IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
With the recent is-work-queued-here test simplification, the nested
if() in try_to_grab_pending() can be collapsed. Collapse it.
This patch is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, determining whether a work item is queued on a locked pool
involves somewhat convoluted memory barrier dancing. It goes like the
following.
* When a work item is queued on a pool, work->data is updated before
work->entry is linked to the pending list with a wmb() inbetween.
* When trying to determine whether a work item is currently queued on
a pool pointed to by work->data, it locks the pool and looks at
work->entry. If work->entry is linked, we then do rmb() and then
check whether work->data points to the current pool.
This works because, work->data can only point to a pool if it
currently is or were on the pool and,
* If it currently is on the pool, the tests would obviously succeed.
* It it left the pool, its work->entry was cleared under pool->lock,
so if we're seeing non-empty work->entry, it has to be from the work
item being linked on another pool. Because work->data is updated
before work->entry is linked with wmb() inbetween, work->data update
from another pool is guaranteed to be visible if we do rmb() after
seeing non-empty work->entry. So, we either see empty work->entry
or we see updated work->data pointin to another pool.
While this works, it's convoluted, to put it mildly. With recent
updates, it's now guaranteed that work->data points to cwq only while
the work item is queued and that updating work->data to point to cwq
or back to pool is done under pool->lock, so we can simply test
whether work->data points to cwq which is associated with the
currently locked pool instead of the convoluted memory barrier
dancing.
This patch replaces the memory barrier based "are you still here,
really?" test with much simpler "does work->data points to me?" test -
if work->data points to a cwq which is associated with the currently
locked pool, the work item is guaranteed to be queued on the pool as
work->data can start and stop pointing to such cwq only under
pool->lock and the start and stop coincide with queue and dequeue.
tj: Rewrote the comments and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We plan to use work->data pointing to cwq as the synchronization
invariant when determining whether a given work item is on a locked
pool or not, which requires work->data pointing to cwq only while the
work item is queued on the associated pool.
With delayed_work updated not to overload work->data for target
workqueue recording, the only case where we still have off-queue
work->data pointing to cwq is try_to_grab_pending() which doesn't
update work->data after stealing a queued work item. There's no
reason for try_to_grab_pending() to not update work->data to point to
the pool instead of cwq, like the normal execution does.
This patch adds set_work_pool_and_keep_pending() which makes
work->data point to pool instead of cwq but keeps the pending bit
unlike set_work_pool_and_clear_pending() (surprise!).
After this patch, it's guaranteed that only queued work items point to
cwqs.
This patch doesn't introduce any visible behavior change.
tj: Renamed the new helper function to match
set_work_pool_and_clear_pending() and rewrote the description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To avoid executing the same work item from multiple CPUs concurrently,
a work_struct records the last pool it was on in its ->data so that,
on the next queueing, the pool can be queried to determine whether the
work item is still executing or not.
A delayed_work goes through timer before actually being queued on the
target workqueue and the timer needs to know the target workqueue and
CPU. This is currently achieved by modifying delayed_work->work.data
such that it points to the cwq which points to the target workqueue
and the last CPU the work item was on. __queue_delayed_work()
extracts the last CPU from delayed_work->work.data and then combines
it with the target workqueue to create new work.data.
The only thing this rather ugly hack achieves is encoding the target
workqueue into delayed_work->work.data without using a separate field,
which could be a trade off one can make; unfortunately, this entangles
work->data management between regular workqueue and delayed_work code
by setting cwq pointer before the work item is actually queued and
becomes a hindrance for further improvements of work->data handling.
This can be easily made sane by adding a target workqueue field to
delayed_work. While delayed_work is used widely in the kernel and
this does make it a bit larger (<5%), I think this is the right
trade-off especially given the prospect of much saner handling of
work->data which currently involves quite tricky memory barrier
dancing, and don't expect to see any measureable effect.
Add delayed_work->wq and drop the delayed_work->work.data overloading.
tj: Rewrote the description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, work_busy() first tests whether the work has a pool
associated with it and if not, considers it idle. This works fine
even for delayed_work.work queued on timer, as __queue_delayed_work()
sets cwq on delayed_work.work - a queued delayed_work always has its
cwq and thus pool associated with it.
However, we're about to update delayed_work queueing and this won't
hold. Update work_busy() such that it tests WORK_STRUCT_PENDING
before the associated pool. This doesn't make any noticeable behavior
difference now.
With work_pending() test moved, the function read a lot better with
"if (!pool)" test flipped to positive. Flip it.
While at it, lose the comment about now non-existent reentrant
workqueues.
tj: Reorganized the function and rewrote the description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that workqueue has moved away from gcwqs, workqueue no longer has
the need to have a CPU identifier indicating "no cpu associated" - we
now use WORK_OFFQ_POOL_NONE instead - and most uses of WORK_CPU_NONE
are gone.
The only left usage is as the end marker for for_each_*wq*()
iterators, where the name WORK_CPU_NONE is confusing w/o actual
WORK_CPU_NONE usages. Similarly, WORK_CPU_LAST which equals
WORK_CPU_NONE no longer makes sense.
Replace both WORK_CPU_NONE and LAST with WORK_CPU_END. This patch
doesn't introduce any functional difference.
tj: s/WORK_CPU_LAST/WORK_CPU_END/ and rewrote the description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Remove remaining references to gcwq.
* __next_gcwq_cpu() steals __next_wq_cpu() name. The original
__next_wq_cpu() became __next_cwq_cpu().
* s/for_each_gcwq_cpu/for_each_wq_cpu/
s/for_each_online_gcwq_cpu/for_each_online_wq_cpu/
* s/gcwq_mayday_timeout/pool_mayday_timeout/
* s/gcwq_unbind_fn/wq_unbind_fn/
* Drop references to gcwq in comments.
This patch doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Rename per-cpu and unbound nr_running variables such that they match
the pool variables.
This patch doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
global_cwq is now nothing but a container for per-cpu standard
worker_pools. Declare the worker pools directly as
cpu/unbound_std_worker_pools[] and remove global_cwq.
* ____cacheline_aligned_in_smp moved from global_cwq to worker_pool.
This probably would have made sense even before this change as we
want each pool to be aligned.
* get_gcwq() is replaced with std_worker_pools() which returns the
pointer to the standard pool array for a given CPU.
* __alloc_workqueue_key() updated to use get_std_worker_pool() instead
of open-coding pool determination.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
v2: Joonsoo pointed out that it'd better to align struct worker_pool
rather than the array so that every pool is aligned.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Joonsoo Kim <js1304@gmail.com>
The only remaining user of pool->gcwq is std_worker_pool_pri().
Reimplement it using get_gcwq() and remove worker_pool->gcwq.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
for_each_std_worker_pool() takes @cpu instead of @gcwq.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Instead of holding locks from both pools and then processing the pools
together, make freezing/thwaing per-pool - grab locks of one pool,
process it, release it and then proceed to the next pool.
