel.org/r/20161117191138.22769-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
20ab67a563 |
mm: workingset: fix NULL ptr in count_shadow_nodes
Commit |
||
Johannes Weiner
|
22f2ac51b6 |
mm: workingset: fix crash in shadow node shrinker caused by replace_page_cache_page()
Antonio reports the following crash when using fuse under memory pressure:
kernel BUG at /build/linux-a2WvEb/linux-4.4.0/mm/workingset.c:346!
invalid opcode: 0000 [#1] SMP
Modules linked in: all of them
CPU: 2 PID: 63 Comm: kswapd0 Not tainted 4.4.0-36-generic #55-Ubuntu
Hardware name: System manufacturer System Product Name/P8H67-M PRO, BIOS 3904 04/27/2013
task: ffff88040cae6040 ti: ffff880407488000 task.ti: ffff880407488000
RIP: shadow_lru_isolate+0x181/0x190
Call Trace:
__list_lru_walk_one.isra.3+0x8f/0x130
list_lru_walk_one+0x23/0x30
scan_shadow_nodes+0x34/0x50
shrink_slab.part.40+0x1ed/0x3d0
shrink_zone+0x2ca/0x2e0
kswapd+0x51e/0x990
kthread+0xd8/0xf0
ret_from_fork+0x3f/0x70
which corresponds to the following sanity check in the shadow node
tracking:
BUG_ON(node->count & RADIX_TREE_COUNT_MASK);
The workingset code tracks radix tree nodes that exclusively contain
shadow entries of evicted pages in them, and this (somewhat obscure)
line checks whether there are real pages left that would interfere with
reclaim of the radix tree node under memory pressure.
While discussing ways how fuse might sneak pages into the radix tree
past the workingset code, Miklos pointed to replace_page_cache_page(),
and indeed there is a problem there: it properly accounts for the old
page being removed - __delete_from_page_cache() does that - but then
does a raw raw radix_tree_insert(), not accounting for the replacement
page. Eventually the page count bits in node->count underflow while
leaving the node incorrectly linked to the shadow node LRU.
To address this, make sure replace_page_cache_page() uses the tracked
page insertion code, page_cache_tree_insert(). This fixes the page
accounting and makes sure page-containing nodes are properly unlinked
from the shadow node LRU again.
Also, make the sanity checks a bit less obscure by using the helpers for
checking the number of pages and shadows in a radix tree node.
Fixes:
|
||
Mel Gorman
|
1e6b10857f |
mm, workingset: make working set detection node-aware
Working set and refault detection is still zone-based, fix it. Link: http://lkml.kernel.org/r/1467970510-21195-16-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
ef8f232799 |
mm, memcg: move memcg limit enforcement from zones to nodes
Memcg needs adjustment after moving LRUs to the node. Limits are tracked per memcg but the soft-limit excess is tracked per zone. As global page reclaim is based on the node, it is easy to imagine a situation where a zone soft limit is exceeded even though the memcg limit is fine. This patch moves the soft limit tree the node. Technically, all the variable names should also change but people are already familiar by the meaning of "mz" even if "mn" would be a more appropriate name now. Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a9dd0a8310 |
mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
75ef718405 |
mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9" This series moves LRUs from the zones to the node. While this is a current rebase, the test results were based on mmotm as of June 23rd. Conceptually, this series is simple but there are a lot of details. Some of the broad motivations for this are; 1. The residency of a page partially depends on what zone the page was allocated from. This is partially combatted by the fair zone allocation policy but that is a partial solution that introduces overhead in the page allocator paths. 2. Currently, reclaim on node 0 behaves slightly different to node 1. For example, direct reclaim scans in zonelist order and reclaims even if the zone is over the high watermark regardless of the age of pages in that LRU. Kswapd on the other hand starts reclaim on the highest unbalanced zone. A difference in distribution of file/anon pages due to when they were allocated results can result in a difference in again. While the fair zone allocation policy mitigates some of the problems here, the page reclaim results on a multi-zone node will always be different to a single-zone node. it was scheduled on as a result. 3. kswapd and the page allocator scan zones in the opposite order to avoid interfering with each other but it's sensitive to timing. This mitigates the page allocator using pages that were allocated very recently in the ideal case but it's sensitive to timing. When kswapd is allocating from lower zones then it's great but during the rebalancing of the highest zone, the page allocator and kswapd interfere with each other. It's worse if the highest zone is small and difficult to balance. 4. slab shrinkers are node-based which makes it harder to identify the exact relationship between slab reclaim and LRU reclaim. The reason we have zone-based reclaim is that we used to have large highmem zones in common configurations and it was necessary to quickly find ZONE_NORMAL pages for reclaim. Today, this is much less of a concern as machines with lots of memory will (or should) use 64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are rare. Machines that do use highmem should have relatively low highmem:lowmem ratios than we worried about in the past. Conceptually, moving to node LRUs should be easier to understand. The page allocator plays fewer tricks to game reclaim and reclaim behaves similarly on all nodes. The series has been tested on a 16 core UMA machine and a 2-socket 48 core NUMA machine. The UMA results are presented in most cases as the NUMA machine behaved similarly. pagealloc --------- This is a microbenchmark that shows the benefit of removing the fair zone allocation policy. It was tested uip to order-4 but only orders 0 and 1 are shown as the other orders were comparable. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%) Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%) Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%) Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%) Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%) Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%) Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%) Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%) Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%) Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%) Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%) Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%) Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%) Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%) Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%) Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%) Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%) Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%) Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%) Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%) Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%) Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%) Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%) Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%) Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%) Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%) Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%) This shows a steady improvement throughout. The primary benefit is from reduced system CPU usage which is obvious from the overall times; 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 User 189.19 191.80 System 2604.45 2533.56 Elapsed 2855.30 2786.39 The vmstats also showed that the fair zone allocation policy was definitely removed as can be seen here; 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v8 DMA32 allocs 28794729769 0 Normal allocs 48432501431 77227309877 Movable allocs 0 0 tiobench on ext4 ---------------- tiobench is a benchmark that artifically benefits if old pages remain resident while new pages get reclaimed. The fair zone allocation policy mitigates this problem so pages age fairly. While the benchmark has problems, it is important that tiobench performance remains constant as it implies that page aging problems that the fair zone allocation policy fixes are not re-introduced. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%) Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%) Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%) Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%) Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%) Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%) Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%) Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%) Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%) Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%) Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%) Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%) Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%) Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%) Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%) Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%) Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%) Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%) Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%) Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%) Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 approx-v9 User 645.72 525.90 System 403.85 331.75 Elapsed 6795.36 6783.67 This shows that the series has little or not impact on tiobench which is desirable and a reduction in system CPU usage. It indicates that the fair zone allocation policy was removed in a manner that didn't reintroduce one class of page aging bug. There were only minor differences in overall reclaim activity 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Minor Faults 645838 647465 Major Faults 573 640 Swap Ins 0 0 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 46041453 44190646 Normal allocs 78053072 79887245 Movable allocs 0 0 Allocation stalls 24 67 Stall zone DMA 0 0 Stall zone DMA32 0 0 Stall zone Normal 0 2 Stall zone HighMem 0 0 Stall zone Movable 0 65 Direct pages scanned 10969 30609 Kswapd pages scanned 93375144 93492094 Kswapd pages reclaimed 93372243 93489370 Direct pages reclaimed 10969 30609 Kswapd efficiency 99% 99% Kswapd velocity 13741.015 13781.934 Direct efficiency 100% 100% Direct velocity 1.614 4.512 Percentage direct scans 0% 0% kswapd activity was roughly comparable. There were differences in direct reclaim activity but negligible in the context of the overall workload (velocity of 4 pages per second with the patches applied, 1.6 pages per second in the baseline kernel). pgbench read-only large configuration on ext4 --------------------------------------------- pgbench is a database benchmark that can be sensitive to page reclaim decisions. This also checks if removing the fair zone allocation policy is safe pgbench Transactions 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%) Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%) Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%) Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%) Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%) Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%) Negligible differences again. As with tiobench, overall reclaim activity was comparable. bonnie++ on ext4 ---------------- No interesting performance difference, negligible differences on reclaim stats. paralleldd on ext4 ------------------ This workload uses varying numbers of dd instances to read large amounts of data from disk. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%) Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%) Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%) Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%) Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%) Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 User 1548.01 1552.44 System 8609.71 8515.08 Elapsed 3587.10 3594.54 There is little or no change in performance but some drop in system CPU usage. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Minor Faults 362662 367360 Major Faults 1204 1143 Swap Ins 22 0 Swap Outs 2855 1029 DMA allocs 0 0 DMA32 allocs 31409797 28837521 Normal allocs 46611853 49231282 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 40845270 40869088 Kswapd pages reclaimed 40830976 40855294 Direct pages reclaimed 0 0 Kswapd efficiency 99% 99% Kswapd velocity 11386.711 11369.769 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Page writes by reclaim 2855 1029 Page writes file 0 0 Page writes anon 2855 1029 Page reclaim immediate 771 1628 Sector Reads 293312636 293536360 Sector Writes 18213568 18186480 Page rescued immediate 0 0 Slabs scanned 128257 132747 Direct inode steals 181 56 Kswapd inode steals 59 1131 It basically shows that kswapd was active at roughly the same rate in both kernels. There was also comparable slab scanning activity and direct reclaim was avoided in both cases. There appears to be a large difference in numbers of inodes reclaimed but the workload has few active inodes and is likely a timing artifact. stutter ------- stutter simulates a simple workload. One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. The primary metric is checking for mmap latency. stutter 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%) 1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%) 2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%) 3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%) Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%) Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%) Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%) Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%) Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%) Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%) Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%) Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%) Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%) Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%) Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%) Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%) Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%) This shows a number of improvements with the worst-case outlier greatly improved. Some of the vmstats are interesting 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Swap Ins 163 502 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 618719206 1381662383 Normal allocs 891235743 564138421 Movable allocs 0 0 Allocation stalls 2603 1 Direct pages scanned 216787 2 Kswapd pages scanned 50719775 41778378 Kswapd pages reclaimed 41541765 41777639 Direct pages reclaimed 209159 0 Kswapd efficiency 81% 99% Kswapd velocity 16859.554 14329.059 Direct efficiency 96% 0% Direct velocity 72.061 0.001 Percentage direct scans 0% 0% Page writes by reclaim 6215049 0 Page writes file 6215049 0 Page writes anon 0 0 Page reclaim immediate 70673 90 Sector Reads 81940800 81680456 Sector Writes 100158984 98816036 Page rescued immediate 0 0 Slabs scanned 1366954 22683 While this is not guaranteed in all cases, this particular test showed a large reduction in direct reclaim activity. It's also worth noting that no page writes were issued from reclaim context. This series is not without its hazards. There are at least three areas that I'm concerned with even though I could not reproduce any problems in that area. 1. Reclaim/compaction is going to be affected because the amount of reclaim is no longer targetted at a specific zone. Compaction works on a per-zone basis so there is no guarantee that reclaiming a few THP's worth page pages will have a positive impact on compaction success rates. 2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers are called is now different. This may or may not be a problem but if it is, it'll be because shrinkers are not called enough and some balancing is required. 3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are distributed between zones and the fair zone allocation policy used to do something very similar for anon. The distribution is now different but not necessarily in any way that matters but it's still worth bearing in mind. VM statistic counters for reclaim decisions are zone-based. If the kernel is to reclaim on a per-node basis then we need to track per-node statistics but there is no infrastructure for that. The most notable change is that the old node_page_state is renamed to sum_zone_node_page_state. The new node_page_state takes a pglist_data and uses per-node stats but none exist yet. There is some renaming such as vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical patch with no functional change. There is a lot of similarity between the node and zone helpers which is unfortunate but there was no obvious way of reusing the code and maintaining type safety. Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
