72 Commits

Author SHA1 Message Date
David Howells
26cb02aa6d rxrpc: Fix warning by splitting rxrpc_send_call_packet()
Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation.  This simplifies the code a bit and
fixes the following warning:

In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2016-10-06 08:11:49 +01:00
David Howells
df0adc788a rxrpc: Keep the call timeouts as ktimes rather than jiffies
Keep that call timeouts as ktimes rather than jiffies so that they can be
expressed as functions of RTT.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30 14:40:11 +01:00
David Howells
a1767077b0 rxrpc: Make Tx loss-injection go through normal return and adjust tracing
In rxrpc_send_data_packet() make the loss-injection path return through the
same code as the transmission path so that the RTT determination is
initiated and any future timer shuffling will be done, despite the packet
having been binned.

Whilst we're at it:

 (1) Add to the tx_data tracepoint an indication of whether or not we're
     retransmitting a data packet.

 (2) When we're deciding whether or not to request an ACK, rather than
     checking if we're in fast-retransmit mode check instead if we're
     retransmitting.

 (3) Don't invoke the lose_skb tracepoint when losing a Tx packet as we're
     not altering the sk_buff refcount nor are we just seeing it after
     getting it off the Tx list.

 (4) The rxrpc_skb_tx_lost note is then no longer used so remove it.

 (5) rxrpc_lose_skb() no longer needs to deal with rxrpc_skb_tx_lost.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-29 22:37:15 +01:00
David Howells
57494343cb rxrpc: Implement slow-start
Implement RxRPC slow-start, which is similar to RFC 5681 for TCP.  A
tracepoint is added to log the state of the congestion management algorithm
and the decisions it makes.

Notes:

 (1) Since we send fixed-size DATA packets (apart from the final packet in
     each phase), counters and calculations are in terms of packets rather
     than bytes.

 (2) The ACK packet carries the equivalent of TCP SACK.

 (3) The FLIGHT_SIZE calculation in RFC 5681 doesn't seem particularly
     suited to SACK of a small number of packets.  It seems that, almost
     inevitably, by the time three 'duplicate' ACKs have been seen, we have
     narrowed the loss down to one or two missing packets, and the
     FLIGHT_SIZE calculation ends up as 2.

 (4) In rxrpc_resend(), if there was no data that apparently needed
     retransmission, we transmit a PING ACK to ask the peer to tell us what
     its Rx window state is.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 23:49:46 +01:00
David Howells
fc7ab6d29a rxrpc: Add a tracepoint for the call timer
Add a tracepoint to log call timer initiation, setting and expiry.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 15:49:19 +01:00
David Howells
70790dbe3f rxrpc: Pass the last Tx packet marker in the annotation buffer
When the last packet of data to be transmitted on a call is queued, tx_top
is set and then the RXRPC_CALL_TX_LAST flag is set.  Unfortunately, this
leaves a race in the ACK processing side of things because the flag affects
the interpretation of tx_top and also allows us to start receiving reply
data before we've finished transmitting.

To fix this, make the following changes:

 (1) rxrpc_queue_packet() now sets a marker in the annotation buffer
     instead of setting the RXRPC_CALL_TX_LAST flag.

 (2) rxrpc_rotate_tx_window() detects the marker and sets the flag in the
     same context as the routines that use it.

 (3) rxrpc_end_tx_phase() is simplified to just shift the call state.
     The Tx window must have been rotated before calling to discard the
     last packet.

 (4) rxrpc_receiving_reply() is added to handle the arrival of the first
     DATA packet of a reply to a client call (which is an implicit ACK of
     the Tx phase).

 (5) The last part of rxrpc_input_ack() is reordered to perform Tx
     rotation, then soft-ACK application and then to end the phase if we've
     rotated the last packet.  In the event of a terminal ACK, the soft-ACK
     application will be skipped as nAcks should be 0.

 (6) rxrpc_input_ackall() now has to rotate as well as ending the phase.

In addition:

 (7) Alter the transmit tracepoint to log the rotation of the last packet.

 (8) Remove the no-longer relevant queue_reqack tracepoint note.  The
     ACK-REQUESTED packet header flag is now set as needed when we actually
     transmit the packet and may vary by retransmission.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 15:49:19 +01:00
David Howells
dfc3da4404 rxrpc: Need to start the resend timer on initial transmission
When a DATA packet has its initial transmission, we may need to start or
adjust the resend timer.  Without this we end up relying on being sent a
NACK to initiate the resend.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 14:05:12 +01:00
David Howells
b24d2891cf rxrpc: Preset timestamp on Tx sk_buffs
Set the timestamp on sk_buffs holding packets to be transmitted before
queueing them because the moment the packet is on the queue it can be seen
by the retransmission algorithm - which may see a completely random
timestamp.