While this patch changes processing order across pools, order within
each pool remains the same. As each pool is independent, this
shouldn't break anything.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Instead of holding locks from both pools and then processing the pools
together, make hotplug processing per-pool - grab locks of one pool,
process it, release it and then proceed to the next pool.
rebind_workers() is updated to take and process @pool instead of @gcwq
which results in a lot of de-indentation. gcwq_claim_assoc_and_lock()
and its counterpart are replaced with in-line per-pool locking.
While this patch changes processing order across pools, order within
each pool remains the same. As each pool is independent, this
shouldn't break anything.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Move gcwq->lock to pool->lock. The conversion is mostly
straight-forward. Things worth noting are
* In many places, this removes the need to use gcwq completely. pool
is used directly instead. get_std_worker_pool() is added to help
some of these conversions. This also leaves get_work_gcwq() without
any user. Removed.
* In hotplug and freezer paths, the pools belonging to a CPU are often
processed together. This patch makes those paths hold locks of all
pools, with highpri lock nested inside, to keep the conversion
straight-forward. These nested lockings will be removed by
following patches.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Move gcwq->cpu to pool->cpu. This introduces a couple places where
gcwq->pools[0].cpu is used. These will soon go away as gcwq is
further reduced.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
There's no functional necessity for the two pools on the same CPU to
share the busy hash table. It's also likely to be a bottleneck when
implementing pools with user-specified attributes.
This patch makes busy_hash per-pool. The conversion is mostly
straight-forward. Changes worth noting are,
* Large block of changes in rebind_workers() is moving the block
inside for_each_worker_pool() as now there are separate hash tables
for each pool. This changes the order of operations but doesn't
break anything.
* Thre for_each_worker_pool() loops in gcwq_unbind_fn() are combined
into one. This again changes the order of operaitons but doesn't
break anything.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, when a work item is off-queue, work->data records the CPU
it was last on, which is used to locate the last executing instance
for non-reentrance, flushing, etc.
We're in the process of removing global_cwq and making worker_pool the
top level abstraction. This patch makes work->data point to the pool
it was last associated with instead of CPU.
After the previous WORK_OFFQ_POOL_CPU and worker_poo->id additions,
the conversion is fairly straight-forward. WORK_OFFQ constants and
functions are modified to record and read back pool ID instead.
worker_pool_by_id() is added to allow looking up pool from ID.
get_work_pool() replaces get_work_gcwq(), which is reimplemented using
get_work_pool(). get_work_pool_id() replaces work_cpu().
This patch shouldn't introduce any observable behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Add worker_pool->id which is allocated from worker_pool_idr. This
will be used to record the last associated worker_pool in work->data.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Currently, when a work item is off queue, high bits of its data
encodes the last CPU it was on. This is scheduled to be changed to
pool ID, which will make it impossible to use WORK_CPU_NONE to
indicate no association.
This patch limits the number of bits which are used for off-queue cpu
number to 31 (so that the max fits in an int) and uses the highest
possible value - WORK_OFFQ_CPU_NONE - to indicate no association.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Make GCWQ_FREEZING a pool flag POOL_FREEZING. This patch doesn't
change locking - FREEZING on both pools of a CPU are set or clear
together while holding gcwq->lock. It shouldn't cause any functional
difference.
This leaves gcwq->flags w/o any flags. Removed.
While at it, convert BUG_ON()s in freeze_workqueue_begin() and
thaw_workqueues() to WARN_ON_ONCE().
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Make GCWQ_DISASSOCIATED a pool flag POOL_DISASSOCIATED. This patch
doesn't change locking - DISASSOCIATED on both pools of a CPU are set
or clear together while holding gcwq->lock. It shouldn't cause any
functional difference.
This is part of an effort to remove global_cwq and make worker_pool
the top level abstraction, which in turn will help implementing worker
pools with user-specified attributes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
There are currently two worker pools per cpu (including the unbound
cpu) and they are the only pools in use. New class of pools are
scheduled to be added and some pool related APIs will be added
inbetween. Call the existing pools the standard pools and prefix them
with std_. Do this early so that new APIs can use std_ prefix from
the beginning.
This patch doesn't introduce any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
This function no longer has any external users. Unexport it. It will
be removed later on.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
This will be used to implement an inline function to query whether
%current is a workqueue worker and, if so, allow determining which
work item it's executing.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Workqueue wants to expose more interface internal to kernel/. Instead
of adding a new header file, repurpose kernel/workqueue_sched.h.
Rename it to workqueue_internal.h and add include protector.
This patch doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
PF_WQ_WORKER is used to tell scheduler that the task is a workqueue
worker and needs wq_worker_sleeping/waking_up() invoked on it for
concurrency management. As rescuers never participate in concurrency
management, PF_WQ_WORKER wasn't set on them.
There's a need for an interface which can query whether %current is
executing a work item and if so which. Such interface requires a way
to identify all tasks which may execute work items and PF_WQ_WORKER
will be used for that. As all normal workers always have PF_WQ_WORKER
set, we only need to add it to rescuers.
As rescuers start with WORKER_PREP but never clear it, it's always
NOT_RUNNING and there's no need to worry about it interfering with
concurrency management even if PF_WQ_WORKER is set; however, unlike
normal workers, rescuers currently don't have its worker struct as
kthread_data(). It uses the associated workqueue_struct instead.
This is problematic as wq_worker_sleeping/waking_up() expect struct
worker at kthread_data().
This patch adds worker->rescue_wq and start rescuer kthreads with
worker struct as kthread_data and sets PF_WQ_WORKER on rescuers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
42f8570f43 ("workqueue: use new hashtable implementation") incorrectly
made busy workers hashed by the pointer value of worker instead of
work. This broke find_worker_executing_work() which in turn broke a
lot of fundamental operations of workqueue - non-reentrancy and
flushing among others. The flush malfunction triggered warning in
disk event code in Fengguang's automated test.
write_dev_root_ (3265) used greatest stack depth: 2704 bytes left
------------[ cut here ]------------
WARNING: at /c/kernel-tests/src/stable/block/genhd.c:1574 disk_clear_events+0x\
cf/0x108()
Hardware name: Bochs
Modules linked in:
Pid: 3328, comm: ata_id Not tainted 3.7.0-01930-gbff6343 #1167
Call Trace:
[<ffffffff810997c4>] warn_slowpath_common+0x83/0x9c
[<ffffffff810997f7>] warn_slowpath_null+0x1a/0x1c
[<ffffffff816aea77>] disk_clear_events+0xcf/0x108
[<ffffffff811bd8be>] check_disk_change+0x27/0x59
[<ffffffff822e48e2>] cdrom_open+0x49/0x68b
[<ffffffff81ab0291>] idecd_open+0x88/0xb7
[<ffffffff811be58f>] __blkdev_get+0x102/0x3ec
[<ffffffff811bea08>] blkdev_get+0x18f/0x30f
[<ffffffff811bebfd>] blkdev_open+0x75/0x80
[<ffffffff8118f510>] do_dentry_open+0x1ea/0x295
[<ffffffff8118f5f0>] finish_open+0x35/0x41
[<ffffffff8119c720>] do_last+0x878/0xa25
[<ffffffff8119c993>] path_openat+0xc6/0x333
[<ffffffff8119cf37>] do_filp_open+0x38/0x86
[<ffffffff81190170>] do_sys_open+0x6c/0xf9
[<ffffffff8119021e>] sys_open+0x21/0x23
[<ffffffff82c1c3d9>] system_call_fastpath+0x16/0x1b
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
To avoid executing the same work item concurrenlty, workqueue hashes
currently busy workers according to their current work items and looks
up the the table when it wants to execute a new work item. If there
already is a worker which is executing the new work item, the new item
is queued to the found worker so that it gets executed only after the
current execution finishes.
Unfortunately, a work item may be freed while being executed and thus
recycled for different purposes. If it gets recycled for a different
work item and queued while the previous execution is still in
progress, workqueue may make the new work item wait for the old one
although the two aren't really related in any way.
In extreme cases, this false dependency may lead to deadlock although
it's extremely unlikely given that there aren't too many self-freeing
work item users and they usually don't wait for other work items.
To alleviate the problem, record the current work function in each
busy worker and match it together with the work item address in
find_worker_executing_work(). While this isn't complete, it ensures
that unrelated work items don't interact with each other and in the
very unlikely case where a twisted wq user triggers it, it's always
onto itself making the culprit easy to spot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Andrey Isakov <andy51@gmx.ru>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=51701
Cc: stable@vger.kernel.org
Switch workqueues to use the new hashtable implementation. This reduces the
amount of generic unrelated code in the workqueues.
This patch depends on d9b482c ("hashtable: introduce a small and naive
hashtable") which was merged in v3.6.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull workqueue changes from Tejun Heo:
"Nothing exciting. Just two trivial changes."
* 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up()
workqueue: trivial fix for return statement in work_busy()
8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().
Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work. 8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().
Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>
Recently, workqueue code has gone through some changes and we found
some bugs related to concurrency management operations happening on
the wrong CPU. When a worker is concurrency managed
(!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and
woken up to that cpu. Add WARN_ON_ONCE() to verify this.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Return type of work_busy() is unsigned int.
There is return statement returning boolean value, 'false' in work_busy().
It is not problem, because 'false' may be treated '0'.
However, fixing it would make code robust.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()")
implemented mod_delayed_work[_on]() using the improved
try_to_grab_pending(). The function is later used, among others, to
replace [__]candel_delayed_work() + queue_delayed_work() combinations.
Unfortunately, a delayed_work item w/ zero @delay is handled slightly
differently by mod_delayed_work_on() compared to
queue_delayed_work_on(). The latter skips timer altogether and
directly queues it using queue_work_on() while the former schedules
timer which will expire on the closest tick. This means, when @delay
is zero, that [__]cancel_delayed_work() + queue_delayed_work_on()
makes the target item immediately executable while
mod_delayed_work_on() may induce delay of upto a full tick.
This somewhat subtle difference breaks some of the converted users.
e.g. block queue plugging uses delayed_work for deferred processing
and uses mod_delayed_work_on() when the queue needs to be immediately
unplugged. The above problem manifested as noticeably higher number
of context switches under certain circumstances.
The difference in behavior was caused by missing special case handling
for 0 delay in mod_delayed_work_on() compared to
queue_delayed_work_on(). Joonsoo Kim posted a patch to add it -
("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1].
The patch was queued for 3.8 but it was described as optimization and
I missed that it was a correctness issue.
As both queue_delayed_work_on() and mod_delayed_work_on() use
__queue_delayed_work() for queueing, it seems that the better approach
is to move the 0 delay special handling to the function instead of
duplicating it in mod_delayed_work_on().
Fix the problem by moving 0 delay special case handling from
queue_delayed_work_on() to __queue_delayed_work(). This replaces
Joonsoo's patch.
[1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Anders Kaseorg <andersk@MIT.EDU>
Reported-and-tested-by: Zlatko Calusic <zlatko.calusic@iskon.hr>
LKML-Reference: <alpine.DEB.2.00.1211280953350.26602@dr-wily.mit.edu>
LKML-Reference: <50A78AA9.5040904@iskon.hr>
Cc: Joonsoo Kim <js1304@gmail.com>
A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again. In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.
PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush"
#0 [ffff8808157e7670] schedule at ffffffff8143f489
#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
#5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
#6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
#7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
#8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
#9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
[exception RIP: kernel_thread_helper]
RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18
RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.
try_to_grab_pending() indicates that the target work item was idle by
zero return value. Use it for return. Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>
Pull workqueue changes from Tejun Heo:
"This is workqueue updates for v3.7-rc1. A lot of activities this
round including considerable API and behavior cleanups.
* delayed_work combines a timer and a work item. The handling of the
timer part has always been a bit clunky leading to confusing
cancelation API with weird corner-case behaviors. delayed_work is
updated to use new IRQ safe timer and cancelation now works as
expected.
* Another deficiency of delayed_work was lack of the counterpart of
mod_timer() which led to cancel+queue combinations or open-coded
timer+work usages. mod_delayed_work[_on]() are added.
These two delayed_work changes make delayed_work provide interface
and behave like timer which is executed with process context.
* A work item could be executed concurrently on multiple CPUs, which
is rather unintuitive and made flush_work() behavior confusing and
half-broken under certain circumstances. This problem doesn't
exist for non-reentrant workqueues. While non-reentrancy check
isn't free, the overhead is incurred only when a work item bounces
across different CPUs and even in simulated pathological scenario
the overhead isn't too high.
All workqueues are made non-reentrant. This removes the
distinction between flush_[delayed_]work() and
flush_[delayed_]_work_sync(). The former is now as strong as the
latter and the specified work item is guaranteed to have finished
execution of any previous queueing on return.
* In addition to the various bug fixes, Lai redid and simplified CPU
hotplug handling significantly.
* Joonsoo introduced system_highpri_wq and used it during CPU
hotplug.
There are two merge commits - one to pull in IRQ safe timer from
tip/timers/core and the other to pull in CPU hotplug fixes from
wq/for-3.6-fixes as Lai's hotplug restructuring depended on them."
Fixed a number of trivial conflicts, but the more interesting conflicts
were silent ones where the deprecated interfaces had been used by new
code in the merge window, and thus didn't cause any real data conflicts.
Tejun pointed out a few of them, I fixed a couple more.