55779ec759 |
mm: fix vm-scalability regression in cgroup-aware workingset code
Commit |
||
Anton Blanchard
|
d3d36c4b5c |
mm: workingset: printk missing log level, use pr_info()
Commit
|
||
Vladimir Davydov
|
0a6b76dd23 |
mm: workingset: make shadow node shrinker memcg aware
Workingset code was recently made memcg aware, but shadow node shrinker is still global. As a result, one small cgroup can consume all memory available for shadow nodes, possibly hurting other cgroups by reclaiming their shadow nodes, even though reclaim distances stored in its shadow nodes have no effect. To avoid this, we need to make shadow node shrinker memcg aware. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
cdcbb72ebf |
mm: workingset: size shadow nodes lru basing on file cache size
A page is activated on refault if the refault distance stored in the corresponding shadow entry is less than the number of active file pages. Since active file pages can't occupy more than half memory, we assume that the maximal effective refault distance can't be greater than half the number of present pages and size the shadow nodes lru list appropriately. Generally speaking, this assumption is correct, but it can result in wasting a considerable chunk of memory on stale shadow nodes in case the portion of file pages is small, e.g. if a workload mostly uses anonymous memory. To sort this out, we need to compute the size of shadow nodes lru basing not on the maximal possible, but the current size of file cache. We could take the size of active file lru for the maximal refault distance, but active lru is pretty unstable - it can shrink dramatically at runtime possibly disrupting workingset detection logic. Instead we assume that the maximal refault distance equals half the total number of file cache pages. This will protect us against active file lru size fluctuations while still being correct, because size of active lru is normally maintained lower than size of inactive lru. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
62cccb8c8e |
mm: simplify lock_page_memcg()
Now that migration doesn't clear page->mem_cgroup of live pages anymore, it's safe to make lock_page_memcg() and the memcg stat functions take pages, and spare the callers from memcg objects. [akpm@linux-foundation.org: fix warnings] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
23047a96d7 |
mm: workingset: per-cgroup cache thrash detection
Cache thrash detection (see
|
||
Johannes Weiner
|
612e44939c |
mm: workingset: eviction buckets for bigmem/lowbit machines
For per-cgroup thrash detection, we need to store the memcg ID inside the radix tree cookie as well. However, on 32 bit that doesn't leave enough bits for the eviction timestamp to cover the necessary range of recently evicted pages. The radix tree entry would look like this: [ RADIX_TREE_EXCEPTIONAL(2) | ZONEID(2) | MEMCGID(16) | EVICTION(12) ] 12 bits means 4096 pages, means 16M worth of recently evicted pages. But refaults are actionable up to distances covering half of memory. To not miss refaults, we have to stretch out the range at the cost of how precisely we can tell when a page was evicted. This way we can shave off lower bits from the eviction timestamp until the necessary range is covered. E.g. grouping evictions into 1M buckets (256 pages) will stretch the longest representable refault distance to 4G. This patch implements eviction buckets that are automatically sized according to the available bits and the necessary refault range, in preparation for per-cgroup thrash detection. The maximum actionable distance is currently half of memory, but to support memory hotplug of up to 200% of boot-time memory, we size the buckets to cover double the distance. Beyond that, thrashing won't be detectable anymore. During boot, the kernel will print out the exact parameters, like so: [ 0.113929] workingset: timestamp_bits=12 max_order=18 bucket_order=6 In this example, there are 12 radix entry bits available for the eviction timestamp, to cover a maximum distance of 2^18 pages (this is a 1G machine). Consequently, evictions must be grouped into buckets of 2^6 pages, or 256K. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
162453bfbd |
mm: workingset: separate shadow unpacking and refault calculation
Per-cgroup thrash detection will need to derive a live memcg from the eviction cookie, and doing that inside unpack_shadow() will get nasty with the reference handling spread over two functions. In preparation, make unpack_shadow() clearly about extracting static data, and let workingset_refault() do all the higher-level handling. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
689c94f03a |
mm: workingset: #define radix entry eviction mask
This is a compile-time constant, no need to calculate it on refault. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |