IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Eliminate build warning (sysfs_create_file return value must be checked)
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
Since nonboot CPUs are now disabled after tasks and devices have been
frozen and the CPU hotplug infrastructure is used for this purpose, we need
special CPU hotplug notifications that will help the CPU-hotplug-aware
subsystems distinguish normal CPU hotplug events from CPU hotplug events
related to a system-wide suspend or resume operation in progress. This
patch introduces such notifications and causes them to be used during
suspend and resume transitions. It also changes all of the
CPU-hotplug-aware subsystems to take these notifications into consideration
(for now they are handled in the same way as the corresponding "normal"
ones).
[oleg@tv-sign.ru: cleanups]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new deferrable delayed work init. This can be used to schedule work
that are 'unimportant' when CPU is idle and can be called later, when CPU
eventually comes out of idle.
Use this init in cpufreq ondemand governor.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds proper lines to help output of kconfig so people can find the module names.
Also fixed some broken leading spaces versus tabs.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Remove deprecated /proc/acpi/processor/performance write support
Writing to /proc/acpi/processor/xy/performance interferes with sysfs
cpufreq interface. Also removes buggy cpufreq_set_policy exported symbol.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
References:
https://bugzilla.novell.com/show_bug.cgi?id=231107https://bugzilla.novell.com/show_bug.cgi?id=264077
Fix limited cpufreq when booted on battery
If booted on battery:
cpufreq_set_policy (evil) is invoked which calls verify_within_limits.
max_freq gets lowered and therefore users_policy.max, which
is used to restore higher freqs via update_policy later is set to the
already limited frequency -> you can never go up again, even BIOS
allows higher freqs later.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
Ingo reported it on lkml in the thread
"2.6.21-rc5: maxcpus=1 crash in cpufreq: kernel BUG at drivers/cpufreq/cpufreq.c:82!"
This check added to remove_dev is symmetric to one in add_dev and handles
callbacks for offline cpus cleanly.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit aeeddc1435c37fa3fc844f31d39c185b08de4158, which was
half-baked and broken. It just resulted in compile errors, since
cpufreq_register_driver() still changes the 'driver_data' by setting
bits in the flags field. So claiming it is 'const' _really_ doesn't
work.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Looks like dbs_timer() is very careful wrt per_cpu(cpu_dbs_info),
and it doesn't need the help of WORK_STRUCT_NOAUTOREL.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Dave Jones <davej@redhat.com>
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there. Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.
To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.
Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm. I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU_FREQ_TABLE enables helper code and gets select'ed when it's required.
Building it as a module when it's not required doesn't seem to make much sense.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Eliminate flush_workqueue in cpufreq_governor(STOP) callpath. Using flush
there has a deadlock potential as in
http://uwsg.iu.edu/hypermail/linux/kernel/0611.3/1223.html
Also, cleanup the locking issues with do_dbs_timer delayed_work callback. As
it changes the CPU frequency using __cpufreq_target, it needs to have
policy_rwsem in write mode, which also protects it from hot plug.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Restructure the delayed_work callback in ondemand.
This eliminates the need for smp_processor_id in the callback function and
also helps in proper locking and avoiding flush_workqueue when stopping the
governor (done in subsequent patch).
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Yet another attempt to resolve cpufreq and hotplug locking issues.
Patchset has 3 patches:
* Rewrite the lock infrastructure of cpufreq using a per cpu rwsem.
* Minor restructuring of work callback in ondemand driver.
* Use the new cpufreq rwsem infrastructure in ondemand work.
This patch:
Convert policy->lock to rwsem and move it to per_cpu area.
This rwsem will protect against both changing/accessing policy
related parameters and CPU hot plug/unplug.
[malattia@linux.it: fix oops in kref_put()]
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Mattia Dongili <malattia@linux.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
The hotplug CPU locking in cpufreq is horrendous. No-one seems to care
enough to fix it, so just remove it so that the 99.9% of the real world
users of this code can use cpufreq without being bothered by warnings.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Trivial patch to check sysfs_create_link return values.
Fail gracefully if needed.
Signed-off-by: Ahmed Darwish <darwish.07@gmail.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Fixes the oops in cpufreq_stats with acpi_cpufreq driver. The issue was
that the frequency was reported as 0 in acpi-cpufreq.c. The bug is due to
different indicies for freq_table and ACPI perf table.
Also adds a check in cpufreq_stats to check for error return from
freq_table_get_index() and avoid using the error return value.
Patch fixes the issue reported at
http://www.ussg.iu.edu/hypermail/linux/kernel/0611.2/0629.html
and also other similar issue here
http://bugme.osdl.org/show_bug.cgi?id=7383 comment 53
Signed-off-by: Dhaval Giani <dhaval.giani@gmail.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Dave Jones <davej@redhat.com>
There was lots of #ifdef noise in the kernel due to hotcpu_notifier(fn,
prio) not correctly marking 'fn' as used in the !HOTPLUG_CPU case, and thus
generating compiler warnings of unused symbols, hence forcing people to add
#ifdefs.
the compiler can skip truly unused functions just fine:
text data bss dec hex filename
1624412 728710 3674856 6027978 5bfaca vmlinux.before
1624412 728710 3674856 6027978 5bfaca vmlinux.after
[akpm@osdl.org: topology.c fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.