* 'for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (46 commits)
workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()
workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()
workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()
workqueue: remove @delayed from cwq_dec_nr_in_flight()
workqueue: fix possible stall on try_to_grab_pending() of a delayed work item
workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()
workqueue: use __cpuinit instead of __devinit for cpu callbacks
workqueue: rename manager_mutex to assoc_mutex
workqueue: WORKER_REBIND is no longer necessary for idle rebinding
workqueue: WORKER_REBIND is no longer necessary for busy rebinding
workqueue: reimplement idle worker rebinding
workqueue: deprecate __cancel_delayed_work()
workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()
workqueue: use mod_delayed_work() instead of __cancel + queue
workqueue: use irqsafe timer for delayed_work
workqueue: clean up delayed_work initializers and add missing one
workqueue: make deferrable delayed_work initializer names consistent
workqueue: cosmetic whitespace updates for macro definitions
workqueue: deprecate system_nrt[_freezable]_wq
workqueue: deprecate flush[_delayed]_work_sync()
...
e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made
try_to_grab_pending() safe to use from irq context but forgot to
remove WARN_ON_ONCE(in_irq()). Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
workqueue_set_max_active() may increase ->max_active without
activating delayed works and may make the activation order differ from
the queueing order. Both aren't strictly bugs but the resulting
behavior could be a bit odd.
To make things more consistent, use cwq_set_max_active() helper which
immediately makes use of the newly increased max_mactive if there are
delayed work items and also keeps the activation order.
tj: Slight update to description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Using a helper instead of open code makes thaw_workqueues() clearer.
The helper will also be used by the next patch.
tj: Slight update to comment and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The existing work_on_cpu() implementation is hugely inefficient. It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.
Now that system_wq can handle concurrent executions, there's no
advantage of doing this. Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.
stable: While this isn't a fix in itself, it's needed to fix a
workqueue related bug in cpufreq/powernow-k8. AFAICS, this
shouldn't break other existing users.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org
@delayed is now always false for all callers, remove it.
tj: Updated description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, when try_to_grab_pending() grabs a delayed work item, it
leaves its linked work items alone on the delayed_works. The linked
work items are always NO_COLOR and will cause future
cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and
may cause the whole cwq to stall. For example,
state: cwq->max_active = 1, cwq->nr_active = 1
one work in cwq->pool, many in cwq->delayed_works.
step1: try_to_grab_pending() removes a work item from delayed_works
but leaves its NO_COLOR linked work items on it.
step2: Later on, cwq_activate_first_delayed() activates the linked
work item increasing ->nr_active.
step3: cwq->nr_active = 1, but all activated work items of the cwq are
NO_COLOR. When they finish, cwq->nr_active will not be
decreased due to NO_COLOR, and no further work items will be
activated from cwq->delayed_works. the cwq stalls.
Fix it by ensuring the target work item is activated before stealing
PENDING in try_to_grab_pending(). This ensures that all the linked
work items are activated without incorrectly bumping cwq->nr_active.
tj: Updated comment and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org
workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so
hotcpu_notifier() fits better than cpu_notifier().
When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same.
When HOTPLUG_CPU=n, if we use cpu_notifier(),
workqueue_cpu_down_callback() will be called during boot to do
nothing, and the memory of workqueue_cpu_down_callback() and
gcwq_unbind_fn() will be discarded after boot.
If we use hotcpu_notifier(), we can avoid the no-op call of
workqueue_cpu_down_callback() and the memory of
workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at
build time:
$ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
-rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier
-rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier
$ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
text data bss dec hex filename
18513 2387 1221 22121 5669 kernel/workqueue.o.cpu_notifier
18082 2355 1221 21658 549a kernel/workqueue.o.hotcpu_notifier
tj: Updated description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
For workqueue hotplug callbacks, it makes less sense to use __devinit
which discards the memory after boot if !HOTPLUG. __cpuinit, which
discards the memory after boot if !HOTPLUG_CPU fits better.
tj: Updated description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that manager_mutex's role has changed from synchronizing manager
role to excluding hotplug against manager, the name is misleading.
As it is protecting the CPU-association of the gcwq now, rename it to
assoc_mutex.
This patch is pure rename and doesn't introduce any functional change.
tj: Updated comments and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now both worker destruction and idle rebinding remove the worker from
idle list while it's still idle, so list_empty(&worker->entry) can be
used to test whether either is pending and WORKER_DIE to distinguish
between the two instead making WORKER_REBIND unnecessary.
Use list_empty(&worker->entry) to determine whether destruction or
rebinding is pending. This simplifies worker state transitions.
WORKER_REBIND is not needed anymore. Remove it.
tj: Updated comments and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Because the old unbind/rebinding implementation wasn't atomic w.r.t.
GCWQ_DISASSOCIATED manipulation which is protected by
global_cwq->lock, we had to use two flags, WORKER_UNBOUND and
WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with
back-to-back CPU hotplug operations; otherwise, completion of
rebinding while another unbinding is in progress could clear UNBIND
prematurely.
Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED,
there's no need to use two flags. Just one is enough. Don't use
WORKER_REBIND for busy rebinding.
tj: Updated description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently rebind_workers() uses rebinds idle workers synchronously
before proceeding to requesting busy workers to rebind. This is
necessary because all workers on @worker_pool->idle_list must be bound
before concurrency management local wake-ups from the busy workers
take place.
Unfortunately, the synchronous idle rebinding is quite complicated.
This patch reimplements idle rebinding to simplify the code path.
Rather than trying to make all idle workers bound before rebinding
busy workers, we simply remove all to-be-bound idle workers from the
idle list and let them add themselves back after completing rebinding
(successful or not).
As only workers which finished rebinding can on on the idle worker
list, the idle worker list is guaranteed to have only bound workers
unless CPU went down again and local wake-ups are safe.
After the change, @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list. More specifically,
nr_idle may be non-zero while ->idle_list is empty. All users of
->nr_idle and ->idle_list are audited. The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.
After this patch, rebind_workers() no longer performs the nasty
idle-rebind retries which require temporary release of gcwq->lock, and
both unbinding and rebinding are atomic w.r.t. global_cwq->lock.
worker->idle_rebind and global_cwq->rebind_hold are now unnecessary
and removed along with the definition of struct idle_rebind.
Changed from V1:
1) remove unlikely from too_many_workers(), ->idle_list can be empty
anytime, even before this patch, no reason to use unlikely.
2) fix a small rebasing mistake.
(which is from rebasing the orignal fixing patch to for-next)
3) add a lot of comments.
4) clear WORKER_REBIND unconditionaly in idle_worker_rebind()
tj: Updated comments and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This merge is necessary as Lai's CPU hotplug restructuring series
depends on the CPU hotplug bug fixes in for-3.6-fixes.
The merge creates one trivial conflict between the following two
commits.
96e65306b8 "workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic"
e2b6a6d570 "workqueue: use system_highpri_wq for highpri workers in rebind_workers()"
Both add local variable definitions to the same block and can be
merged in any order.
Signed-off-by: Tejun Heo <tj@kernel.org>
To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress. This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.
If someone else seems to be performing the manager role, workers
proceed to execute work items. CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.
This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.
This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion. For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used. pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug. The elected manager won't proceed
without holding pool->manager_mutex.
This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress. It will block on
manager_mutex and perform management after CPU hotplug is complete.
Note that hotplug may happen while waiting for manager_mutex. A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it. Make the manager handle its own un/rebinding.
tj: Updated comment and description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".
There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management. POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.
This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes. The
next patch will update it.
Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress. While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.
tj: Rewrote patch description.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked. rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.
Unfortunately, this isn't enough. The second wait from idle workers
is implemented as follows.
wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns. If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.
This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning. This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.
This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.
This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>
This doesn't make any functional difference and is purely to help the
next patch to be simpler.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
The compiler may compile the following code into TWO write/modify
instructions.
worker->flags &= ~WORKER_UNBOUND;
worker->flags |= WORKER_REBIND;
so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.
Fix it by using single explicit assignment via ACCESS_ONCE().
Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.
tj: Applied the change to idle workers too and updated comments and
patch description a bit.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
cancel_delayed_work() can't be called from IRQ handlers due to its use
of del_timer_sync() and can't cancel work items which are already
transferred from timer to worklist.
Also, unlike other flush and cancel functions, a canceled delayed_work
would still point to the last associated cpu_workqueue. If the
workqueue is destroyed afterwards and the work item is re-used on a
different workqueue, the queueing code can oops trying to dereference
already freed cpu_workqueue.
This patch reimplements cancel_delayed_work() using
try_to_grab_pending() and set_work_cpu_and_clear_pending(). This
allows the function to be called from IRQ handlers and makes its
behavior consistent with other flush / cancel functions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Up to now, for delayed_works, try_to_grab_pending() couldn't be used
from IRQ handlers because IRQs may happen while
delayed_work_timer_fn() is in progress leading to indefinite -EAGAIN.
This patch makes delayed_work use the new TIMER_IRQSAFE flag for
delayed_work->timer. This makes try_to_grab_pending() and thus
mod_delayed_work_on() safe to call from IRQ handlers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that all workqueues are non-reentrant, system[_freezable]_wq() are
equivalent to system_nrt[_freezable]_wq(). Replace the latter with
wrappers around system[_freezable]_wq(). The wrapping goes through
inline functions so that __deprecated can be added easily.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that all workqueues are non-reentrant, flush[_delayed]_work_sync()
are equivalent to flush[_delayed]_work(). Drop the separate
implementation and make them thin wrappers around
flush[_delayed]_work().
* start_flush_work() no longer takes @wait_executing as the only left
user - flush_work() - always sets it to %true.
* __cancel_work_timer() uses flush_work() instead of wait_on_work().
Signed-off-by: Tejun Heo <tj@kernel.org>
By default, each per-cpu part of a bound workqueue operates separately
and a work item may be executing concurrently on different CPUs. The
behavior avoids some cross-cpu traffic but leads to subtle weirdities
and not-so-subtle contortions in the API.
* There's no sane usefulness in allowing a single work item to be
executed concurrently on multiple CPUs. People just get the
behavior unintentionally and get surprised after learning about it.
Most either explicitly synchronize or use non-reentrant/ordered
workqueue but this is error-prone.
* flush_work() can't wait for multiple instances of the same work item
on different CPUs. If a work item is executing on cpu0 and then
queued on cpu1, flush_work() can only wait for the one on cpu1.
Unfortunately, work items can easily cross CPU boundaries
unintentionally when the queueing thread gets migrated. This means
that if multiple queuers compete, flush_work() can't even guarantee
that the instance queued right before it is finished before
returning.
* flush_work_sync() was added to work around some of the deficiencies
of flush_work(). In addition to the usual flushing, it ensures that
all currently executing instances are finished before returning.
This operation is expensive as it has to walk all CPUs and at the
same time fails to address competing queuer case.
Incorrectly using flush_work() when flush_work_sync() is necessary
is an easy error to make and can lead to bugs which are difficult to
reproduce.
* Similar problems exist for flush_delayed_work[_sync]().
Other than the cross-cpu access concern, there's no benefit in
allowing parallel execution and it's plain silly to have this level of
contortion for workqueue which is widely used from core code to
extremely obscure drivers.
This patch makes all workqueues non-reentrant. If a work item is
executing on a different CPU when queueing is requested, it is always
queued to that CPU. This guarantees that any given work item can be
executing on one CPU at maximum and if a work item is queued and
executing, both are on the same CPU.
The only behavior change which may affect workqueue users negatively
is that non-reentrancy overrides the affinity specified by
queue_work_on(). On a reentrant workqueue, the affinity specified by
queue_work_on() is always followed. Now, if the work item is
executing on one of the CPUs, the work item will be queued there
regardless of the requested affinity. I've reviewed all workqueue
users which request explicit affinity, and, fortunately, none seems to
be crazy enough to exploit parallel execution of the same work item.
This adds an additional busy_hash lookup if the work item was
previously queued on a different CPU. This shouldn't be noticeable
under any sane workload. Work item queueing isn't a very
high-frequency operation and they don't jump across CPUs all the time.
In a micro benchmark to exaggerate this difference - measuring the
time it takes for two work items to repeatedly jump between two CPUs a
number (10M) of times with busy_hash table densely populated, the
difference was around 3%.
While the overhead is measureable, it is only visible in pathological
cases and the difference isn't huge. This change brings much needed
sanity to workqueue and makes its behavior consistent with timer. I
think this is the right tradeoff to make.
This enables significant simplification of workqueue API.
Simplification patches will follow.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixed some checkpatch warnings.
tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit.
Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>
To speed cpu down processing up, use system_highpri_wq.
As scheduling priority of workers on it is higher than system_wq and
it is not contended by other normal works on this cpu, work on it
is processed faster than system_wq.
tj: CPU up/downs care quite a bit about latency these days. This
shouldn't hurt anything and makes sense.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In rebind_workers(), we do inserting a work to rebind to cpu for busy workers.
Currently, in this case, we use only system_wq. This makes a possible
error situation as there is mismatch between cwq->pool and worker->pool.
To prevent this, we should use system_highpri_wq for highpri worker
to match theses. This implements it.
tj: Rephrased comment a bit.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 3270476a6c ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool
for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker
or highpri worker. But, we don't consider this difference in rebind_workers(),
we use just system_wq for highpri worker. It makes mismatch between
cwq->pool and worker->pool.
It doesn't make error in current implementation, but possible in the future.
Now, we introduce system_highpri_wq to use proper cwq for highpri workers
in rebind_workers(). Following patch fix this issue properly.
tj: Even apart from rebinding, having system_highpri_wq generally
makes sense.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We assign cpu id into work struct's data field in __queue_delayed_work_on().
In current implementation, when work is come in first time,
current running cpu id is assigned.
If we do __queue_delayed_work_on() with CPU A on CPU B,
__queue_work() invoked in delayed_work_timer_fn() go into
the following sub-optimal path in case of WQ_NON_REENTRANT.
gcwq = get_gcwq(cpu);
if (wq->flags & WQ_NON_REENTRANT &&
(last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND.
It is sufficient to prevent to go into sub-optimal path.
tj: Slightly rephrased the comment.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When we do tracing workqueue_queue_work(), it records requested cpu.
But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND,
requested cpu is changed as local cpu.
In case of @wq->flag & WQ_UNBOUND, above change is not occured,
therefore it is reasonable to correct it.
