IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In preparation for moving the EFI stub functionality into the zboot
decompressor, switch to the stub's implementation of strncmp()
unconditionally.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We will be sharing efi-entry.S with the zboot decompressor build, which
does not link against vmlinux directly. So move it into the libstub
source directory so we can include in the libstub static library.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
To allow efi_enter_kernel() to be shared with the EFI zboot decompressor
build, drop another reference to dcache_clean_poc() and replace it with
a single DC CVAC* instruction. To ensure that it covers the remainder of
efi_enter_kernel() as intended, reorganize the code a bit so it fits in
a 32-byte cacheline, and align it to 32 bytes. (Even though the
architecture defines 16 as the minimum D-cache line size, even the
chosen value of 32 is highly unlikely to ever be encountered on real
hardware, and this works with any line size >= 32)
* due to ARM64_WORKAROUND_CLEAN_CACHE, we actually use a DC CIVAC here
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
The efi_enter_kernel() routine will be shared between the existing EFI
stub and the zboot decompressor, and the version of
dcache_clean_to_poc() that the core kernel exports to the stub will not
be available in the latter case.
So move the handling into the .c file which will remain part of the stub
build that integrates directly with the kernel proper.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Currently for reasons lost in the mists of time the kernel_neon_ APIs are
EXPORT_SYMBOL() but the general policy for floating point usage is that it
should be GPL only given the non-standard runtime environment that holds
while it is in use and PCS impacts when code is compiled for FP usage.
Given the limited existing deployment of non-GPL modules for arm64 and the
fact that other architectures like x86 already make their equivalent
functions GPL only this is not expected to be disruptive to existing users.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221107170747.276910-1-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The ARM architecture revision v8.4 introduces a data independent timing
control (DIT) which can be set at any exception level, and instructs the
CPU to avoid optimizations that may result in a correlation between the
execution time of certain instructions and the value of the data they
operate on.
The DIT bit is part of PSTATE, and is therefore context switched as
usual, given that it becomes part of the saved program state (SPSR) when
taking an exception. We have also defined a hwcap for DIT, and so user
space can discover already whether or nor DIT is available. This means
that, as far as user space is concerned, DIT is wired up and fully
functional.
In the kernel, however, we never bothered with DIT: we disable at it
boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we
might run with DIT enabled if user space happened to set it.
Currently, we have no idea whether or not running privileged code with
DIT disabled on a CPU that implements support for it may result in a
side channel that exposes privileged data to unprivileged user space
processes, so let's be cautious and just enable DIT while running in the
kernel if supported by all CPUs.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Adam Langley <agl@google.com>
Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org
[will: Removed cpu_has_dit() as per Mark's suggestion on the list]
Signed-off-by: Will Deacon <will@kernel.org>
- Avoid kprobe recursion when cortex_a76_erratum_1463225_debug_handler()
is not inlined (change to __always_inline).
- Fix the visibility of compat hwcaps, broken by recent changes to
consolidate the visibility of hwcaps and the user-space view of the ID
registers.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmNlmqgACgkQa9axLQDI
XvF4VRAAiiUH5JeYmq62e07luAdVgAaN77RGu5rTM2ocZPOxvJu/hnvhGTOabksA
7/dgcaLGmdUXTpLN4zplSPvgprq+6BoZBKZPaRcK3NZAdN7oM0lGYgZwDXEzSj/R
va99+TWi9TUl9pp6gIk5U2y1lt2H3VnY1nPGXiEya4MCN+ISIoG7sPPPiFBcWKrM
ONzKx9CXRT17fF0l5GCR/lsdRCYU2lCBQAxFQ8wSIjrrkfEmU6YBD+9BVufW0Jtb
j2apMLoD0Udtn5weqUhSwr7vOWxICgnH2JWRUSq1sV5nJD/YwZ7MehQ4GzkVe+v2
upxeZd9R3DKr+vihw/YxuFhxz8KtRR+3J1zi693R0/4CYhmZSjnzgGN+VJpO9hw1
5oS9+DsYhEeCdFiXGNYo7UF/lPKXRgMF5hZUOWsl3rzDg7wiNjX01L5ki9I3XR+d
6WBB3d09BUgmGmr1o14ozCMaamBscRfFKKXpt7jirMMdx5Cu7wzjzikrAGnqSp69
8Tk3zdQiftUtAUqctSF6/4B/e29kYqY/s0n2xNid8eRokIT0Lvp6YUfwqC4zeBFc
m4ZANIqpnOAGtGogPpDW3I96jAM3P4WM4lzsojrCiAnBsjCOcSZz3laigQOPC9cJ
fryHvl7zXOAnymUA5urG9tBEZFOH9DOdkze+vEydrB9hcLF2Poc=
=5Vh8
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Avoid kprobe recursion when cortex_a76_erratum_1463225_debug_handler()
is not inlined (change to __always_inline).
- Fix the visibility of compat hwcaps, broken by recent changes to
consolidate the visibility of hwcaps and the user-space view of the
ID registers.
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: cpufeature: Fix the visibility of compat hwcaps
arm64: entry: avoid kprobe recursion
- A pair of tweaks to the EFI random seed code so that externally
provided version of this config table are handled more robustly
- Another fix for the v6.0 EFI variable refactor that turned out to
break Apple machines which don't provide QueryVariableInfo()
- Add some guard rails to the EFI runtime service call wrapper so we can
recover from synchronous exceptions caused by firmware
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmNj+NQACgkQw08iOZLZ
jyTk1AwAmTAWL8o5U0Z+QTFPUAw1xM7qX7GgPtsrZ8Sn1d9MWYDKVKvDmaZwKWZh
rK623STwTwM5PQoiFJgKhuEvDLyAj5ZJ48zd1ZiuzYzCQ2w7Aq4rtCONlfjeeY2C
JAH/CqSF9VuSHM+ato5UfpeDfq+fnZWc17cM7xSGtFEJeeqi1la1XN5F9Nr1+Jfw
XBckPxTWPh6qZ2Kim4TcYUaVgMwEmbHrzsz4mTNS6MGryPVj9rtDiP/IRs3f4QZl
KaVCfY+mRmEy0Jzt0jy9wRKknb0lK+wipiPE4CSAuX4jkuwWIhEt0ZfzuEHCfl4R
6hmL2byMjmGnk9RTUllcMzWvBrRkz7cY3ssAhY+sXPXPmZLLaYpiUYLwnhRUKBGh
U0kQYHYaB0kRsq/xLsGtnZVOon89rWOIW6okbpfcrhWNTaQ+DI54G7ci+he6F8lU
Nfgo99RMse22ES87l3jsEwYSjLOSYhFAO5HTYblWcrCvVrPRhyelif6bnOF9iF3I
9yRtZV/A
=fjxs
-----END PGP SIGNATURE-----
Merge tag 'efi-fixes-for-v6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI fixes from Ard Biesheuvel:
- A pair of tweaks to the EFI random seed code so that externally
provided version of this config table are handled more robustly
- Another fix for the v6.0 EFI variable refactor that turned out to
break Apple machines which don't provide QueryVariableInfo()
- Add some guard rails to the EFI runtime service call wrapper so we
can recover from synchronous exceptions caused by firmware
* tag 'efi-fixes-for-v6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
arm64: efi: Recover from synchronous exceptions occurring in firmware
efi: efivars: Fix variable writes with unsupported query_variable_store()
efi: random: Use 'ACPI reclaim' memory for random seed
efi: random: reduce seed size to 32 bytes
efi/tpm: Pass correct address to memblock_reserve
Commit 237405ebef ("arm64: cpufeature: Force HWCAP to be based on the
sysreg visible to user-space") forced the hwcaps to use sanitised
user-space view of the id registers. However, the ID register structures
used to select few compat cpufeatures (vfp, crc32, ...) are masked and
hence such hwcaps do not appear in /proc/cpuinfo anymore for PER_LINUX32
personality.
Add the ID register structures explicitly and set the relevant entry as
visible. As these ID registers are now of type visible so make them
available in 64-bit userspace by making necessary changes in register
emulation logic and documentation.
While at it, update the comment for structure ftr_generic_32bits[] which
lists the ID register that use it.
Fixes: 237405ebef ("arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space")
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Link: https://lore.kernel.org/r/20221103082232.19189-1-amit.kachhap@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Unlike x86, which has machinery to deal with page faults that occur
during the execution of EFI runtime services, arm64 has nothing like
that, and a synchronous exception raised by firmware code brings down
the whole system.
With more EFI based systems appearing that were not built to run Linux
(such as the Windows-on-ARM laptops based on Qualcomm SOCs), as well as
the introduction of PRM (platform specific firmware routines that are
callable just like EFI runtime services), we are more likely to run into
issues of this sort, and it is much more likely that we can identify and
work around such issues if they don't bring down the system entirely.
Since we already use a EFI runtime services call wrapper in assembler,
we can quite easily add some code that captures the execution state at
the point where the call is made, allowing us to revert to this state
and proceed execution if the call triggered a synchronous exception.
Given that the kernel and the firmware don't share any data structures
that could end up in an indeterminate state, we can happily continue
running, as long as we mark the EFI runtime services as unavailable from
that point on.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Andrew Cooper suggested upgrading the orphan section warning to a hard link
error. However Nathan Chancellor said outright turning the warning into an
error with no escape hatch might be too aggressive, as we have had these
warnings triggered by new compiler generated sections, and suggested turning
orphan sections into an error only if CONFIG_WERROR is set. Kees Cook echoed
and emphasized that the mandate from Linus is that we should avoid breaking
builds. It wrecks bisection, it causes problems across compiler versions, etc.
Thus upgrade the orphan section warning to a hard link error only if
CONFIG_WERROR is set.
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Xin Li <xin3.li@intel.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221025073023.16137-2-xin3.li@intel.com
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU / Intel ADL PMU
- Intel Branch Monitoring PMU
- AMD IBS PMU
- S390 cpum_cf PMU
- PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
{cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.
As triggered by the ftrace boot tests:
[] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)
Fixes: 3c516f89e1 ("x86: Add support for CONFIG_CFI_CLANG")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/Y06dg4e1xF6JTdQq@hirez.programming.kicks-ass.net
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmNHYD0ACgkQSfxwEqXe
A655AA//dJK0PdRghqrKQsl18GOCffV5TUw5i1VbJQbI9d8anfxNjVUQiNGZi4et
qUwZ8OqVXxYx1Z1UDgUE39PjEDSG9/cCvOpMUWqN20/+6955WlNZjwA7Fk6zjvlM
R30fz5CIJns9RFvGT4SwKqbVLXIMvfg/wDENUN+8sxt36+VD2gGol7J2JJdngEhM
lW+zqzi0ABqYy5so4TU2kixpKmpC08rqFvQbD1GPid+50+JsOiIqftDErt9Eg1Mg
MqYivoFCvbAlxxxRh3+UHBd7ZpJLtp1UFEOl2Rf00OXO+ZclLCAQAsTczucIWK9M
8LCZjb7d4lPJv9RpXFAl3R1xvfc+Uy2ga5KeXvufZtc5G3aMUKPuIU7k28ZyblVS
XXsXEYhjTSd0tgi3d0JlValrIreSuj0z2QGT5pVcC9utuAqAqRIlosiPmgPlzXjr
Us4jXaUhOIPKI+Musv/fqrxsTQziT0jgVA3Njlt4cuAGm/EeUbLUkMWwKXjZLTsv
vDsBhEQFmyZqxWu4pYo534VX2mQWTaKRV1SUVVhQEHm57b00EAiZohoOvweB09SR
4KiJapikoopmW4oAUFotUXUL1PM6yi+MXguTuc1SEYuLz/tCFtK8DJVwNpfnWZpE
lZKvXyJnHq2Sgod/hEZq58PMvT6aNzTzSg7YzZy+VabxQGOO5mc=
=M+mV
-----END PGP SIGNATURE-----
Merge tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull more random number generator updates from Jason Donenfeld:
"This time with some large scale treewide cleanups.
The intent of this pull is to clean up the way callers fetch random
integers. The current rules for doing this right are:
- If you want a secure or an insecure random u64, use get_random_u64()
- If you want a secure or an insecure random u32, use get_random_u32()
The old function prandom_u32() has been deprecated for a while
now and is just a wrapper around get_random_u32(). Same for
get_random_int().
- If you want a secure or an insecure random u16, use get_random_u16()
- If you want a secure or an insecure random u8, use get_random_u8()
- If you want secure or insecure random bytes, use get_random_bytes().
The old function prandom_bytes() has been deprecated for a while
now and has long been a wrapper around get_random_bytes()
- If you want a non-uniform random u32, u16, or u8 bounded by a
certain open interval maximum, use prandom_u32_max()
I say "non-uniform", because it doesn't do any rejection sampling
or divisions. Hence, it stays within the prandom_*() namespace, not
the get_random_*() namespace.
I'm currently investigating a "uniform" function for 6.2. We'll see
what comes of that.
By applying these rules uniformly, we get several benefits:
- By using prandom_u32_max() with an upper-bound that the compiler
can prove at compile-time is ≤65536 or ≤256, internally
get_random_u16() or get_random_u8() is used, which wastes fewer
batched random bytes, and hence has higher throughput.
- By using prandom_u32_max() instead of %, when the upper-bound is
not a constant, division is still avoided, because
prandom_u32_max() uses a faster multiplication-based trick instead.
- By using get_random_u16() or get_random_u8() in cases where the
return value is intended to indeed be a u16 or a u8, we waste fewer
batched random bytes, and hence have higher throughput.
This series was originally done by hand while I was on an airplane
without Internet. Later, Kees and I worked on retroactively figuring
out what could be done with Coccinelle and what had to be done
manually, and then we split things up based on that.
So while this touches a lot of files, the actual amount of code that's
hand fiddled is comfortably small"
* tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
prandom: remove unused functions
treewide: use get_random_bytes() when possible
treewide: use get_random_u32() when possible
treewide: use get_random_{u8,u16}() when possible, part 2
treewide: use get_random_{u8,u16}() when possible, part 1
treewide: use prandom_u32_max() when possible, part 2
treewide: use prandom_u32_max() when possible, part 1
- Cortex-A55 errata workaround (repeat TLBI).
- AMPERE1 added to the Spectre-BHB affected list.
- MTE fix to avoid setting PG_mte_tagged if no tags have been touched on
a page.
- Fixed typo in the SCTLR_EL1.SPINTMASK bit naming (the commit log has
other typos).
- perf: return value check in ali_drw_pmu_probe(),
ALIBABA_UNCORE_DRW_PMU dependency on ACPI.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmNJrpAACgkQa9axLQDI
XvFwWQ/+O71bVQPXf43p+O3LapX3IsOxDCWLTMjNcxVgSBSK+TPwtjXN7vIPZDvv
Ibx4Y10vmHo8Copbs7C8USx+hGo7hzknk/s2zoeqJQX13WQkqpuAwTDshzMp60La
nQoJXab3KapQ3UIPL5El/cbvAD9+DGJSiWdyvC8GBHwtWKWi1WDpSNFN3WMJm97P
uQqERiWaf3XOI9BhsuOlCzQE5eemCllycdWoRBelCjIQByuo6SaDPEpTUZDICCPp
f4Ji7U1hfORmXg/DJcjSJbtkSshVRqjhSAtAmP/sWUic7+kWGBiC+zJQ0PxwiNQH
Bfryz90ETa/INA65hA1iC51lE7hvt1DKueZAMKjozxYSCSVAxUNonSkEOfKegPeU
hLhTowmveryqxYGuQ75p5tZjdpvML0Sa/lx7p/GUEhaV77dca/EJ0B68x8WrBpO5
TCsW3iDq2V+ErWgYL7n6nFoMhZQnNvq9jxhAPuJ8Y47ZkeQ8HcvooKLHUSDSjMk2
f/7A7rUJh0piYf0FEPSjRBTO/HyPb1D90n1t2wJoCqwrICZ/mmWzVqua0fgmrbvS
H33YQiSEIkwsfLktIIJRGknYgC0P/JALKlAQPAcmsd+njWsThXJ/WwwRrpvCZdMj
9CVuDfhw7Ipt4Iz5Tg61lLDkzi7bPRqPpEKc8zzsI3nmY0KC/iA=
=vjYu
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Cortex-A55 errata workaround (repeat TLBI)
- AMPERE1 added to the Spectre-BHB affected list
- MTE fix to avoid setting PG_mte_tagged if no tags have been touched
on a page
- Fixed typo in the SCTLR_EL1.SPINTMASK bit naming (the commit log has
other typos)
- perf: return value check in ali_drw_pmu_probe(),
ALIBABA_UNCORE_DRW_PMU dependency on ACPI
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Add AMPERE1 to the Spectre-BHB affected list
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
MAINTAINERS: rectify file entry in ALIBABA PMU DRIVER
drivers/perf: ALIBABA_UNCORE_DRW_PMU should depend on ACPI
drivers/perf: fix return value check in ali_drw_pmu_probe()
arm64: errata: Add Cortex-A55 to the repeat tlbi list
arm64/sysreg: Fix typo in SCTR_EL1.SPINTMASK
- Valentin Schneider makes crash-kexec work properly when invoked from
an NMI-time panic.
- ntfs bugfixes from Hawkins Jiawei
- Jiebin Sun improves IPC msg scalability by replacing atomic_t's with
percpu counters.
- nilfs2 cleanups from Minghao Chi
- lots of other single patches all over the tree!
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0Yf0gAKCRDdBJ7gKXxA
joapAQDT1d1zu7T8yf9cQXkYnZVuBKCjxKE/IsYvqaq1a42MjQD/SeWZg0wV05B8
DhJPj9nkEp6R3Rj3Mssip+3vNuceAQM=
=lUQY
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- hfs and hfsplus kmap API modernization (Fabio Francesco)
- make crash-kexec work properly when invoked from an NMI-time panic
(Valentin Schneider)
- ntfs bugfixes (Hawkins Jiawei)
- improve IPC msg scalability by replacing atomic_t's with percpu
counters (Jiebin Sun)
- nilfs2 cleanups (Minghao Chi)
- lots of other single patches all over the tree!
* tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits)
include/linux/entry-common.h: remove has_signal comment of arch_do_signal_or_restart() prototype
proc: test how it holds up with mapping'less process
mailmap: update Frank Rowand email address
ia64: mca: use strscpy() is more robust and safer
init/Kconfig: fix unmet direct dependencies
ia64: update config files
nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
fork: remove duplicate included header files
init/main.c: remove unnecessary (void*) conversions
proc: mark more files as permanent
nilfs2: remove the unneeded result variable
nilfs2: delete unnecessary checks before brelse()
checkpatch: warn for non-standard fixes tag style
usr/gen_init_cpio.c: remove unnecessary -1 values from int file
ipc/msg: mitigate the lock contention with percpu counter
percpu: add percpu_counter_add_local and percpu_counter_sub_local
fs/ocfs2: fix repeated words in comments
relay: use kvcalloc to alloc page array in relay_alloc_page_array
proc: make config PROC_CHILDREN depend on PROC_FS
fs: uninline inode_maybe_inc_iversion()
...
Per AmpereOne erratum AC03_CPU_12, "Branch history may allow control of
speculative execution across software contexts," the AMPERE1 core needs the
bhb clearing loop to mitigate Spectre-BHB, with a loop iteration count of
11.
Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com>
Link: https://lore.kernel.org/r/20221011022140.432370-1-scott@os.amperecomputing.com
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Prior to commit 69e3b846d8 ("arm64: mte: Sync tags for pages where PTE
is untagged"), mte_sync_tags() was only called for pte_tagged() entries
(those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use
test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently
setting PG_mte_tagged on an untagged page.
The above commit was required as guests may enable MTE without any
control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM.
However, the side-effect was that any page with a PTE that looked like
swap (or migration) was getting PG_mte_tagged set automatically. A
subsequent page copy (e.g. migration) copied the tags to the destination
page even if the tags were owned by KASAN.
This issue was masked by the page_kasan_tag_reset() call introduced in
commit e5b8d92189 ("arm64: mte: reset the page tag in page->flags").
When this commit was reverted (20794545c1), KASAN started reporting
access faults because the overriding tags in a page did not match the
original page->flags (with CONFIG_KASAN_HW_TAGS=y):
BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26
Read at addr f5ff000017f2e000 by task syz-executor.1/2218
Pointer tag: [f5], memory tag: [f2]
Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual
place where tags are cleared (mte_sync_page_tags()) or restored
(mte_restore_tags()).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: syzbot+c2c79c6d6eddc5262b77@syzkaller.appspotmail.com
Fixes: 69e3b846d8 ("arm64: mte: Sync tags for pages where PTE is untagged")
Cc: <stable@vger.kernel.org> # 5.14.x
Cc: Steven Price <steven.price@arm.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/0000000000004387dc05e5888ae5@google.com/
Reviewed-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20221006163354.3194102-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:
@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)
@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@
- RAND = get_random_u32();
... when != RAND
- RAND %= (E);
+ RAND = prandom_u32_max(E);
// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@
((T)get_random_u32()@p & (LITERAL))
// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@
value = None
if literal.startswith('0x'):
value = int(literal, 16)
elif literal[0] in '123456789':
value = int(literal, 10)
if value is None:
print("I don't know how to handle %s" % (literal))
cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
print("Skipping 0x%x for cleanup elsewhere" % (value))
cocci.include_match(False)
elif value & (value + 1) != 0:
print("Skipping 0x%x because it's not a power of two minus one" % (value))
cocci.include_match(False)
elif literal.startswith('0x'):
coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))
// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@
- (FUNC()@p & (LITERAL))
+ prandom_u32_max(RESULT)
@collapse_ret@
type T;
identifier VAR;
expression E;
@@
{
- T VAR;
- VAR = (E);
- return VAR;
+ return E;
}
@drop_var@
type T;
identifier VAR;
@@
{
- T VAR;
... when != VAR
}
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
- Remove potentially incomplete targets when Kbuid is interrupted by
SIGINT etc. in case GNU Make may miss to do that when stderr is piped
to another program.
- Rewrite the single target build so it works more correctly.
- Fix rpm-pkg builds with V=1.
- List top-level subdirectories in ./Kbuild.
- Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in kallsyms.
- Avoid two different modules in lib/zstd/ having shared code, which
potentially causes building the common code as build-in and modular
back-and-forth.
- Unify two modpost invocations to optimize the build process.
- Remove head-y syntax in favor of linker scripts for placing particular
sections in the head of vmlinux.
- Bump the minimal GNU Make version to 3.82.
- Clean up misc Makefiles and scripts.
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmM+4vcVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGY2IQAInr0JUNnkkxwUSXtOcQuA3IK8RJ
FbU9HXJRoV9H+7+l3SMlN7mIbrs5eE5fTY3iwQ3CVe139d1+1q7nvTMRv8owywJx
GBgzswncuu1lk7iQQ//CxiqMwSCG8GJdYn1uDVy4I5jg3o+DtFZJtyq2Wb7pqsMm
ZhZ4PozRN+idYQJSF6Vx/zEVLHI7quMBwfe4CME8/0Kg2+hnYzbXV/aUf0ED2emq
zdCMDQgIOK5AhY+8qgMXKYnBUJMTqBp6LoR4p3ApfUkwRFY0sGa0/LK3U/B22OE7
uWyR4fCUExGyerlcHEVev+9eBfmsLLPyqlchNwpSDOPf5OSdnKmgqJEBR/Cvx0eh
URerPk7EHxyH3G8yi+cU2GtofNTGc5RHPRgJE2ADsQEi5TAUKGmbXMlsFRL/51Vn
lTANZObBNa1d4enljF6TfTL5nuccOa+DKvXnH9fQ49t0QdtSikv6J/lGwilwm1Sr
BctmCsySPuURZfkpI9OQnLuouloMXl9f7Q/+S39haS/tSgvPpyITyO71nxDnXn/s
BbFObZJUk9QkqOACjBP1hNErTLt83uBxQ9z+rDCw/SbLIe4nw0wyneuygfHI5rI8
3RZB2DbGauuJHX2Zs6YGS14SLSY33IsLqKR1/Vy3LrPvOHuEvNiOR8LITq5E0YCK
OffK2Y5cIlXR0QWf
=DHiN
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Remove potentially incomplete targets when Kbuid is interrupted by
SIGINT etc in case GNU Make may miss to do that when stderr is piped
to another program.
- Rewrite the single target build so it works more correctly.
- Fix rpm-pkg builds with V=1.
- List top-level subdirectories in ./Kbuild.
- Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in
kallsyms.
- Avoid two different modules in lib/zstd/ having shared code, which
potentially causes building the common code as build-in and modular
back-and-forth.
- Unify two modpost invocations to optimize the build process.
- Remove head-y syntax in favor of linker scripts for placing
particular sections in the head of vmlinux.
- Bump the minimal GNU Make version to 3.82.
- Clean up misc Makefiles and scripts.
* tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits)
docs: bump minimal GNU Make version to 3.82
ia64: simplify esi object addition in Makefile
Revert "kbuild: Check if linker supports the -X option"
kbuild: rebuild .vmlinux.export.o when its prerequisite is updated
kbuild: move modules.builtin(.modinfo) rules to Makefile.vmlinux_o
zstd: Fixing mixed module-builtin objects
kallsyms: ignore __kstrtab_* and __kstrtabns_* symbols
kallsyms: take the input file instead of reading stdin
kallsyms: drop duplicated ignore patterns from kallsyms.c
kbuild: reuse mksysmap output for kallsyms
mksysmap: update comment about __crc_*
kbuild: remove head-y syntax
kbuild: use obj-y instead extra-y for objects placed at the head
kbuild: hide error checker logs for V=1 builds
kbuild: re-run modpost when it is updated
kbuild: unify two modpost invocations
kbuild: move vmlinux.o rule to the top Makefile
kbuild: move .vmlinux.objs rule to Makefile.modpost
kbuild: list sub-directories in ./Kbuild
Makefile.compiler: replace cc-ifversion with compiler-specific macros
...
* Improvements to the CPU topology subsystem, which fix some issues
where RISC-V would report bad topology information.
* The default NR_CPUS has increased to XLEN, and the maximum
configurable value is 512.
* The CD-ROM filesystems have been enabled in the defconfig.
* Support for THP_SWAP has been added for rv64 systems.
There are also a handful of cleanups and fixes throughout the tree.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmNAWgwTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYicSiEACmuB9WuGZmAasKvmPgz7thyLqakg7/
cE4YK0MxgJxkhsXzYSAv1Fn+WUfX7DSzhK4OOM5wEngAYul7QoFdc84MF0DYKO+E
InjdOvVavzUsWYqETNCuMHPRK6xyzvfHCqqBDDxKHx5jUoicCQfFwJyHLw+cvouR
7WSJoFdvOEV01QyN5Qw9bQp7ASx61ZZX1yE6OAPc2/EJlDEA2QSnjBAi4M+n2ZCx
ZsQz+Dp9RfSU8/nIr13oGiL3Zm+kyXwdOS/8PaDqtrkyiGh6+vSeGqZZwRLVITP/
oUxqGEgnn2eFBD1y8vjsQNWMLWoi9Av4746Fxr8CEHX+jX1cp9CCkU2OkkLxaFcv
6XFtXPJIh/UjzVgPmjZxK+ArEX28QOM5IVyBFxsSl0dNtvyVqKpBXCV1RQ+fFHkO
ntHF3ZxibqOn8ZJmziCn0nzWSOqugNTdAhD4dJAbl58RB/IQtQT0OnHpmpXCG3xh
+/JBzy//xkr7u2HMqU69PzwPtWwZrENUV6jl5SHUDUoW8pySng2Pl4pbmTFqgWty
JTfc5EdyWOWyshhoSCtK2//bnVFryl2ntwGr3LIZrZxkiUiOeYjn+C/YedXZIRob
yy2CN+QanW/FXdIa4GMNeGc9sGDApd3/RtP+8L9mV1kWK6OE0EVskkI1UMCGXrIP
5JoE1jLMVhjcKQ==
=LJg6
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.1-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Improvements to the CPU topology subsystem, which fix some issues
where RISC-V would report bad topology information.
- The default NR_CPUS has increased to XLEN, and the maximum
configurable value is 512.
- The CD-ROM filesystems have been enabled in the defconfig.
- Support for THP_SWAP has been added for rv64 systems.
There are also a handful of cleanups and fixes throughout the tree.
* tag 'riscv-for-linus-6.1-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: enable THP_SWAP for RV64
RISC-V: Print SSTC in canonical order
riscv: compat: s/failed/unsupported if compat mode isn't supported
RISC-V: Increase range and default value of NR_CPUS
cpuidle: riscv-sbi: Fix CPU_PM_CPU_IDLE_ENTER_xyz() macro usage
perf: RISC-V: throttle perf events
perf: RISC-V: exclude invalid pmu counters from SBI calls
riscv: enable CD-ROM file systems in defconfig
riscv: topology: fix default topology reporting
arm64: topology: move store_cpu_topology() to shared code
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured size
of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ
jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0
Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111
wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+
GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ
/7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G
JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u
auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B
48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1
SfhFqNzy
=d8Ps
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A bit more going on than usual in the EFI subsystem. The main driver
for this has been the introduction of the LoonArch architecture last
cycle, which inspired some cleanup and refactoring of the EFI code.
Another driver for EFI changes this cycle and in the future is
confidential compute.
The LoongArch architecture does not use either struct bootparams or DT
natively [yet], and so passing information between the EFI stub and
the core kernel using either of those is undesirable. And in general,
overloading DT has been a source of issues on arm64, so using DT for
this on new architectures is a to avoid for the time being (even if we
might converge on something DT based for non-x86 architectures in the
future). For this reason, in addition to the patch that enables EFI
boot for LoongArch, there are a number of refactoring patches applied
on top of which separate the DT bits from the generic EFI stub bits.
These changes are on a separate topich branch that has been shared
with the LoongArch maintainers, who will include it in their pull
request as well. This is not ideal, but the best way to manage the
conflicts without stalling LoongArch for another cycle.
Another development inspired by LoongArch is the newly added support
for EFI based decompressors. Instead of adding yet another
arch-specific incarnation of this pattern for LoongArch, we are
introducing an EFI app based on the existing EFI libstub
infrastructure that encapulates the decompression code we use on other
architectures, but in a way that is fully generic. This has been
developed and tested in collaboration with distro and systemd folks,
who are eager to start using this for systemd-boot and also for arm64
secure boot on Fedora. Note that the EFI zimage files this introduces
can also be decompressed by non-EFI bootloaders if needed, as the
image header describes the location of the payload inside the image,
and the type of compression that was used. (Note that Fedora's arm64
GRUB is buggy [0] so you'll need a recent version or switch to
systemd-boot in order to use this.)
Finally, we are adding TPM measurement of the kernel command line
provided by EFI. There is an oversight in the TCG spec which results
in a blind spot for command line arguments passed to loaded images,
which means that either the loader or the stub needs to take the
measurement. Given the combinatorial explosion I am anticipating when
it comes to firmware/bootloader stacks and firmware based attestation
protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
when it comes to EFI measured boot, which is that the kernel measures
the initrd and command line. Intermediate loaders can measure
additional assets if needed, but with the baseline in place, we can
deploy measured boot in a meaningful way even if you boot into Linux
straight from the EFI firmware.
Summary:
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured
size of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables"
* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
efi: zboot: create MemoryMapped() device path for the parent if needed
efi: libstub: fix up the last remaining open coded boot service call
efi/arm: libstub: move ARM specific code out of generic routines
efi/libstub: measure EFI LoadOptions
efi/libstub: refactor the initrd measuring functions
efi/loongarch: libstub: remove dependency on flattened DT
efi: libstub: install boot-time memory map as config table
efi: libstub: remove DT dependency from generic stub
efi: libstub: unify initrd loading between architectures
efi: libstub: remove pointless goto kludge
efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
efi: libstub: avoid efi_get_memory_map() for allocating the virt map
efi: libstub: drop pointless get_memory_map() call
efi: libstub: fix type confusion for load_options_size
arm64: efi: enable generic EFI compressed boot
loongarch: efi: enable generic EFI compressed boot
riscv: efi: enable generic EFI compressed boot
efi/libstub: implement generic EFI zboot
efi/libstub: move efi_system_table global var into separate object
...
Cortex-A55 is affected by an erratum where in rare circumstances the
CPUs may not handle a race between a break-before-make sequence on one
CPU, and another CPU accessing the same page. This could allow a store
to a page that has been unmapped.
Work around this by adding the affected CPUs to the list that needs
TLB sequences to be done twice.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220930131959.3082594-1-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI documentation
to match the actual kernel behaviour (zeroing the registers on syscall
rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC exception
handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include larger
SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmM9W4cACgkQa9axLQDI
XvEy3w/+LJ3KCFowWiz5gTAWikjv+UVssHjLMJixn47V7hsEFQ26Xnam/438rTMI
kE95u6DHUpw2SMIxKzFRO7oI5cQtP+cWGwTtOUnjVO+U1oN+HqDOIbO9DbylWDcU
eeeqMMmawMfTPuZrYklpOhXscsorbrKIvYBg7wHYOcwBYV3EPhWr89lwMvTVRuyJ
qpX628KlkGMaBcONNhv3nS3qZcAOs0oHQCAVS4C8czLDL+vtJlumXUS3xr1Mqm72
xtFe7sje8Djr2kZ8mzh0GbFiZEBoBD3F/l7ayq8gVRaVpToUt8sk36Stjs4LojF1
6imuAfji/5TItkScq5KhGqj6MIugwp/eUVbRN74OLNTYx7msF1ZADNFQ+Q0UuY0H
SYK13KvmOji0xjS8qAfhqrwNB79sk3fb+zF9LjETbdz4ZJCgg9gcFbSUTY0DvMfS
MXZk/jVeB07olA8xYbjh0BRt4UV9xU628FPQzK5k7e4Nzl4jSvgtJZCZanfuVtjy
/ZS1vbN8o7tQLBAlVnw+Exi/VedkKxkkMgm8tPKsMgERTFDx0Pc4Gs72hRpDnPWT
MRbeCCGleAf3JQ5vF0coBDNOCEVvweQgShHOyHTz0GyhWXLCFx3RJICo5I4EIpps
LLUk4JK0fO3LVrf1AEpu5ZP4+Sact0zfsH3gB7qyLPYFDmjDXD8=
=jl3Z
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds. The current implementation
("Kernel CFI") is specific to C, directly designed for the Linux kernel,
and takes advantage of architectural features like x86's IBT. This
series retains arm64 support and adds x86 support. Additional "generic"
architectural support is expected soon:
https://github.com/samitolvanen/llvm-project/commits/kcfi_generic
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmM4aAUWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJkgWD/4mUgb7xewNIG/+fuipGd620Iao
K0T8q4BNxLNRltOxNc3Q0WMDCggX0qJGCeds7EdFQJQOGxWcbifM8MAS4idAGM0G
fc3Gxl1imC/oF6goCAbQgndA6jYFIWXGsv8LsRjAXRidWLFr3GFAqVqYJyokSySr
8zMQsEDuF4I1gQnOhEWdtPZbV3MQ4ZjfFzpv+33agbq6Gb72vKvDh3G6g2VXlxjt
1qnMtS+eEpbBU65cJkOi4MSLgymWbnIAeTMb0dbsV4kJ08YoTl8uz1B+weeH6GgT
WP73ZJ4nqh1kkkT9EqS9oKozNB9fObhvCokEuAjuQ7i1eCEZsbShvRc0iL7OKTGG
UfuTJa5qQ4h7Z0JS35FCSJETa+fcG0lTyEd133nLXLMZP9K2antf+A6O//fd0J1V
Jg4VN7DQmZ+UNGOzRkL6dTtQUy4PkxhniIloaClfSYXxhNirA+v//sHTnTK3z2Bl
6qceYqmFmns2Laual7+lvnZgt6egMBcmAL/MOdbU74+KIR9Xw76wxQjifktHX+WF
FEUQkUJDB5XcUyKlbvHoqobRMxvEZ8RIlC5DIkgFiPRE3TI0MqfzNSFnQ/6+lFNg
Y0AS9HYJmcj8sVzAJ7ji24WPFCXzsbFn6baJa9usDNbWyQZokYeiv7ZPNPHPDVrv
YEBP6aYko0lVSUS9qw==
=Li4D
-----END PGP SIGNATURE-----
Merge tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kcfi updates from Kees Cook:
"This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds.
The new implementation ("Kernel CFI") is specific to C, directly
designed for the Linux kernel, and takes advantage of architectural
features like x86's IBT. This series retains arm64 support and adds
x86 support.
GCC support is expected in the future[1], and additional "generic"
architectural support is expected soon[2].
Summary:
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support"
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1]
Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2]
* tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits)
x86: Add support for CONFIG_CFI_CLANG
x86/purgatory: Disable CFI
x86: Add types to indirectly called assembly functions
x86/tools/relocs: Ignore __kcfi_typeid_ relocations
kallsyms: Drop CONFIG_CFI_CLANG workarounds
objtool: Disable CFI warnings
objtool: Preserve special st_shndx indexes in elf_update_symbol
treewide: Drop __cficanonical
treewide: Drop WARN_ON_FUNCTION_MISMATCH
treewide: Drop function_nocfi
init: Drop __nocfi from __init
arm64: Drop unneeded __nocfi attributes
arm64: Add CFI error handling
arm64: Add types to indirect called assembly functions
psci: Fix the function type for psci_initcall_t
lkdtm: Emit an indirect call for CFI tests
cfi: Add type helper macros
cfi: Switch to -fsanitize=kcfi
cfi: Drop __CFI_ADDRESSABLE
cfi: Remove CONFIG_CFI_CLANG_SHADOW
...