For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.
To make this work, an extra flag is introduced into the management side of the
work_struct. This governs auto-release of the structure upon execution.
Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function. This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated.. This is a
problem if the auxiliary data is taken away (as done by the last patch).
However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems. But then the work function must itself release the
work_struct by calling work_release().
In most cases, automatic release is fine, so this is the default. Special
initiators exist for the non-auto-release case (ending in _NAR).
Signed-Off-By: David Howells <dhowells@redhat.com>
This is a quick hack to overcome the fact that SRCU currently does not
allow static initializers, and we need to sometimes initialize those
things before any other initializers (even "core" ones) can do so.
Currently we don't allow this at all for modules, and the only user that
needs is right now is cpufreq. As reported by Thomas Gleixner:
"Commit b4dfdbb3c707474a2254c5b4d7e62be31a4b7da9 ("[PATCH] cpufreq:
make the transition_notifier chain use SRCU breaks cpu frequency
notification users, which register the callback > on core_init
level."
Cc: Thomas Gleixner <tglx@timesys.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Andrew Morton <akpm@osdl.org>,
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up cpufreq subsystem to fix coding style issues and to improve
the readability.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Enable ondemand governor and acpi-cpufreq to use IA32_APERF and IA32_MPERF MSR
to get active frequency feedback for the last sampling interval. This will
make ondemand take right frequency decisions when hardware coordination of
frequency is going on.
Without APERF/MPERF, ondemand can take wrong decision at times due
to underlying hardware coordination or TM2.
Example:
* CPU 0 and CPU 1 are hardware cooridnated.
* CPU 1 running at highest frequency.
* CPU 0 was running at highest freq. Now ondemand reduces it to
some intermediate frequency based on utilization.
* Due to underlying hardware coordination with other CPU 1, CPU 0 continues to
run at highest frequency (as long as other CPU is at highest).
* When ondemand samples CPU 0 again next time, without actual frequency
feedback from APERF/MPERF, it will think that previous frequency change
was successful and can go to wrong target frequency. This is because it
thinks that utilization it has got this sampling interval is when running at
intermediate frequency, rather than actual highest frequency.
More information about IA32_APERF IA32_MPERF MSR:
Refer to IA-32 Intel® Architecture Software Developer's Manual at
http://developer.intel.com
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
This patch (as762) changes the cpufreq_transition_notifier_list from a
blocking_notifier_head to an srcu_notifier_head. This will prevent errors
caused attempting to call down_read() to access the notifier chain at a
time when interrupts must remain disabled, during system suspend.
It's not clear to me whether this is really necessary; perhaps the chain
could be made into an atomic_notifier. However a couple of the callout
routines do use blocking operations, so this approach seems safer.
The head of the notifier chain needs to be initialized before use; this is
done by an __init routine at core_initcall time. If this turns out not to
be a good choice, it can easily be changed.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Jesse Brandeburg <jesse.brandeburg@gmail.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Lukewarm IQ detected in hotplug locking
BUG: warning at kernel/cpu.c:38/lock_cpu_hotplug()
[<b0134a42>] lock_cpu_hotplug+0x42/0x65
[<b02f8af1>] cpufreq_update_policy+0x25/0xad
[<b0358756>] kprobe_flush_task+0x18/0x40
[<b0355aab>] schedule+0x63f/0x68b
[<b01377c2>] __link_module+0x0/0x1f
[<b0119e7d>] __cond_resched+0x16/0x34
[<b03560bf>] cond_resched+0x26/0x31
[<b0355b0e>] wait_for_completion+0x17/0xb1
[<f965c547>] cpufreq_stat_cpu_callback+0x13/0x20 [cpufreq_stats]
[<f9670074>] cpufreq_stats_init+0x74/0x8b [cpufreq_stats]
[<b0137872>] sys_init_module+0x91/0x174
[<b0102c81>] sysenter_past_esp+0x56/0x79
As there are other places that call cpufreq_update_policy without
the hotplug lock, it seems better to keep the hotplug locking
at the lower level for the time being until this is revamped.
Signed-off-by: Dave Jones <davej@redhat.com>
This patch makes the needlessly global powersave_bias_target() static.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave Jones <davej@redhat.com>
ondemand selects the minimum frequency that can retire
a workload with negligible idle time -- ideally resulting in the highest
performance/power efficiency with negligible performance impact.
But on some systems and some workloads, this algorithm
is more performance biased than necessary, and
de-tuning it a bit to allow some performance impact
can save measurable power.
This patch adds a "powersave_bias" tunable to ondemand
to allow it to reduce its target frequency by a specified percent.