Use temporary local variable for storing requested cpu.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 3270476a6c ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool
for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent
size of pools, definition of worker_pool in gcwq doesn't use it.
Using it makes code robust and prevent future mistakes.
So change code to use this enum value.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Any operation which clears PENDING should be preceded by a wmb to
guarantee that the next PENDING owner sees all the changes made before
PENDING release.
There are only two places where PENDING is cleared -
set_work_cpu_and_clear_pending() and clear_work_data(). The caller of
the former already does smp_wmb() but the latter doesn't have any.
Move the wmb above set_work_cpu_and_clear_pending() into it and add
one to clear_work_data().
There hasn't been any report related to this issue, and, given how
clear_work_data() is used, it is extremely unlikely to have caused any
actual problems on any architecture.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
delayed_work encodes the workqueue to use and the last CPU in
delayed_work->work.data while it's on timer. The target CPU is
implicitly recorded as the CPU the timer is queued on and
delayed_work_timer_fn() queues delayed_work->work to the CPU it is
running on.
Unfortunately, this leaves flush_delayed_work[_sync]() no way to find
out which CPU the delayed_work was queued for when they try to
re-queue after killing the timer. Currently, it chooses the local CPU
flush is running on. This can unexpectedly move a delayed_work queued
on a specific CPU to another CPU and lead to subtle errors.
There isn't much point in trying to save several bytes in struct
delayed_work, which is already close to a hundred bytes on 64bit with
all debug options turned off. This patch adds delayed_work->cpu to
remember the CPU it's queued for.
Note that if the timer is migrated during CPU down, the work item
could be queued to the downed global_cwq after this change. As a
detached global_cwq behaves like an unbound one, this doesn't change
much for the delayed_work.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Workqueue was lacking a mechanism to modify the timeout of an already
pending delayed_work. delayed_work users have been working around
this using several methods - using an explicit timer + work item,
messing directly with delayed_work->timer, and canceling before
re-queueing, all of which are error-prone and/or ugly.
This patch implements mod_delayed_work[_on]() which behaves similarly
to mod_timer() - if the delayed_work is idle, it's queued with the
given delay; otherwise, its timeout is modified to the new value.
Zero @delay guarantees immediate execution.
v2: Updated to reflect try_to_grab_pending() changes. Now safe to be
called from bh context.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
There can be two reasons try_to_grab_pending() can fail with -EAGAIN.
One is when someone else is queueing or deqeueing the work item. With
the previous patches, it is guaranteed that PENDING and queued state
will soon agree making it safe to busy-retry in this case.
The other is if multiple __cancel_work_timer() invocations are racing
one another. __cancel_work_timer() grabs PENDING and then waits for
running instances of the target work item on all CPUs while holding
PENDING and !queued. try_to_grab_pending() invoked from another task
will keep returning -EAGAIN while the current owner is waiting.
Not distinguishing the two cases is okay because __cancel_work_timer()
is the only user of try_to_grab_pending() and it invokes
wait_on_work() whenever grabbing fails. For the first case, busy
looping should be fine but wait_on_work() doesn't cause any critical
problem. For the latter case, the new contender usually waits for the
same condition as the current owner, so no unnecessarily extended
busy-looping happens. Combined, these make __cancel_work_timer()
technically correct even without irq protection while grabbing PENDING
or distinguishing the two different cases.
While the current code is technically correct, not distinguishing the
two cases makes it difficult to use try_to_grab_pending() for other
purposes than canceling because it's impossible to tell whether it's
safe to busy-retry grabbing.
This patch adds a mechanism to mark a work item being canceled.
try_to_grab_pending() now disables irq on success and returns -EAGAIN
to indicate that grabbing failed but PENDING and queued states are
gonna agree soon and it's safe to busy-loop. It returns -ENOENT if
the work item is being canceled and it may stay PENDING && !queued for
arbitrary amount of time.
__cancel_work_timer() is modified to mark the work canceling with
WORK_OFFQ_CANCELING after grabbing PENDING, thus making
try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it
invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't
necessary for correctness but makes it consistent with other future
users of try_to_grab_pending().
v2: try_to_grab_pending() was testing preempt_count() to ensure that
the caller has disabled preemption. This triggers spuriously if
!CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by
Fengguang Wu.
v3: Updated so that try_to_grab_pending() disables irq on success
rather than requiring preemption disabled by the caller. This
makes busy-looping easier and will allow try_to_grap_pending() to
be used from bh/irq contexts.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
* Use bool @is_dwork instead of @timer and let try_to_grab_pending()
use to_delayed_work() to determine the delayed_work address.
* Move timer handling from __cancel_work_timer() to
try_to_grab_pending().
* Make try_to_grab_pending() use -EAGAIN instead of -1 for
busy-looping and drop the ret local variable.
* Add proper function comment to try_to_grab_pending().
This makes the code a bit easier to understand and will ease further
changes. This patch doesn't make any functional change.
v2: Use @is_dwork instead of @timer.
Signed-off-by: Tejun Heo <tj@kernel.org>
Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain
WORK_STRUCT_FLAG_* and flush color. If the work item is queued, the
rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise,
WORK_STRUCT_CWQ is clear and the bits contain the last CPU number -
either a real CPU number or one of WORK_CPU_*.
Scheduled addition of mod_delayed_work[_on]() requires an additional
flag, which is used only while a work item is off queue. There are
more than enough bits to represent off-queue CPU number on both 32 and
64bits. This patch introduces WORK_OFFQ_FLAG_* which occupy the lower
part of the @work->data high bits while off queue. This patch doesn't
define any actual OFFQ flag yet.
Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds
the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to
make room for OFFQ flags.
To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong
cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON()
to check that there are enough bits to accomodate off-queue CPU number
is added.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
try_to_grab_pending() will be used by to-be-implemented
mod_delayed_work[_on](). Move try_to_grab_pending() and related
functions above queueing functions.
This patch only moves functions around.
Signed-off-by: Tejun Heo <tj@kernel.org>
If @delay is zero and the dealyed_work is idle, queue_delayed_work()
queues it for immediate execution; however, queue_delayed_work_on()
lacks this logic and always goes through timer regardless of @delay.
This patch moves 0 @delay handling logic from queue_delayed_work() to
queue_delayed_work_on() so that both functions behave the same.
Signed-off-by: Tejun Heo <tj@kernel.org>
Queueing functions have been using different methods to determine the
local CPU.
* queue_work() superflously uses get/put_cpu() to acquire and hold the
local CPU across queue_work_on().
* delayed_work_timer_fn() uses smp_processor_id().
* queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu
which is interpreted as the local CPU.
* flush_delayed_work[_sync]() were using raw_smp_processor_id().
* __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the
target workqueue is bound one but nobody uses this.
This patch converts all functions to uniformly use %WORK_CPU_UNBOUND
to indicate local CPU and use the local binding feature of
__queue_work(). unlikely() is dropped from %WORK_CPU_UNBOUND handling
in __queue_work().