The objects placed at the head of vmlinux need special treatments:
- arch/$(SRCARCH)/Makefile adds them to head-y in order to place
them before other archives in the linker command line.
- arch/$(SRCARCH)/kernel/Makefile adds them to extra-y instead of
obj-y to avoid them going into built-in.a.
This commit gets rid of the latter.
Create vmlinux.a to collect all the objects that are unconditionally
linked to vmlinux. The objects listed in head-y are moved to the head
of vmlinux.a by using 'ar m'.
With this, arch/$(SRCARCH)/kernel/Makefile can consistently use obj-y
for builtin objects.
There is no *.o that is directly linked to vmlinux. Drop unneeded code
in scripts/clang-tools/gen_compile_commands.py.
$(AR) mPi needs 'T' to workaround the llvm-ar bug. The fix was suggested
by Nathan Chancellor [1].
[1]: https://lore.kernel.org/llvm/YyjjT5gQ2hGMH0ni@dev-arch.thelio-3990X/
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
* for-next/misc:
: Miscellaneous patches
arm64/kprobe: Optimize the performance of patching single-step slot
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64: support huge vmalloc mappings
arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually
arm64: run softirqs on the per-CPU IRQ stack
arm64: compat: Implement misalignment fixups for multiword loads
* for-next/alternatives:
: Alternatives (code patching) improvements
arm64: fix the build with binutils 2.27
arm64: avoid BUILD_BUG_ON() in alternative-macros
arm64: alternatives: add shared NOP callback
arm64: alternatives: add alternative_has_feature_*()
arm64: alternatives: have callbacks take a cap
arm64: alternatives: make alt_region const
arm64: alternatives: hoist print out of __apply_alternatives()
arm64: alternatives: proton-pack: prepare for cap changes
arm64: alternatives: kvm: prepare for cap changes
arm64: cpufeature: make cpus_have_cap() noinstr-safe
Single-step slot would not be used until kprobe is enabled, that means
no race condition occurs on it under SMP, hence it is safe to pacth ss
slot without stopping machine.
Since I and D caches are coherent within single-step slot from
aarch64_insn_patch_text_nosync(), hence no need to do it again via
flush_icache_range().
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Link: https://lore.kernel.org/r/20220927022435.129965-4-liaochang1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Li Huafei reports that mcount-based ftrace with module PLTs was broken
by commit:
a625357997 ("arm64: ftrace: consistently handle PLTs.")
When a module PLTs are used and a module is loaded sufficiently far away
from the kernel, we'll create PLTs for any branches which are
out-of-range. These are separate from the special ftrace trampoline
PLTs, which the module PLT code doesn't directly manipulate.
When mcount is in use this is a problem, as each mcount callsite in a
module will be initialized to point to a module PLT, but since commit
a625357997 ftrace_make_nop() will assume that the callsite has
been initialized to point to the special ftrace trampoline PLT, and
ftrace_find_callable_addr() rejects other cases.
This means that when ftrace tries to initialize a callsite via
ftrace_make_nop(), the call to ftrace_find_callable_addr() will find
that the `_mcount` stub is out-of-range and is not handled by the ftrace
PLT, resulting in a splat:
| ftrace_test: loading out-of-tree module taints kernel.
| ftrace: no module PLT for _mcount
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffff800029180014>] 0xffff800029180014
| actual: 44:00:00:94
| Initializing ftrace call sites
| ftrace record flags: 2000000
| (0)
| expected tramp: ffff80000802eb3c
| ------------[ cut here ]------------
| WARNING: CPU: 3 PID: 157 at kernel/trace/ftrace.c:2120 ftrace_bug+0x94/0x270
| Modules linked in:
| CPU: 3 PID: 157 Comm: insmod Tainted: G O 6.0.0-rc6-00151-gcd722513a189-dirty #22
| Hardware name: linux,dummy-virt (DT)
| pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x94/0x270
| lr : ftrace_bug+0x21c/0x270
| sp : ffff80000b2bbaf0
| x29: ffff80000b2bbaf0 x28: 0000000000000000 x27: ffff0000c4d38000
| x26: 0000000000000001 x25: ffff800009d7e000 x24: ffff0000c4d86e00
| x23: 0000000002000000 x22: ffff80000a62b000 x21: ffff8000098ebea8
| x20: ffff0000c4d38000 x19: ffff80000aa24158 x18: ffffffffffffffff
| x17: 0000000000000000 x16: 0a0d2d2d2d2d2d2d x15: ffff800009aa9118
| x14: 0000000000000000 x13: 6333626532303830 x12: 3030303866666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : 3362653230383030
| x8 : c0000000ffffefff x7 : 0000000000017fe8 x6 : 000000000000bff4
| x5 : 0000000000057fa8 x4 : 0000000000000000 x3 : 0000000000000001
| x2 : ad2cb14bb5438900 x1 : 0000000000000000 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x94/0x270
| ftrace_process_locs+0x308/0x430
| ftrace_module_init+0x44/0x60
| load_module+0x15b4/0x1ce8
| __do_sys_init_module+0x1ec/0x238
| __arm64_sys_init_module+0x24/0x30
| invoke_syscall+0x54/0x118
| el0_svc_common.constprop.4+0x84/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x1c/0x50
| el0t_64_sync_handler+0x90/0xb8
| el0t_64_sync+0x15c/0x160
| ---[ end trace 0000000000000000 ]---
| ---------test_init-----------
Fix this by reverting to the old behaviour of ignoring the old
instruction when initialising an mcount callsite in a module, which was
the behaviour prior to commit a625357997.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: a625357997 ("arm64: ftrace: consistently handle PLTs.")
Reported-by: Li Huafei <lihuafei1@huawei.com>
Link: https://lore.kernel.org/linux-arm-kernel/20220929094134.99512-1-lihuafei1@huawei.com
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220929134525.798593-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit 4e69ecf4da ("arm64/module: ftrace: deal with place
relative nature of PLTs"), plt_equals_entry() is not used outside of
module-plts.c, so make it static.
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220929094134.99512-2-lihuafei1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With -fsanitize=kcfi, we no longer need function_nocfi() as
the compiler won't change function references to point to a
jump table. Remove all implementations and uses of the macro.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-14-samitolvanen@google.com
With -fsanitize=kcfi, CONFIG_CFI_CLANG no longer has issues
with address space confusion in functions that switch to linear
mapping. Now that the indirectly called assembly functions have
type annotations, drop the __nocfi attributes.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-12-samitolvanen@google.com
With CONFIG_CFI_CLANG, assembly functions indirectly called from C
code must be annotated with type identifiers to pass CFI checking. Use
SYM_TYPED_FUNC_START for the indirectly called functions, and ensure
we emit `bti c` also with SYM_TYPED_FUNC_START.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-10-samitolvanen@google.com
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly
filter out CC_FLAGS_CFI in all the makefiles where we currently filter
out CC_FLAGS_LTO.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Dwarf based unwinding in a function that pushes SVE registers onto
the stack requires the unwinder to know the length of the SVE register
to calculate the stack offsets correctly. This was added to the Arm
specific Dwarf spec as the VG pseudo register[1].
Add the vector length at position 46 if it's requested by userspace and
SVE is supported. If it's not supported then fail to open the event.
The vector length must be on each sample because it can be changed
at runtime via a prctl or ptrace call. Also by adding it as a register
rather than a separate attribute, minimal changes will be required in an
unwinder that already indexes into the register list.
[1]: https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Clark <james.clark@arm.com>
Link: https://lore.kernel.org/r/20220901132658.1024635-2-james.clark@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool.
Fixes: cd0ed03a89 ("arm64: use activity monitors for frequency invariance")
Signed-off-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Link: https://lore.kernel.org/r/01493d64-2bce-d968-86dc-11a122a9c07d@omp.ru
Signed-off-by: Will Deacon <will@kernel.org>
SME introduces an additional EL0 register, TPIDR2_EL0, intended for use
by userspace as part of the SME. Provide ptrace access to it through the
existing NT_ARM_TLS regset used for TPIDR_EL0 by expanding it to two
registers with TPIDR2_EL0 being the second one.
Existing programs that query the size of the register set will be able
to observe the increased size of the register set. Programs that assume
the register set is single register will see no change. On systems that
do not support SME TPIDR2_EL0 will read as 0 and writes will be ignored,
support for SME should be queried via hwcaps as normal.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220829154921.837871-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The stub is used in different execution environments, but on arm64,
RISC-V and LoongArch, we still use the core kernel's implementation of
memcpy and memset, as they are just a branch instruction away, and can
generally be reused even from code such as the EFI stub that runs in a
completely different address space.
KAsan complicates this slightly, resulting in the need for some hacks to
expose the uninstrumented, __ prefixed versions as the normal ones, as
the latter are instrumented to include the KAsan checks, which only work
in the core kernel.
Unfortunately, #define'ing memcpy to __memcpy when building C code does
not guarantee that no explicit memcpy() calls will be emitted. And with
the upcoming zboot support, which consists of a separate binary which
therefore needs its own implementation of memcpy/memset anyway, it's
better to provide one explicitly instead of linking to the existing one.
Given that EFI exposes implementations of memmove() and memset() via the
boot services table, let's wire those up in the appropriate way, and
drop the references to the core kernel ones.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
For each instance of an alternative, the compiler outputs a distinct
copy of the alternative instructions into a subsection. As the compiler
doesn't have special knowledge of alternatives, it cannot coalesce these
to save space.
In a defconfig kernel built with GCC 12.1.0, there are approximately
10,000 instances of alternative_has_feature_likely(), where the
replacement instruction is always a NOP. As NOPs are
position-independent, we don't need a unique copy per alternative
sequence.
This patch adds a callback to patch an alternative sequence with NOPs,
and make use of this in alternative_has_feature_likely(). So that this
can be used for other sites in future, this is written to patch multiple
instructions up to the original sequence length.
For NVHE, an alias is added to image-vars.h.
For modules, the callback is exported. Note that as modules are loaded
within 2GiB of the kernel, an alt_instr entry in a module can always
refer directly to the callback, and no special handling is necessary.
When building with GCC 12.1.0, the vmlinux is ~158KiB smaller, though
the resulting Image size is unchanged due to alignment constraints and
padding:
| % ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 134644592 Sep 1 14:52 vmlinux-after
| -rwxr-xr-x 1 mark mark 134486232 Sep 1 14:50 vmlinux-before
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:52 Image-after
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:50 Image-before
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currrently we use a mixture of alternative sequences and static branches
to handle features detected at boot time. For ease of maintenance we
generally prefer to use static branches in C code, but this has a few
downsides:
* Each static branch has metadata in the __jump_table section, which is
not discarded after features are finalized. This wastes some space,
and slows down the patching of other static branches.
* The static branches are patched at a different point in time from the
alternatives, so changes are not atomic. This leaves a transient
period where there could be a mismatch between the behaviour of
alternatives and static branches, which could be problematic for some
features (e.g. pseudo-NMI).
* More (instrumentable) kernel code is executed to patch each static
branch, which can be risky when patching certain features (e.g.
irqflags management for pseudo-NMI).
* When CONFIG_JUMP_LABEL=n, static branches are turned into a load of a
flag and a conditional branch. This means it isn't safe to use such
static branches in an alternative address space (e.g. the NVHE/PKVM
hyp code), where the generated address isn't safe to acccess.
To deal with these issues, this patch introduces new
alternative_has_feature_*() helpers, which work like static branches but
are patched using alternatives. This ensures the patching is performed
at the same time as other alternative patching, allows the metadata to
be freed after patching, and is safe for use in alternative address
spaces.
Note that all supported toolchains have asm goto support, and since
commit:
a0a12c3ed0 ("asm goto: eradicate CC_HAS_ASM_GOTO)"
... the CC_HAS_ASM_GOTO Kconfig symbol has been removed, so no feature
check is necessary, and we can always make use of asm goto.
Additionally, note that:
* This has no impact on cpus_have_cap(), which is a dynamic check.
* This has no functional impact on cpus_have_const_cap(). The branches
are patched slightly later than before this patch, but these branches
are not reachable until caps have been finalised.
* It is now invalid to use cpus_have_final_cap() in the window between
feature detection and patching. All existing uses are only expected
after patching anyway, so this should not be a problem.
* The LSE atomics will now be enabled during alternatives patching
rather than immediately before. As the LL/SC an LSE atomics are
functionally equivalent this should not be problematic.
When building defconfig with GCC 12.1.0, the resulting Image is 64KiB
smaller:
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Aug 23 09:56 Image-after
| -rw-r--r-- 1 mark mark 37173760 Aug 23 09:54 Image-before
According to bloat-o-meter.pl:
| add/remove: 44/34 grow/shrink: 602/1294 up/down: 39692/-61108 (-21416)
| Function old new delta
| [...]
| Total: Before=16618336, After=16596920, chg -0.13%
| add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-1296 (-1296)
| Data old new delta
| arm64_const_caps_ready 16 - -16
| cpu_hwcap_keys 1280 - -1280
| Total: Before=8987120, After=8985824, chg -0.01%
| add/remove: 0/0 grow/shrink: 0/0 up/down: 0/0 (0)
| RO Data old new delta
| Total: Before=18408, After=18408, chg +0.00%
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Today, callback alternatives are special-cased within
__apply_alternatives(), and are applied alongside patching for system
capabilities as ARM64_NCAPS is not part of the boot_capabilities feature
mask.
This special-casing is less than ideal. Giving special meaning to
ARM64_NCAPS for this requires some structures and loops to use
ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS.
It's also not immediately clear callback alternatives are only applied
when applying alternatives for system-wide features.
To make this a bit clearer, changes the way that callback alternatives
are identified to remove the special-casing of ARM64_NCAPS, and to allow
callback alternatives to be associated with a cpucap as with all other
alternatives.
New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which
are always detected alongside boot cpu capabilities and system
capabilities respectively. All existing callback alternatives are made
to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point
during the boot flow as before.
Subsequent patches will make more use of these new cpucaps.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We never alter a struct alt_region after creation, and we open-code the
bounds of the kernel alternatives region in two functions. The
duplication is a bit unfortunate for clarity (and in future we're likely
to have more functions altering alternative regions), and to avoid
accidents it would be good to make the structure const.
This patch adds a shared struct `kernel_alternatives` alt_region for the
main kernel image, and marks the alt_regions as const to prevent
unintentional modification.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Printing in the middle of __apply_alternatives() is potentially unsafe
and not all that helpful given these days we practically always patch
*something*.
Hoist the print out of __apply_alternatives(), and add separate prints
to __apply_alternatives() and apply_alternatives_all(), which will make
it easier to spot if either patching call goes wrong.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The spectre patching callbacks use cpus_have_final_cap(), and subsequent
patches will make it invalid to call cpus_have_final_cap() before
alternatives patching has completed.
In preparation for said change, this patch modifies the spectre patching
callbacks use cpus_have_cap(). This is not subject to patching, and will
dynamically check the cpu_hwcaps array, which is functionally equivalent
to the existing behaviour.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cortex-A510's erratum #2658417 causes two BF16 instructions to return the
wrong result in rare circumstances when a pair of A510 CPUs are using
shared neon hardware.
The two instructions affected are BFMMLA and VMMLA, support for these is
indicated by the BF16 HWCAP. Remove it on affected platforms.
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-4-james.morse@arm.com
[catalin.marinas@arm.com: add revision to the Kconfig help; remove .type]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
get_arm64_ftr_reg() returns the properties of a system register based
on its instruction encoding.
This is needed by erratum workaround in cpu_errata.c to modify the
user-space visible view of id registers.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-3-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arm64 advertises hardware features to user-space via HWCAPs, and by
emulating access to the CPUs id registers. The cpufeature code has a
sanitised system-wide view of an id register, and a sanitised user-space
view of an id register, where some features use their 'safe' value
instead of the hardware value.
It is currently possible for a HWCAP to be advertised where the user-space
view of the id register does not show the feature as supported.
Erratum workaround need to remove both the HWCAP, and the feature from
the user-space view of the id register. This involves duplicating the
code, and spreading it over cpufeature.c and cpu_errata.c.
Make the HWCAP code use the user-space view of id registers. This ensures
the values never diverge, and allows erratum workaround to remove HWCAP
by modifying the user-space view of the id register.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-2-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the kernel refers to the versions of the PMU and SPE features by
the version of the architecture where those features were updated but the
ARM refers to them using the FEAT_ names for the features. To improve
consistency and help with updating for newer features and since v9 will
make our current naming scheme a bit more confusing update the macros
identfying features to use the FEAT_ based scheme.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64DFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-3-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming scheme the architecture uses for the fields in ID_AA64DFR0_EL1
does not align well with kernel conventions, using as it does a lot of
MixedCase in various arrangements. In preparation for automatically
generating the defines for this register rename the defines used to match
what is in the architecture.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-2-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If an FPAC exception is taken from EL1, the entry code will call
do_ptrauth_fault(), where due to:
BUG_ON(!user_mode(regs))
... the kernel will report a problem within do_ptrauth_fault() rather
than reporting the original context the FPAC exception was taken from.
The pt_regs and ESR value reported will be from within
do_ptrauth_fault() and the code dump will be for the BRK in BUG_ON(),
which isn't sufficient to debug the cause of the original exception.
This patch makes the reporting better by having separate EL0 and EL1
FPAC exception handlers, with the latter calling die() directly to
report the original context the FPAC exception was taken from.
Note that we only need to prevent kprobes of the EL1 FPAC handler, since
the EL0 FPAC handler cannot be called recursively.
For consistency with do_el0_svc*(), I've named the split functions
do_el{0,1}_fpac() rather than do_el{0,1}_ptrauth_fault(). I've also
clarified the comment to not imply there are casues other than FPAC
exceptions.
Prior to this patch FPAC exceptions are reported as:
| kernel BUG at arch/arm64/kernel/traps.c:517!
| Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00130-g9c8a180a1cdf-dirty #12
| Hardware name: FVP Base RevC (DT)
| pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : do_ptrauth_fault+0x3c/0x40
| lr : el1_fpac+0x34/0x54
| sp : ffff80000a3bbc80
| x29: ffff80000a3bbc80 x28: ffff0008001d8000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000020400009 x22: ffff800008f70fa4 x21: ffff80000a3bbe00
| x20: 0000000072000000 x19: ffff80000a3bbcb0 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a3bbcb0 x4 : ffff0008001d8000 x3 : 0000000072000000
| x2 : 0000000000000000 x1 : 0000000020400009 x0 : ffff80000a3bbcb0
| Call trace:
| do_ptrauth_fault+0x3c/0x40
| el1h_64_sync_handler+0xc4/0xd0
| el1h_64_sync+0x64/0x68
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: 97fffe5e a8c17bfd d50323bf d65f03c0 (d4210000)
With this patch applied FPAC exceptions are reported as:
| Internal error: Oops - FPAC: 0000000072000000 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g78846e1c4757-dirty #11
| Hardware name: FVP Base RevC (DT)
| pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : test_pac+0x8/0x10
| lr : 0x0
| sp : ffff80000a3bbe00
| x29: ffff80000a3bbe00 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2c8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff80000a007000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a2c6000 x4 : ffff0008001d8000 x3 : ffff800009f88378
| x2 : 0000000000000000 x1 : 0000000080210000 x0 : ffff000001a90000
| Call trace:
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: d50323bf d65f03c0 d503233f aa1f03fe (d50323bf)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, bug_handler() and kasan_handler() call die() with '0' as the
'err' value, whereas die_kernel_fault() passes the ESR_ELx value.
For consistency, this patch ensures we always pass the ESR_ELx value to
die(). As this is only called for exceptions taken from kernel mode,
there should be no user-visible change as a result of this patch.
For UNDEFINED exceptions, I've had to modify do_undefinstr() and its
callers to pass the ESR_ELx value. In all cases the ESR_ELx value had
already been read and was available.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Recently, we reworked a lot of code to consistentlt pass ESR_ELx as a
64-bit quantity. However, we missed that this can be passed into die()
and __die() as the 'err' parameter where it is truncated to a 32-bit
int.
As notify_die() already takes 'err' as a long, this patch changes die()
and __die() to also take 'err' as a long, ensuring that the full value
of ESR_ELx is retained.
At the same time, die() is updated to consistently log 'err' as a
zero-padded 64-bit quantity.
Subsequent patches will pass the ESR_ELx value to die() for a number of
exceptions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__cpu_setup() was changed to take the actual number of VA bits in x0,
however the resume path was not updated at the same time.
Load `vabits_actual` in the resume path, to ensure that the correct
number of VA bits is used.
This fixes booting v6.0-rc kernels on my Juno.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Fixes: 0aaa68532e ("arm64: mm: fix booting with 52-bit address space")
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220909124311.38489-1-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In our environment, it was found that the mitigation BHB has a great
impact on the benchmark performance. For example, in the lmbench test,
the "process fork && exit" test performance drops by 20%.
So it is necessary to have the ability to turn off the mitigation
individually through cmdline, thus avoiding having to compile the
kernel by adjusting the config.
Signed-off-by: Liu Song <liusong@linux.alibaba.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/1661514050-22263-1-git-send-email-liusong@linux.alibaba.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently arm64 supports per-CPU IRQ stack, but softirqs
are still handled in the task context.
Since any call to local_bh_enable() at any level in the task's
call stack may trigger a softirq processing run, which could
potentially cause a task stack overflow if the combined stack
footprints exceed the stack's size, let's run these softirqs
on the IRQ stack as well.
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220815124739.15948-1-zhengqi.arch@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_frame_record() has an optional callback to convert
the address space of the FP. This is necessary for the NVHE unwinder,
which tracks the stacks in the hyp VA space, but accesses the frame
records in the kernel VA space.
This is a bit unfortunate since it clutters unwind_next_frame_record(),
which will get in the way of future rework.
Instead, this patch changes the NVHE unwinder to track the stacks in the
kernel's VA space and translate to FP prior to calling
unwind_next_frame_record(). This removes the need for the translate_fp()
callback, as all unwinders consistently track stacks in the native
address space of the unwinder.
At the same time, this patch consolidates the generation of the stack
addresses behind the stackinfo_get_*() helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we call an on_accessible_stack() callback for each step of the
unwinder, requiring redundant work to be performed in the core of the
unwind loop (e.g. disabling preemption around accesses to per-cpu
variables containing stack boundaries). To prevent unwind loops which go
through a stack multiple times, we have to track the set of unwound
stacks, requiring a stack_type enum which needs to cater for all the
stacks of all possible callees. To prevent loops within a stack, we must
track the prior FP values.
This patch reworks the unwinder to minimize the work in the core of the
unwinder, and to remove the need for the stack_type enum. The set of
accessible stacks (and their boundaries) are determined at the start of
the unwind, and the current stack is tracked during the unwind, with
completed stacks removed from the set of accessible stacks. This makes
the boundary checks more accurate (e.g. detecting overlapped frame
records), and removes the need for separate tracking of the prior FP and
visited stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll want to acquire the stack boundaries
ahead-of-time, and we'll need to be able to acquire the relevant
stack_info regardless of whether we have an object the happens to be on
the stack.
This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX()
helpers, with the caller being responsible for the checking whether an
object is on a relevant stack. For the moment this is moved into the
on_accessible_stack() functions, making these slightly larger;
subsequent patches will remove the on_accessible_stack() functions and
simplify the logic.
The on_irq_stack() and on_task_stack() helpers are kept as these are
used by IRQ entry sequences and stackleak respectively. As they're only
used as predicates, the stack_info pointer parameter is removed in both
cases.
As the on_accessible_stack() functions are always passed a non-NULL info
pointer, these now update info unconditionally. When updating the type
to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as
these will not be consumed this should have no adverse affect.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For clarity and ease of maintenance, it would be helpful for all the
stack helpers to be in the same place.
Move the SDEI stack helpers into the stacktrace code where all the other
stack helpers live.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The unwind_next_common() function unwinds a single frame record. There
are other unwind steps (e.g. unwinding through trampolines) which are
handled in the regular kernel unwinder, and in future there may be other
common unwind helpers.
Clarify the purpose of unwind_next_common() by renaming it to
unwind_next_frame_record(). At the same time, add commentary, and delete
the redundant comment at the top of asm/stacktrace/common.h.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_common() takes a pointer to a stack_info which is
only ever used within unwind_next_common().
Make it a local variable and simplify callers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make it possible to use alternatives in the vDSO, so that better
implementations can be used if possible.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220830104833.34636-3-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Move it to the header so that the implementation can be shared
by the alternatives code.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220830104833.34636-2-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for automatic generation of constants update the define for
SME being implemented to the convention we are using, no functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-20-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for automatic generation of constants update the define for
BTI being implemented to the convention we are using, no functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-19-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming for fractional versions fields in ID_AA64PFR1_EL1 does not align
with that in the architecture, lacking underscores and using upper case
where the architecture uses lower case. In preparation for automatic
generation of defines bring the code in sync with the architecture, no
functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-18-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for conversion to automatic generation refresh the names
given to the items in the MTE feture enumeration to reflect our standard
pattern for naming, corresponding to the architecture feature names they
reflect. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-17-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for conversion to automatic generation refresh the names
given to the items in the SSBS feature enumeration to reflect our standard
pattern for naming, corresponding to the architecture feature names they
reflect. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-16-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The architecture refers to the register field identifying advanced SIMD as
AdvSIMD but the kernel refers to it as ASIMD. Use the architecture's
naming. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-15-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We generally refer to the baseline feature implemented as _IMP so in
preparation for automatic generation of register defines update those for
ID_AA64PFR0_EL1 to reflect this.