By default, the powersave_bias is 0 and has no effect.
powersave_bias is in units of 0.1%, so it has an effective range
of 1 through 1000, resulting in 0.1% to 100% impact.
In practice, users will not be able to detect a difference between
0.1% increments, but 1.0% increments turned out to be too large.
Also, the max value of 1000 (100%) would simply peg the system
in its deepest power saving P-state, unless the processor really has
a hardware P-state at 0Hz:-)
For example, If ondemand requests 2.0GHz based on utilization,
and powersave_bias=100, this code will knock 10% off the target
and seek a target of 1.8GHz instead of 2.0GHz until the
next sampling. If 1.8 is an exact match with an hardware frequency
we use it, otherwise we average our time between the frequency
next higher than 1.8 and next lower than 1.8.
Note that a user or administrative program can change powersave_bias
at run-time depending on how they expect the system to be used.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi at intel.com>
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy at intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Try to make dbs_check_cpu() call on all CPUs at the same jiffy.
This will help when multiple cores share P-states via Hardware Coordination.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi at intel.com>
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy at intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Adds a __find_governor() helper function to look up a governor by
name. Also restructures some error handling to conform to the
"single-exit" model which is generally preferred for kernel code.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Dave Jones <davej@redhat.com>
I just stumbled on this bug/feature, this is how to reproduce it:
# echo 450000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq
# echo 450000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
# echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
# cpufreq-info -p
450000 450000 powersave
# echo 1800000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq ; echo $?
0
# cpufreq-info -p
450000 450000 powersave
Here it is. The kernel refuses to set a min_freq higher than the
max_freq but it allows a max_freq lower than min_freq (lowering min_freq
also).
This behaviour is pretty straightforward (but undocumented) and it
doesn't return an error altough failing to accomplish the requested
action (set min_freq).
The problem (IMO) is basically that userspace is not allowed to set a
full policy atomically while the kernel always does that thus it must
enforce an ordering on operations.
The attached patch returns -EINVAL if trying to increase frequencies
starting from scaling_min_freq and documents the correct ordering of writes.
Signed-off-by: Mattia Dongili <malattia@linux.it>
Signed-off-by: Dominik Brodowski <linux at dominikbrodowski.net>
Signed-off-by: Dave Jones <davej@redhat.com>
--
The patch below moves the cpu hotplugging higher up in the cpufreq
layering; this is needed to avoid recursive taking of the cpu hotplug
lock and to otherwise detangle the mess.
The new rules are:
1. you must do lock_cpu_hotplug() around the following functions:
__cpufreq_driver_target
__cpufreq_governor (for CPUFREQ_GOV_LIMITS operation only)
__cpufreq_set_policy
2. governer methods (.governer) must NOT take the lock_cpu_hotplug()
lock in any way; they are called with the lock taken already
3. if your governer spawns a thread that does things, like calling
__cpufreq_driver_target, your thread must honor rule #1.
4. the policy lock and other cpufreq internal locks nest within
the lock_cpu_hotplug() lock.
I'm not entirely happy about how the __cpufreq_governor rule ended up
(conditional locking rule depending on the argument) but basically all
callers pass this as a constant so it's not too horrible.
The patch also removes the cpufreq_governor() function since during the
locking audit it turned out to be entirely unused (so no need to fix it)
The patch works on my testbox, but it could use more testing
(otoh... it can't be much worse than the current code)
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Shutting down the ondemand policy was fraught with potential
problems, causing issues for SMP suspend (which wants to hot-
unplug) all but the last CPU.
This should fix at least the worst problems (divide-by-zero
and infinite wait for the workqueue to shut down).
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
[ There's some not quite baked bits in cpufreq-git right now
so sending this on as a patch instead ]
On Thu, 2006-07-06 at 07:58 -0700, Tom London wrote:
> After installing .2356 I get this each time I boot:
> =======================================================
> [ INFO: possible circular locking dependency detected ]
> -------------------------------------------------------
> S06cpuspeed/1620 is trying to acquire lock:
> (dbs_mutex){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24
>
> but task is already holding lock:
> (cpucontrol){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24
>
> which lock already depends on the new lock.
>
make sure the cpu hotplug recursive mutex (yuck) is taken early in the
cpufreq codepaths to avoid a AB-BA deadlock.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq:
Move workqueue exports to where the functions are defined.
[CPUFREQ] Misc cleanups in ondemand.
[CPUFREQ] Make ondemand sampling per CPU and remove the mutex usage in sampling path.
[CPUFREQ] Add queue_delayed_work_on() interface for workqueues.
[CPUFREQ] Remove slowdown from ondemand sampling path.
Misc cleanups in ondemand. Should have zero functional impact.
Also adding Alexey as author.
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Make ondemand sampling per CPU and remove the mutex usage in sampling path.
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Remove slowdown from ondemand sampling path. This reduces the code path length
in dbs_check_cpu() by half. slowdown was not used by ondemand by default.
If there are any user level tools that were using this tunable, they
may report error now.
Signed-off-by: Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>