Signed-off-by: Tejun Heo <tj@kernel.org>
delayed_work->timer.function is currently initialized during
queue_delayed_work_on(). Export delayed_work_timer_fn() and set
delayed_work timer function during delayed_work initialization
together with other fields.
This ensures the timer function is always valid on an initialized
delayed_work. This is to help mod_delayed_work() implementation.
To detect delayed_work users which diddle with the internal timer,
trigger WARN if timer function doesn't match on queue.
Signed-off-by: Tejun Heo <tj@kernel.org>
Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access
to the target work item. They first try to claim the bit and proceed
with queueing only after that succeeds and there's a window between
PENDING being set and the actual queueing where the task can be
interrupted or preempted.
There's also a similar window in process_one_work() when clearing
PENDING. A work item is dequeued, gcwq->lock is released and then
PENDING is cleared and the worker might get interrupted or preempted
between releasing gcwq->lock and clearing PENDING.
cancel[_delayed]_work_sync() tries to claim or steal PENDING. The
function assumes that a work item with PENDING is either queued or in
the process of being [de]queued. In the latter case, it busy-loops
until either the work item loses PENDING or is queued. If canceling
coincides with the above described interrupts or preemptions, the
canceling task will busy-loop while the queueing or executing task is
preempted.
This patch keeps irq disabled across claiming PENDING and actual
queueing and moves PENDING clearing in process_one_work() inside
gcwq->lock so that busy looping from PENDING && !queued doesn't wait
for interrupted/preempted tasks. Note that, in process_one_work(),
setting last CPU and clearing PENDING got merged into single
operation.
This removes possible long busy-loops and will allow using
try_to_grab_pending() from bh and irq contexts.
v2: __queue_work() was testing preempt_count() to ensure that the
caller has disabled preemption. This triggers spuriously if
!CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by
Fengguang Wu.
v3: Disable irq instead of preemption. IRQ will be disabled while
grabbing gcwq->lock later anyway and this allows using
try_to_grab_pending() from bh and irq contexts.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
WORK_STRUCT_PENDING is used to claim ownership of a work item and
process_one_work() releases it before starting execution. When
someone else grabs PENDING, all pre-release updates to the work item
should be visible and all updates made by the new owner should happen
afterwards.
Grabbing PENDING uses test_and_set_bit() and thus has a full barrier;
however, clearing doesn't have a matching wmb. Given the preceding
spin_unlock and use of clear_bit, I don't believe this can be a
problem on an actual machine and there hasn't been any related report
but it still is theretically possible for clear_pending to permeate
upwards and happen before work->entry update.
Add an explicit smp_wmb() before work_clear_pending().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org
All queueing functions return 1 on success, 0 if the work item was
already pending. Update them to return bool instead. This signifies
better that they don't return 0 / -errno.
This is cleanup and doesn't cause any functional difference.
While at it, fix comment opening for schedule_work_on().
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, queue/schedule[_delayed]_work_on() are located below the
counterpart without the _on postifx even though the latter is usually
implemented using the former. Swap them.
This is cleanup and doesn't cause any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
25511a4776 "workqueue: reimplement CPU online rebinding to handle idle
workers" added CPU locality sanity check in process_one_work(). It
triggers if a worker is executing on a different CPU without UNBOUND
or REBIND set.
This works for all normal workers but rescuers can trigger this
spuriously when they're serving the unbound or a disassociated
global_cwq - rescuers don't have either flag set and thus its
gcwq->cpu can be a different value including %WORK_CPU_UNBOUND.
Fix it by additionally testing %GCWQ_DISASSOCIATED.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Refence: <20120721213656.GA7783@linux.vnet.ibm.com>
With trustee gone, CPU hotplug code can be simplified.
* gcwq_claim/release_management() now grab and release gcwq lock too
respectively and gained _and_lock and _and_unlock postfixes.
* All CPU hotplug logic was implemented in workqueue_cpu_callback()
which was called by workqueue_cpu_up/down_callback() for the correct
priority. This was because up and down paths shared a lot of logic,
which is no longer true. Remove workqueue_cpu_callback() and move
all hotplug logic into the two actual callbacks.
This patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
With the previous changes, a disassociated global_cwq now can run as
an unbound one on its own - it can create workers as necessary to
drain remaining works after the CPU has been brought down and manage
the number of workers using the usual idle timer mechanism making
trustee completely redundant except for the actual unbinding
operation.
This patch removes the trustee and let a disassociated global_cwq
manage itself. Unbinding is moved to a work item (for CPU affinity)
which is scheduled and flushed from CPU_DONW_PREPARE.
This patch moves nr_running clearing outside gcwq and manager locks to
simplify the code. As nr_running is unused at the point, this is
safe.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Currently, during CPU offlining, after all pending work items are
drained, the trustee butchers all workers. Also, on CPU onlining
failure, workqueue_cpu_callback() ensures that the first idle worker
is destroyed. Combined, these guarantee that an offline CPU doesn't
have any worker for it once all the lingering work items are finished.
This guarantee isn't really necessary and makes CPU on/offlining more
expensive than needs to be, especially for platforms which use CPU
hotplug for powersaving.
This patch lets offline CPUs removes idle worker butchering from the
trustee and let a CPU which failed onlining keep the created first
worker. The first worker is created if the CPU doesn't have any
during CPU_DOWN_PREPARE and started right away. If onlining succeeds,
the rebind_workers() call in CPU_ONLINE will rebind it like any other
workers. If onlining fails, the worker is left alone till the next
try.
This makes CPU hotplugs cheaper by allowing global_cwqs to keep
workers across them and simplifies code.
Note that trustee doesn't re-arm idle timer when it's done and thus
the disassociated global_cwq will keep all workers until it comes back
online. This will be improved by further patches.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Currently, if there are left workers when a CPU is being brough back
online, the trustee kills all idle workers and scheduled rebind_work
so that they re-bind to the CPU after the currently executing work is
finished. This works for busy workers because concurrency management
doesn't try to wake up them from scheduler callbacks, which require
the target task to be on the local run queue. The busy worker bumps
concurrency counter appropriately as it clears WORKER_UNBOUND from the
rebind work item and it's bound to the CPU before returning to the
idle state.
To reduce CPU on/offlining overhead (as many embedded systems use it
for powersaving) and simplify the code path, workqueue is planned to
be modified to retain idle workers across CPU on/offlining. This
patch reimplements CPU online rebinding such that it can also handle
idle workers.
As noted earlier, due to the local wakeup requirement, rebinding idle
workers is tricky. All idle workers must be re-bound before scheduler
callbacks are enabled. This is achieved by interlocking idle
re-binding. Idle workers are requested to re-bind and then hold until
all idle re-binding is complete so that no bound worker starts
executing work item. Only after all idle workers are re-bound and
parked, CPU_ONLINE proceeds to release them and queue rebind work item
to busy workers thus guaranteeing scheduler callbacks aren't invoked
until all idle workers are ready.
worker_rebind_fn() is renamed to busy_worker_rebind_fn() and
idle_worker_rebind() for idle workers is added. Rebinding logic is
moved to rebind_workers() and now called from CPU_ONLINE after
flushing trustee. While at it, add CPU sanity check in
worker_thread().