In the case of ASIMD we don't actually use the define so just remove it.
No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-14-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel refers to ID_AA64MMFR2_EL1.CnP as CNP. In preparation for
automatic generation of defines for the system registers bring the naming
used by the kernel in sync with that of DDI0487H.a. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-13-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel refers to ID_AA64MMFR2_EL1.VARange as LVA. In preparation for
automatic generation of defines for the system registers bring the naming
used by the kernel in sync with that of DDI0487H.a. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-12-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for converting the ID_AA64MMFR1_EL1 system register
defines to automatic generation, rename them to follow the conventions
used by other automatically generated registers:
* Add _EL1 in the register name.
* Rename fields to match the names in the ARM ARM:
* LOR -> LO
* HPD -> HPDS
* VHE -> VH
* HADBS -> HAFDBS
* SPECSEI -> SpecSEI
* VMIDBITS -> VMIDBits
There should be no functional change as a result of this patch.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-11-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.ASIDBits as ASID. Add BITS
into the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-10-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.BigEnd as BIGENDEL. Remove the
EL from the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-9-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our standard is to include the _EL1 in the constant names for registers but
we did not do that for ID_AA64PFR1_EL1, update to do so in preparation for
conversion to automatic generation. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64PFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-7-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-6-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If allocating memory for the target SVE state in za_set() fails we clear
TIF_SME for the ptracing task which is obviously not correct. If we are
here we know that the target task already had neither TIF_SVE nor
TIF_SME set since we only need to allocate if either the target had not
used either SVE or SME and had no need to allocate state before or we
just changed the vector length with vec_set_vector_length() which clears
TIF_ for us on allocation failure so just remove the clear entirely.
Reported-by: Wang ShaoBo <bobo.shaobowang@huawei.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220902132802.39682-1-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
SVE has a separate identification register indicating support for BFloat16
operations. Add a hwcap identifying support for EBF16 in this register,
mirroring what we did for the non-SVE case.
While there is currently an architectural requirement for BF16 support to
be the same in SVE and non-SVE contexts there are separate identification
registers this separate hwcap helps avoid issues if that requirement were
to be relaxed in the future, we have already chosen to have a separate
capability for base BF16 support.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220829154815.832347-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The 32-bit ARM kernel implements fixups on behalf of user space when
using LDM/STM or LDRD/STRD instructions on addresses that are not 32-bit
aligned. This is not something that is supported by the architecture,
but was done anyway to increase compatibility with user space software,
which mostly targeted x86 at the time and did not care about aligned
accesses.
This feature is one of the remaining impediments to being able to switch
to 64-bit kernels on 64-bit capable hardware running 32-bit user space,
so let's implement it for the arm64 compat layer as well.
Note that the intent is to implement the exact same handling of
misaligned multi-word loads and stores as the 32-bit kernel does,
including what appears to be missing support for user space programs
that rely on SETEND to switch to a different byte order and back. Also,
like the 32-bit ARM version, we rely on the faulting address reported by
the CPU to infer the memory address, instead of decoding the instruction
fully to obtain this information.
This implementation is taken from the 32-bit ARM tree, with all pieces
removed that deal with instructions other than LDRD/STRD and LDM/STM, or
that deal with alignment exceptions taken in kernel mode.
Cc: debian-arm@lists.debian.org
Cc: Vagrant Cascadian <vagrant@debian.org>
Cc: Riku Voipio <riku.voipio@iki.fi>
Cc: Steve McIntyre <steve@einval.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20220701135322.3025321-1-ardb@kernel.org
[catalin.marinas@arm.com: change the option to 'default n']
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Even non-KASLR kernels can be built as relocatable, to work around
broken bootloaders that violate the rules regarding physical placement
of the kernel image - in this case, the physical offset modulo 2 MiB is
used as the KASLR offset, and all absolute symbol references are fixed
up in the usual way. This workaround is enabled by default.
CONFIG_RELOCATABLE can also be disabled entirely, in which case the
relocation code and the code that captures the offset are omitted from
the build. However, since commit aacd149b62 ("arm64: head: avoid
relocating the kernel twice for KASLR"), this code got out of sync, and
we still add the offset to the kernel virtual address before populating
the page tables even though we never capture it. This means we add a
bogus value instead, breaking the boot entirely.
Fixes: aacd149b62 ("arm64: head: avoid relocating the kernel twice for KASLR")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Link: https://lore.kernel.org/r/20220827070904.2216989-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Like crashk_res, Calling crash_exclude_mem_range function with
crashk_low_res area would need extra crash_mem range too.
Add one more extra cmem slot in case of crashk_low_res is used.
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Fixes: 944a45abfa ("arm64: kdump: Reimplement crashkernel=X")
Cc: <stable@vger.kernel.org> # 5.19.x
Acked-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220831103913.12661-1-ppbuk5246@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently as part of handling a SME access trap we flush the SVE register
state. This is not needed and would corrupt register state if the task has
access to the SVE registers already. For non-streaming mode accesses the
required flushing will be done in the SVE access trap. For streaming
mode SVE register accesses the architecture guarantees that the register
state will be flushed when streaming mode is entered or exited so there is
no need for us to do so. Simply remove the register initialisation.
Fixes: 8bd7f91c03 ("arm64/sme: Implement traps and syscall handling for SME")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-5-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently when taking a SME access trap we allocate storage for the SVE
register state in order to be able to handle storage of streaming mode SVE.
Due to the original usage in a purely SVE context the SVE register state
allocation this also flushes the register state for SVE if storage was
already allocated but in the SME context this is not desirable. For a SME
access trap to be taken the task must not be in streaming mode so either
there already is SVE register state present for regular SVE mode which would
be corrupted or the task does not have TIF_SVE and the flush is redundant.
Fix this by adding a flag to sve_alloc() indicating if we are in a SVE
context and need to flush the state. Freshly allocated storage is always
zeroed either way.
Fixes: 8bd7f91c03 ("arm64/sme: Implement traps and syscall handling for SME")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
When handling a signal delivered to a context with streaming mode enabled
we will disable streaming mode for the signal handler, when doing so we
should also flush the saved FPSIMD register state like exiting streaming
mode in the hardware would do so that if that state is reloaded we get the
same behaviour. Without this we will reload whatever the last FPSIMD state
that was saved for the task was.
Fixes: 40a8e87bb3 ("arm64/sme: Disable ZA and streaming mode when handling signals")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The signal code has a limit of 64K on the size of a stack frame that it
will generate, if this limit is exceeded then a process will be killed if
it receives a signal. Unfortunately with the advent of SME this limit is
too small - the maximum possible size of the ZA register alone is 64K. This
is not an issue for practical systems at present but is easily seen using
virtual platforms.
Raise the limit to 256K, this is substantially more than could be used by
any current architecture extension.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-2-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Though acpi_find_last_cache_level() always returned signed value and the
document states it will return any errors caused by lack of a PPTT table,
it never returned negative values before.
Commit 0c80f9e165 ("ACPI: PPTT: Leave the table mapped for the runtime usage")
however changed it by returning -ENOENT if no PPTT was found. The value
returned from acpi_find_last_cache_level() is then assigned to unsigned
fw_level.
It will result in the number of cache leaves calculated incorrectly as
a huge value which will then cause the following warning from __alloc_pages
as the order would be great than MAX_ORDER because of incorrect and huge
cache leaves value.
| WARNING: CPU: 0 PID: 1 at mm/page_alloc.c:5407 __alloc_pages+0x74/0x314
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-10393-g7c2a8d3ac4c0 #73
| pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : __alloc_pages+0x74/0x314
| lr : alloc_pages+0xe8/0x318
| Call trace:
| __alloc_pages+0x74/0x314
| alloc_pages+0xe8/0x318
| kmalloc_order_trace+0x68/0x1dc
| __kmalloc+0x240/0x338
| detect_cache_attributes+0xe0/0x56c
| update_siblings_masks+0x38/0x284
| store_cpu_topology+0x78/0x84
| smp_prepare_cpus+0x48/0x134
| kernel_init_freeable+0xc4/0x14c
| kernel_init+0x2c/0x1b4
| ret_from_fork+0x10/0x20
Fix the same by changing fw_level to be signed integer and return the
error from init_cache_level() early in case of error.
Reported-and-Tested-by: Bruno Goncalves <bgoncalv@redhat.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20220808084640.3165368-1-sudeep.holla@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The AMU counter AMEVCNTR01 (constant counter) should increment at the same
rate as the system counter. On affected Cortex-A510 cores, AMEVCNTR01
increments incorrectly giving a significantly higher output value. This
results in inaccurate task scheduler utilization tracking and incorrect
feedback on CPU frequency.
Work around this problem by returning 0 when reading the affected counter
in key locations that results in disabling all users of this counter from
using it either for frequency invariance or as FFH reference counter. This
effect is the same to firmware disabling affected counters.
Details on how the two features are affected by this erratum:
- AMU counters will not be used for frequency invariance for affected
CPUs and CPUs in the same cpufreq policy. AMUs can still be used for
frequency invariance for unaffected CPUs in the system. Although
unlikely, if no alternative method can be found to support frequency
invariance for affected CPUs (cpufreq based or solution based on
platform counters) frequency invariance will be disabled. Please check
the chapter on frequency invariance at
Documentation/scheduler/sched-capacity.rst for details of its effect.
- Given that FFH can be used to fetch either the core or constant counter
values, restrictions are lifted regarding any of these counters
returning a valid (!0) value. Therefore FFH is considered supported
if there is a least one CPU that support AMUs, independent of any
counters being disabled or affected by this erratum. Clarifying
comments are now added to the cpc_ffh_supported(), cpu_read_constcnt()
and cpu_read_corecnt() functions.
The above is achieved through adding a new erratum: ARM64_ERRATUM_2457168.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220819103050.24211-1-ionela.voinescu@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Commit aacd149b62 ("arm64: head: avoid relocating the kernel twice for
KASLR") adds the new file arch/arm64/kernel/pi/kaslr_early.c with a small
code part guarded by '#ifdef CONFIG_ARCH_RANDOM'.
Concurrently, commit 9592eef7c1 ("random: remove CONFIG_ARCH_RANDOM")
removes the config CONFIG_ARCH_RANDOM and turns all '#ifdef
CONFIG_ARCH_RANDOM' code parts into unconditional code parts, which is
generally safe to do.
Remove a needless ifdef guard after the ARCH_RANDOM removal.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220721100433.18286-1-lukas.bulwahn@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
Since commit 51f559d665 ("arm64: Enable repeat tlbi workaround on KRYO4XX
gold CPUs"), we failed to detect erratum 1286807 on Cortex-A76 because its
entry in arm64_repeat_tlbi_list[] was accidently corrupted by this commit.
Fix this issue by creating a separate entry for Kryo4xx Gold.
Fixes: 51f559d665 ("arm64: Enable repeat tlbi workaround on KRYO4XX gold CPUs")
Cc: Shreyas K K <quic_shrekk@quicinc.com>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220809043848.969-1-yuzenghui@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
arm64's method of defining a default cpu topology requires only minimal
changes to apply to RISC-V also. The current arm64 implementation exits
early in a uniprocessor configuration by reading MPIDR & claiming that
uniprocessor can rely on the default values.
This is appears to be a hangover from prior to '3102bc0e6ac7 ("arm64:
topology: Stop using MPIDR for topology information")', because the
current code just assigns default values for multiprocessor systems.
With the MPIDR references removed, store_cpu_topolgy() can be moved to
the common arch_topology code.
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
fatfs, autofs, squashfs, procfs, etc.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYu9BeQAKCRDdBJ7gKXxA
jp1DAP4mjCSvAwYzXklrIt+Knv3CEY5oVVdS+pWOAOGiJpldTAD9E5/0NV+VmlD9
kwS/13j38guulSlXRzDLmitbg81zAAI=
=Zfum
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc updates from Andrew Morton:
"Updates to various subsystems which I help look after. lib, ocfs2,
fatfs, autofs, squashfs, procfs, etc. A relatively small amount of
material this time"
* tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits)
scripts/gdb: ensure the absolute path is generated on initial source
MAINTAINERS: kunit: add David Gow as a maintainer of KUnit
mailmap: add linux.dev alias for Brendan Higgins
mailmap: update Kirill's email
profile: setup_profiling_timer() is moslty not implemented
ocfs2: fix a typo in a comment
ocfs2: use the bitmap API to simplify code
ocfs2: remove some useless functions
lib/mpi: fix typo 'the the' in comment
proc: add some (hopefully) insightful comments
bdi: remove enum wb_congested_state
kernel/hung_task: fix address space of proc_dohung_task_timeout_secs
lib/lzo/lzo1x_compress.c: replace ternary operator with min() and min_t()
squashfs: support reading fragments in readahead call
squashfs: implement readahead
squashfs: always build "file direct" version of page actor
Revert "squashfs: provide backing_dev_info in order to disable read-ahead"
fs/ocfs2: Fix spelling typo in comment
ia64: old_rr4 added under CONFIG_HUGETLB_PAGE
proc: fix test for "vsyscall=xonly" boot option
...
* Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
* Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
* Disagregation of the vcpu flags in separate sets to better track
their use model.
* A fix for the GICv2-on-v3 selftest
* A small set of cosmetic fixes
RISC-V:
* Track ISA extensions used by Guest using bitmap
* Added system instruction emulation framework
* Added CSR emulation framework
* Added gfp_custom flag in struct kvm_mmu_memory_cache
* Added G-stage ioremap() and iounmap() functions
* Added support for Svpbmt inside Guest
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
x86:
* Permit guests to ignore single-bit ECC errors
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Use try_cmpxchg64 instead of cmpxchg64
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* Allow NX huge page mitigation to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
* Miscellaneous cleanups:
** MCE MSR emulation
** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
** PIO emulation
** Reorganize rmap API, mostly around rmap destruction
** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
** new selftests API for CPUID
Generic:
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
=PM8o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
Here is the set of driver core and kernfs changes for 6.0-rc1.
"biggest" thing in here is some scalability improvements for kernfs for
large systems. Other than that, included in here are:
- arch topology and cache info changes that have been reviewed
and discussed a lot.
- potential error path cleanup fixes
- deferred driver probe cleanups
- firmware loader cleanups and tweaks
- documentation updates
- other small things
All of these have been in the linux-next tree for a while with no
reported problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYuqCnw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ym/JgCcCnaycJY00ZPRQm3LQCyzfJ0HgqoAn2qxGV+K
NKycLeXZSnuvIA87dycE
=/4Jk
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core / kernfs updates from Greg KH:
"Here is the set of driver core and kernfs changes for 6.0-rc1.
The "biggest" thing in here is some scalability improvements for
kernfs for large systems. Other than that, included in here are:
- arch topology and cache info changes that have been reviewed and
discussed a lot.
- potential error path cleanup fixes
- deferred driver probe cleanups
- firmware loader cleanups and tweaks
- documentation updates
- other small things
All of these have been in the linux-next tree for a while with no
reported problems"
* tag 'driver-core-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (63 commits)
docs: embargoed-hardware-issues: fix invalid AMD contact email
firmware_loader: Replace kmap() with kmap_local_page()
sysfs docs: ABI: Fix typo in comment
kobject: fix Kconfig.debug "its" grammar
kernfs: Fix typo 'the the' in comment
docs: driver-api: firmware: add driver firmware guidelines. (v3)
arch_topology: Fix cache attributes detection in the CPU hotplug path
ACPI: PPTT: Leave the table mapped for the runtime usage
cacheinfo: Use atomic allocation for percpu cache attributes
drivers/base: fix userspace break from using bin_attributes for cpumap and cpulist
MAINTAINERS: Change mentions of mpm to olivia
docs: ABI: sysfs-devices-soc: Update Lee Jones' email address
docs: ABI: sysfs-class-pwm: Update Lee Jones' email address
Documentation/process: Add embargoed HW contact for LLVM
Revert "kernfs: Change kernfs_notify_list to llist."
ACPI: Remove the unused find_acpi_cpu_cache_topology()
arch_topology: Warn that topology for nested clusters is not supported
arch_topology: Add support for parsing sockets in /cpu-map
arch_topology: Set cluster identifier in each core/thread from /cpu-map
arch_topology: Limit span of cpu_clustergroup_mask()
...
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmLnDOwACgkQSfxwEqXe
A65Fiw//Z0YaPejSslQIGitQ1b0XzdWBhyJArYDieaaiQRXMqlaSKlIUqHz38xb7
+FykUY51/SJLjHV2riPxq1OK3/MPmk6VlTd0HHihcHVmg77oZcFcv2tPnDpZoqND
TsBOujLbXKwxP8tNFedRY/4+K7w+ue9BTfDjuH7aCtz7uWd+4cNJmPg3x9FCfkMA
+hbcRluwE9W3Pg4OCKwv+qxL0JF3qQtNKEOp1wpnjGAZZW/I9gFNgFBEkykvcAsj
TkIRDc3agPFj6QgDeRIgLdnf9KCsLubKAg5oJneeCvQztJJUCSkn8nQXxpx+4sLo
GsRgvCdfL/GyJqfSAzQJVYDHKtKMkJiCiWCC/oOALR8dzHJfSlULDAjbY1m/DAr9
at+vi4678Or7TNx2ZSaUlCXXKZ+UT7yWMlQWax9JuxGk1hGYP5/eT1AH5SGjqUwF
w1q8oyzxt1vUcnOzEddFXPFirnqqhAk4dQFtu83+xKM4ZssMVyeB4NZdEhAdW0ng
MX+RjrVj4l5gWWuoS0Cx3LUxDCgV6WT0dN+Vl9axAZkoJJbcXLEmXwQ6NbzTLPWg
1/MT7qFTxNcTCeAArMdZvvFbeh7pOBXO42pafrK/7vDRnTMUIw9tqXNLQUfvdFQp
F5flPgiVRHDU2vSzKIFtnPTyXU0RBBGvNb4n0ss2ehH2DSsCxYE=
=Zy3d
-----END PGP SIGNATURE-----
Merge tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"Though there's been a decent amount of RNG-related development during
this last cycle, not all of it is coming through this tree, as this
cycle saw a shift toward tackling early boot time seeding issues,
which took place in other trees as well.
Here's a summary of the various patches:
- The CONFIG_ARCH_RANDOM .config option and the "nordrand" boot
option have been removed, as they overlapped with the more widely
supported and more sensible options, CONFIG_RANDOM_TRUST_CPU and
"random.trust_cpu". This change allowed simplifying a bit of arch
code.
- x86's RDRAND boot time test has been made a bit more robust, with
RDRAND disabled if it's clearly producing bogus results. This would
be a tip.git commit, technically, but I took it through random.git
to avoid a large merge conflict.
- The RNG has long since mixed in a timestamp very early in boot, on
the premise that a computer that does the same things, but does so
starting at different points in wall time, could be made to still
produce a different RNG state. Unfortunately, the clock isn't set
early in boot on all systems, so now we mix in that timestamp when
the time is actually set.
- User Mode Linux now uses the host OS's getrandom() syscall to
generate a bootloader RNG seed and later on treats getrandom() as
the platform's RDRAND-like faculty.
- The arch_get_random_{seed_,}_long() family of functions is now
arch_get_random_{seed_,}_longs(), which enables certain platforms,
such as s390, to exploit considerable performance advantages from
requesting multiple CPU random numbers at once, while at the same
time compiling down to the same code as before on platforms like
x86.
- A small cleanup changing a cmpxchg() into a try_cmpxchg(), from
Uros.
- A comment spelling fix"
More info about other random number changes that come in through various
architecture trees in the full commentary in the pull request:
https://lore.kernel.org/all/20220731232428.2219258-1-Jason@zx2c4.com/
* tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
random: correct spelling of "overwrites"
random: handle archrandom with multiple longs
um: seed rng using host OS rng
random: use try_cmpxchg in _credit_init_bits
timekeeping: contribute wall clock to rng on time change
x86/rdrand: Remove "nordrand" flag in favor of "random.trust_cpu"
random: remove CONFIG_ARCH_RANDOM
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQQdXVVFGN5XqKr1Hj7LwZzRsCrn5QUCYulqTBQcem9oYXJAbGlu
dXguaWJtLmNvbQAKCRDLwZzRsCrn5SBBAP9nbAW1SPa/hDqbrclHdDrS59VkSVwv
6ZO2yAmxJAptHwD+JzyJpJiZsqVN/Tu85V1PqeAt9c8az8f3CfDBp2+w7AA=
=Ad+c
-----END PGP SIGNATURE-----
Merge tag 'integrity-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity
Pull integrity updates from Mimi Zohar:
"Aside from the one EVM cleanup patch, all the other changes are kexec
related.
On different architectures different keyrings are used to verify the
kexec'ed kernel image signature. Here are a number of preparatory
cleanup patches and the patches themselves for making the keyrings -
builtin_trusted_keyring, .machine, .secondary_trusted_keyring, and
.platform - consistent across the different architectures"
* tag 'integrity-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
kexec, KEYS, s390: Make use of built-in and secondary keyring for signature verification
arm64: kexec_file: use more system keyrings to verify kernel image signature
kexec, KEYS: make the code in bzImage64_verify_sig generic
kexec: clean up arch_kexec_kernel_verify_sig
kexec: drop weak attribute from functions
kexec_file: drop weak attribute from functions
evm: Use IS_ENABLED to initialize .enabled
- lockdep: Fix a handful of the more complex lockdep_init_map_*() primitives
that can lose the lock_type & cause false reports. No such mishap was
observed in the wild.
- jump_label improvements: simplify the cross-arch support of
initial NOP patching by making it arch-specific code (used on MIPS only),
and remove the s390 initial NOP patching that was superfluous.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn3jERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hzeg/7BTC90XeMANhTiL23iiH7dOYZwqdFeB12
VBqdaPaGC8i+mJzVAdGyPFwCFDww6Ak6P33PcHkemuIO5+DhWis8hfw5krHEOO1k
AyVSMOZuWJ8/g6ZenjgNFozQ8C+3NqURrpdqN55d7jhMazPWbsNLLqUgvSSqo6DY
Ah2O+EKrDfGNCxT6/YaTAmUryctotxafSyFDQxv3RKPfCoIIVv9b3WApYqTOqFIu
VYTPr+aAcMsU20hPMWQI4kbQaoCxFqr3bZiZtAiS/IEunqi+PlLuWjrnCUpLwVTC
+jOCkNJHt682FPKTWelUnCnkOg9KhHRujRst5mi1+2tWAOEvKltxfe05UpsZYC3b
jhzddREMwBt3iYsRn65LxxsN4AMK/C/41zjejHjZpf+Q5kwDsc6Ag3L5VifRFURS
KRwAy9ejoVYwnL7CaVHM2zZtOk4YNxPeXmiwoMJmOufpdmD1LoYbNUbpSDf+goIZ
yPJpxFI5UN8gi8IRo3DMe4K2nqcFBC3wFn8tNSAu+44gqDwGJAJL6MsLpkLSZkk8
3QN9O11UCRTJDkURjoEWPgRRuIu9HZ4GKNhiblDy6gNM/jDE/m5OG4OYfiMhojgc
KlMhsPzypSpeApL55lvZ+AzxH8mtwuUGwm8lnIdZ2kIse1iMwapxdWXWq9wQr8eW
jLWHgyZ6rcg=
=4B89
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"This was a fairly quiet cycle for the locking subsystem:
- lockdep: Fix a handful of the more complex lockdep_init_map_*()
primitives that can lose the lock_type & cause false reports. No
such mishap was observed in the wild.
- jump_label improvements: simplify the cross-arch support of initial
NOP patching by making it arch-specific code (used on MIPS only),
and remove the s390 initial NOP patching that was superfluous"
* tag 'locking-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Fix lockdep_init_map_*() confusion
jump_label: make initial NOP patching the special case
jump_label: mips: move module NOP patching into arch code
jump_label: s390: avoid pointless initial NOP patching
The setup_profiling_timer() is mostly un-implemented by many
architectures. In many places it isn't guarded by CONFIG_PROFILE which is
needed for it to be used. Make it a weak symbol in kernel/profile.c and
remove the 'return -EINVAL' implementations from the kenrel.
There are a couple of architectures which do return 0 from the
setup_profiling_timer() function but they don't seem to do anything else
with it. To keep the /proc compatibility for now, leave these for a
future update or removal.
On ARM, this fixes the following sparse warning:
arch/arm/kernel/smp.c:793:5: warning: symbol 'setup_profiling_timer' was not declared. Should it be static?
Link: https://lkml.kernel.org/r/20220721195509.418205-1-ben-linux@fluff.org
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Having multiple versions of on_accessible_stack() (one per unwinder)
makes it very hard to reason about what is used where due to the
complexity of the various includes, the forward declarations, and
the reliance on everything being 'inline'.
Instead, move the code back where it should be. Each unwinder
implements:
- on_accessible_stack() as well as the helpers it depends on,
- unwind()/unwind_next(), as they pass on_accessible_stack as
a parameter to unwind_next_common() (which is the only common
code here)
This hardly results in any duplication, and makes it much
easier to reason about the code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-4-maz@kernel.org
Move unwind() to stacktrace/common.h, and as a result
the kernel unwind_next() to asm/stacktrace.h. This allow
reusing unwind() in the implementation of the nVHE HYP
stack unwinder, later in the series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-6-kaleshsingh@google.com
The unwinder code is made reusable so that it can be used to
unwind various types of stacks. One usecase is unwinding the
nVHE hyp stack from the host (EL1) in non-protected mode. This
means that the unwinder must be able to translate HYP stack
addresses to kernel addresses.
Add a callback (stack_trace_translate_fp_fn) to allow specifying
the translation function.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-5-kaleshsingh@google.com
Move common unwind_next logic to stacktrace/common.h. This allows
reusing the code in the implementation the nVHE hypervisor stack
unwinder, later in this series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-4-kaleshsingh@google.com
In order to reuse the arm64 stack unwinding logic for the nVHE
hypervisor stack, move the common code to a shared header
(arch/arm64/include/asm/stacktrace/common.h).
The nVHE hypervisor cannot safely link against kernel code, so we
make use of the shared header to avoid duplicated logic later in
this series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-2-kaleshsingh@google.com
The archrandom interface was originally designed for x86, which supplies
RDRAND/RDSEED for receiving random words into registers, resulting in
one function to generate an int and another to generate a long. However,
other architectures don't follow this.
On arm64, the SMCCC TRNG interface can return between one and three
longs. On s390, the CPACF TRNG interface can return arbitrary amounts,
with four longs having the same cost as one. On UML, the os_getrandom()
interface can return arbitrary amounts.
So change the api signature to take a "max_longs" parameter designating
the maximum number of longs requested, and then return the number of
longs generated.
Since callers need to check this return value and loop anyway, each arch
implementation does not bother implementing its own loop to try again to
fill the maximum number of longs. Additionally, all existing callers
pass in a constant max_longs parameter. Taken together, these two things
mean that the codegen doesn't really change much for one-word-at-a-time
platforms, while performance is greatly improved on platforms such as
s390.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Even if we are now able to tell the kernel to avoid exposing SVE/SME
from the command line, we still have a couple of places where we
unconditionally access the ZCR_EL1 (resp. SMCR_EL1) registers.
On systems with broken firmwares, this results in a crash even if
arm64.nosve (resp. arm64.nosme) was passed on the command-line.
To avoid this, only update cpuinfo_arm64::reg_{zcr,smcr} once
we have computed the sanitised version for the corresponding
feature registers (ID_AA64PFR0 for SVE, and ID_AA64PFR1 for
SME). This results in some minor refactoring.
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Peter Collingbourne <pcc@google.com>
Tested-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220720105219.1755096-1-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
* for-next/boot: (34 commits)
arm64: fix KASAN_INLINE
arm64: Add an override for ID_AA64SMFR0_EL1.FA64
arm64: Add the arm64.nosve command line option
arm64: Add the arm64.nosme command line option
arm64: Expose a __check_override primitive for oddball features
arm64: Allow the idreg override to deal with variable field width
arm64: Factor out checking of a feature against the override into a macro
arm64: Allow sticky E2H when entering EL1
arm64: Save state of HCR_EL2.E2H before switch to EL1
arm64: Rename the VHE switch to "finalise_el2"
arm64: mm: fix booting with 52-bit address space
arm64: head: remove __PHYS_OFFSET
arm64: lds: use PROVIDE instead of conditional definitions
arm64: setup: drop early FDT pointer helpers
arm64: head: avoid relocating the kernel twice for KASLR
arm64: kaslr: defer initialization to initcall where permitted
arm64: head: record CPU boot mode after enabling the MMU
arm64: head: populate kernel page tables with MMU and caches on
arm64: head: factor out TTBR1 assignment into a macro
arm64: idreg-override: use early FDT mapping in ID map
...
* for-next/cpufeature:
arm64/hwcap: Support FEAT_EBF16
arm64/cpufeature: Store elf_hwcaps as a bitmap rather than unsigned long
arm64/hwcap: Document allocation of upper bits of AT_HWCAP
arm64: trap implementation defined functionality in userspace
* for-next/stacktrace:
arm64: Copy the task argument to unwind_state
arm64: Split unwind_init()
arm64: stacktrace: use non-atomic __set_bit
arm64: kasan: do not instrument stacktrace.c
* for-next/perf:
drivers/perf: arm_spe: Fix consistency of SYS_PMSCR_EL1.CX
perf: RISC-V: Add of_node_put() when breaking out of for_each_of_cpu_node()
docs: perf: Include hns3-pmu.rst in toctree to fix 'htmldocs' WARNING
drivers/perf: hisi: add driver for HNS3 PMU
drivers/perf: hisi: Add description for HNS3 PMU driver
drivers/perf: riscv_pmu_sbi: perf format
perf/arm-cci: Use the bitmap API to allocate bitmaps
drivers/perf: riscv_pmu: Add riscv pmu pm notifier
perf: hisi: Extract hisi_pmu_init
perf/marvell_cn10k: Fix TAD PMU register offset
perf/marvell_cn10k: Remove useless license text when SPDX-License-Identifier is already used
arm64: cpufeature: Allow different PMU versions in ID_DFR0_EL1
perf/arm-cci: fix typo in comment
drivers/perf:Directly use ida_alloc()/free()
drivers/perf: Directly use ida_alloc()/free()
* for-next/mte:
arm64: kasan: Revert "arm64: mte: reset the page tag in page->flags"
mm: kasan: Skip page unpoisoning only if __GFP_SKIP_KASAN_UNPOISON
mm: kasan: Skip unpoisoning of user pages
mm: kasan: Ensure the tags are visible before the tag in page->flags
* for-next/misc:
arm64/mm: use GENMASK_ULL for TTBR_BADDR_MASK_52
arm64: numa: Don't check node against MAX_NUMNODES
arm64: mm: Remove assembly DMA cache maintenance wrappers
arm64/mm: Define defer_reserve_crashkernel()
arm64: fix oops in concurrently setting insn_emulation sysctls
arm64: Do not forget syscall when starting a new thread.
arm64: boot: add zstd support
* for-next/kpti:
arm64: correct the effect of mitigations off on kpti
arm64: entry: simplify trampoline data page
arm64: mm: install KPTI nG mappings with MMU enabled
arm64: kpti-ng: simplify page table traversal logic
Since commit:
a004393f45 ("arm64: idreg-override: use early FDT mapping in ID map")
Kernels built with KASAN_INLINE=y die early in boot before producing any
console output. This is because the accesses made to the FDT (e.g. in
generic string processing functions) are instrumented with KASAN, and
with KASAN_INLINE=y any access to an address in TTBR0 results in a bogus
shadow VA, resulting in a data abort.
This patch fixes this by reverting commits:
7559d9f975 ("arm64: setup: drop early FDT pointer helpers")
bd0c3fa21878b6d0 ("arm64: idreg-override: use early FDT mapping in ID map")
... and using the TTBR1 fixmap mapping of the FDT.
Note that due to a later commit:
b65e411d6c ("arm64: Save state of HCR_EL2.E2H before switch to EL1")
... which altered the prototype of init_feature_override() (and
invocation from head.S), commit bd0c3fa21878b6d0 does not revert
cleanly, and I've fixed that up manually.
Fixes: a004393f45 ("arm64: idreg-override: use early FDT mapping in ID map")
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220713140949.45440-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The v9.2 feature FEAT_EBF16 provides support for an extended BFloat16 mode.
Allow userspace to discover system support for this feature by adding a
hwcap for it.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220707103632.12745-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
When we added support for AT_HWCAP2 we took advantage of the fact that we
have limited hwcaps to the low 32 bits and stored it along with AT_HWCAP
in a single unsigned integer. Thanks to the ever expanding capabilities of
the architecture we have now allocated all 64 of the bits in an unsigned
long so in preparation for adding more hwcaps convert elf_hwcap to be a
bitmap instead, with 64 bits allocated to each AT_HWCAP.
There should be no functional change from this patch.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220707103632.12745-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A57 and Cortex-A72 have an erratum where an interrupt that
occurs between a pair of AES instructions in aarch32 mode may corrupt
the ELR. The task will subsequently produce the wrong AES result.
The AES instructions are part of the cryptographic extensions, which are
optional. User-space software will detect the support for these
instructions from the hwcaps. If the platform doesn't support these
instructions a software implementation should be used.
Remove the hwcap bits on affected parts to indicate user-space should
not use the AES instructions.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220714161523.279570-3-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
When the NUMA nodes are sorted by checking ACPI SRAT (GICC AFFINITY)
sub-table, it's impossible for acpi_map_pxm_to_node() to return
any value, which is greater than or equal to MAX_NUMNODES. Lets drop
the unnecessary check in acpi_numa_gicc_affinity_init().
No functional change intended.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20220718064232.3464373-1-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
When RDRAND was introduced, there was much discussion on whether it
should be trusted and how the kernel should handle that. Initially, two
mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and
"nordrand", a boot-time switch.
Later the thinking evolved. With a properly designed RNG, using RDRAND
values alone won't harm anything, even if the outputs are malicious.
Rather, the issue is whether those values are being *trusted* to be good
or not. And so a new set of options were introduced as the real
ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu".
With these options, RDRAND is used, but it's not always credited. So in
the worst case, it does nothing, and in the best case, maybe it helps.
Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the
center and became something certain platforms force-select.
The old options don't really help with much, and it's a bit odd to have
special handling for these instructions when the kernel can deal fine
with the existence or untrusted existence or broken existence or
non-existence of that CPU capability.
Simplify the situation by removing CONFIG_ARCH_RANDOM and using the
ordinary asm-generic fallback pattern instead, keeping the two options
that are actually used. For now it leaves "nordrand" for now, as the
removal of that will take a different route.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Currently, when loading a kernel image via the kexec_file_load() system
call, arm64 can only use the .builtin_trusted_keys keyring to verify
a signature whereas x86 can use three more keyrings i.e.
.secondary_trusted_keys, .machine and .platform keyrings. For example,
one resulting problem is kexec'ing a kernel image would be rejected
with the error "Lockdown: kexec: kexec of unsigned images is restricted;
see man kernel_lockdown.7".
This patch set enables arm64 to make use of the same keyrings as x86 to
verify the signature kexec'ed kernel image.
Fixes: 732b7b93d8 ("arm64: kexec_file: add kernel signature verification support")
Cc: stable@vger.kernel.org # 105e10e2cf1c: kexec_file: drop weak attribute from functions
Cc: stable@vger.kernel.org # 34d5960af253: kexec: clean up arch_kexec_kernel_verify_sig
Cc: stable@vger.kernel.org # 83b7bb2d49ae: kexec, KEYS: make the code in bzImage64_verify_sig generic
Acked-by: Baoquan He <bhe@redhat.com>
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Co-developed-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
This reverts commit e5b8d92189.
Pages mapped in user-space with PROT_MTE have the allocation tags either
zeroed or copied/restored to some user values. In order for the kernel
to access such pages via page_address(), resetting the tag in
page->flags was necessary. This tag resetting was deferred to
set_pte_at() -> mte_sync_page_tags() but it can race with another CPU
reading the flags (via page_to_virt()):
P0 (mte_sync_page_tags): P1 (memcpy from virt_to_page):
Rflags!=0xff
Wflags=0xff
DMB (doesn't help)
Wtags=0
Rtags=0 // fault
Since now the post_alloc_hook() function resets the page->flags tag when
unpoisoning is skipped for user pages (including the __GFP_ZEROTAGS
case), revert the arm64 commit calling page_kasan_tag_reset().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Peter Collingbourne <pcc@google.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-5-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Prepare with moving the NMI extended quiescent states
entrypoints to context tracking. For now those are dumb redirection to
existing RCU calls.
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Prepare with moving the IRQ extended quiescent states
entrypoints to context tracking. For now those are dumb redirection to
existing RCU calls.
[ paulmck: Apply Stephen Rothwell feedback from -next. ]
[ paulmck: Apply Nathan Chancellor feedback. ]
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Cortex-A510 is affected by an erratum where in rare circumstances the
CPUs may not handle a race between a break-before-make sequence on one
CPU, and another CPU accessing the same page. This could allow a store
to a page that has been unmapped.
Work around this by adding the affected CPUs to the list that needs
TLB sequences to be done twice.
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220704155732.21216-1-james.morse@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-17-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR1_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-16-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The various defines for bitfields in ID_AA64ZFR0_EL1 do not follow our
conventions for register field names, they omit the _EL1, they don't use
specific defines for enumeration values and they don't follow the naming
in the architecture in some cases. In preparation for automatic generation
bring them into line with convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-14-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>