Note that now a worker may become idle or the manager between trustee
release and rebinding during CPU_ONLINE. As the previous patch
updated create_worker() so that it can be used by regular manager
while unbound and this patch implements idle re-binding, this is safe.
This prepares for removal of trustee and keeping idle workers across
CPU hotplugs.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Currently, create_worker()'s callers are responsible for deciding
whether the newly created worker should be bound to the associated CPU
and create_worker() sets WORKER_UNBOUND only for the workers for the
unbound global_cwq. Creation during normal operation is always via
maybe_create_worker() and @bind is true. For workers created during
hotplug, @bind is false.
Normal operation path is planned to be used even while the CPU is
going through hotplug operations or offline and this static decision
won't work.
Drop @bind from create_worker() and decide whether to bind by looking
at GCWQ_DISASSOCIATED. create_worker() will also set WORKER_UNBOUND
autmatically if disassociated. To avoid flipping GCWQ_DISASSOCIATED
while create_worker() is in progress, the flag is now allowed to be
changed only while holding all manager_mutexes on the global_cwq.
This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's
back. CPU_ONLINE no longer clears DISASSOCIATED before flushing
trustee, which clears DISASSOCIATED before rebinding remaining workers
if asked to release. For cases where trustee isn't around, CPU_ONLINE
clears DISASSOCIATED after flushing trustee. Also, now, first_idle
has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE
while binding it. These convolutions will soon be removed by further
simplification of CPU hotplug path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
POOL_MANAGING_WORKERS is used to ensure that at most one worker takes
the manager role at any given time on a given global_cwq. Trustee
later hitched on it to assume manager adding blocking wait for the
bit. As trustee already needed a custom wait mechanism, waiting for
MANAGING_WORKERS was rolled into the same mechanism.
Trustee is scheduled to be removed. This patch separates out
MANAGING_WORKERS wait into per-pool mutex. Workers use
mutex_trylock() to test for manager role and trustee uses mutex_lock()
to claim manager roles.
gcwq_claim/release_management() helpers are added to grab and release
manager roles of all pools on a global_cwq. gcwq_claim_management()
always grabs pool manager mutexes in ascending pool index order and
uses pool index as lockdep subclass.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Currently, WORKER_UNBOUND is used to mark workers for the unbound
global_cwq and WORKER_ROGUE is used to mark workers for disassociated
per-cpu global_cwqs. Both are used to make the marked worker skip
concurrency management and the only place they make any difference is
in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling
idle timer, which can easily be replaced with trustee state testing.
This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops
WORKER_ROGUE. This is to prepare for removing trustee and handling
disassociated global_cwqs as unbound.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED.
This was necessary because workqueue's CPU_DOWN_PREPARE happened
before other DOWN_PREPARE notifiers and workqueue needed to stay
associated across the rest of DOWN_PREPARE.
After the previous patch, workqueue's DOWN_PREPARE happens after
others and can set GCWQ_DISASSOCIATED directly. Drop CPU_DYING and
let the trustee set GCWQ_DISASSOCIATED after disabling concurrency
management.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.
Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.
However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.
While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.
Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.
Workqueue cpu hotplug operations will soon go through further cleanup.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
WQ_HIGHPRI was implemented by queueing highpri work items at the head
of the global worklist. Other than queueing at the head, they weren't
handled differently; unfortunately, this could lead to execution
latency of a few seconds on heavily loaded systems.
Now that workqueue code has been updated to deal with multiple
worker_pools per global_cwq, this patch reimplements WQ_HIGHPRI using
a separate worker_pool. NR_WORKER_POOLS is bumped to two and
gcwq->pools[0] is used for normal pri work items and ->pools[1] for
highpri. Highpri workers get -20 nice level and has 'H' suffix in
their names. Note that this change increases the number of kworkers
per cpu.
POOL_HIGHPRI_PENDING, pool_determine_ins_pos() and highpri chain
wakeup code in process_one_work() are no longer used and removed.
This allows proper prioritization of highpri work items and removes
high execution latency of highpri work items.
v2: nr_running indexing bug in get_pool_nr_running() fixed.
v3: Refreshed for the get_pool_nr_running() update in the previous
patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Josh Hunt <joshhunt00@gmail.com>
LKML-Reference: <CAKA=qzaHqwZ8eqpLNFjxnO2fX-tgAOjmpvxgBFjv6dJeQaOW1w@mail.gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Introduce NR_WORKER_POOLS and for_each_worker_pool() and convert code
paths which need to manipulate all pools in a gcwq to use them.
NR_WORKER_POOLS is currently one and for_each_worker_pool() iterates
over only @gcwq->pool.
Note that nr_running is per-pool property and converted to an array
with NR_WORKER_POOLS elements and renamed to pool_nr_running. Note
that get_pool_nr_running() currently assumes 0 index. The next patch
will make use of non-zero index.
The changes in this patch are mechanical and don't caues any
functional difference. This is to prepare for multiple pools per
gcwq.
v2: nr_running indexing bug in get_pool_nr_running() fixed.
v3: Pointer to array is stupid. Don't use it in get_pool_nr_running()
as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
GCWQ_MANAGE_WORKERS, GCWQ_MANAGING_WORKERS and GCWQ_HIGHPRI_PENDING
are per-pool properties. Add worker_pool->flags and make the above
three flags per-pool flags.
The changes in this patch are mechanical and don't caues any
functional difference. This is to prepare for multiple pools per
gcwq.
Signed-off-by: Tejun Heo <tj@kernel.org>
Modify all functions which deal with per-pool properties to pass
around @pool instead of @gcwq or @cpu.
The changes in this patch are mechanical and don't caues any
functional difference. This is to prepare for multiple pools per
gcwq.
Signed-off-by: Tejun Heo <tj@kernel.org>
Move worklist and all worker management fields from global_cwq into
the new struct worker_pool. worker_pool points back to the containing
gcwq. worker and cpu_workqueue_struct are updated to point to
worker_pool instead of gcwq too.
This change is mechanical and doesn't introduce any functional
difference other than rearranging of fields and an added level of
indirection in some places. This is to prepare for multiple pools per
gcwq.
v2: Comment typo fixes as suggested by Namhyung.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Unbound wqs aren't concurrency-managed and try to execute work items
as soon as possible. This is currently achieved by implicitly setting
%WQ_HIGHPRI on all unbound workqueues; however, WQ_HIGHPRI
implementation is about to be restructured and this usage won't be
valid anymore.
Add an explicit chain-wakeup path for unbound workqueues in
process_one_work() instead of piggy backing on %WQ_HIGHPRI.
Signed-off-by: Tejun Heo <tj@kernel.org>
Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].
Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.
Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.
Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.
Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].
Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().
* Patch orginally from Peter. Hugh modified it a bit and wrote the
description.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>