If the retransmission algorithm sees such a timestamp, it may retransmit
the packet and, in future, tell the congestion management algorithm that
the retransmit timer expired.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-23 13:17:52 +01:00
David Howells
0d4b103c00 rxrpc: Reduce the number of ACK-Requests sent
Reduce the number of ACK-Requests we set on DATA packets that we're sending
to reduce network traffic.  We set the flag on odd-numbered DATA packets to
start off the RTT cache until we have at least three entries in it and then
probe once per second thereafter to keep it topped up.

This could be made tunable in future.

Note that from this point, the RXRPC_REQUEST_ACK flag is set on DATA
packets as we transmit them and not stored statically in the sk_buff.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:49:20 +01:00
David Howells
50235c4b5a rxrpc: Obtain RTT data by requesting ACKs on DATA packets
In addition to sending a PING ACK to gain RTT data, we can set the
RXRPC_REQUEST_ACK flag on a DATA packet and get a REQUESTED-ACK ACK.  The
ACK packet contains the serial number of the packet it is in response to,
so we can look through the Tx buffer for a matching DATA packet.

This requires that the data packets be stamped with the time of
transmission as a ktime rather than having the resend_at time in jiffies.

This further requires the resend code to do the resend determination in
ktimes and convert to jiffies to set the timer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:21:24 +01:00
David Howells
7aa51da7c8 rxrpc: Expedite ping response transmission
Expedite the transmission of a response to a PING ACK by sending it from
sendmsg if one is pending.  We're most likely to see a PING ACK during the
client call Tx phase as the other side may use it to determine a number of
parameters, such as the client's receive window size, the RTT and whether
the client is doing slow start (similar to RFC5681).

If we don't expedite it, it's left to the background processing thread to
transmit.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 08:21:24 +01:00
David Howells
5a924b8951 rxrpc: Don't store the rxrpc header in the Tx queue sk_buffs
Don't store the rxrpc protocol header in sk_buffs on the transmit queue,
but rather generate it on the fly and pass it to kernel_sendmsg() as a
separate iov.  This reduces the amount of storage required.

Note that the security header is still stored in the sk_buff as it may get
encrypted along with the data (and doesn't change with each transmission).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-22 01:23:50 +01:00
David Howells
71f3ca408f rxrpc: Improve skb tracing
Improve sk_buff tracing within AF_RXRPC by the following means:

 (1) Use an enum to note the event type rather than plain integers and use
     an array of event names rather than a big multi ?: list.

 (2) Distinguish Rx from Tx packets and account them separately.  This
     requires the call phase to be tracked so that we know what we might
     find in rxtx_buffer[].

 (3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the
     event type.

 (4) A pair of 'rotate' events are added to indicate packets that are about
     to be rotated out of the Rx and Tx windows.

 (5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for
     packet loss injection recording.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:04 +01:00
David Howells
a124fe3ee5 rxrpc: Add a tracepoint to follow the life of a packet in the Tx buffer
Add a tracepoint to follow the insertion of a packet into the transmit
buffer, its transmission and its rotation out of the buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 11:24:03 +01:00
David Howells
182f505624 rxrpc: Fix the basic transmit DATA packet content size at 1412 bytes
Fix the basic transmit DATA packet content size at 1412 bytes so that they
can be arbitrarily assembled into jumbo packets.

In the future, I'm thinking of moving to keeping a jumbo packet header at
the beginning of each packet in the Tx queue and creating the packet header
on the spot when kernel_sendmsg() is invoked.  That way, jumbo packets can
be assembled on the spur of the moment for (re-)transmission.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17 10:54:32 +01:00
David Howells
248f219cb8 rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:

 (1) Parsing of received ACK and ABORT packets and the distribution and the
     filing of DATA packets happens entirely within the data_ready context
     called from the UDP socket.  This allows us to process and discard ACK
     and ABORT packets much more quickly (they're no longer stashed on a
     queue for a background thread to process).

 (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim().  We instead
     keep track of the offset and length of the content of each packet in
     the sk_buff metadata.  This means we don't do any allocation in the
     receive path.

 (3) Jumbo DATA packet parsing is now done in data_ready context.  Rather
     than cloning the packet once for each subpacket and pulling/trimming
     it, we file the packet multiple times with an annotation for each
     indicating which subpacket is there.  From that we can directly
     calculate the offset and length.

 (4) A call's receive queue can be accessed without taking locks (memory
     barriers do have to be used, though).

 (5) Incoming calls are set up from preallocated resources and immediately
     made live.  They can than have packets queued upon them and ACKs
     generated.  If insufficient resources exist, DATA packet #1 is given a
     BUSY reply and other DATA packets are discarded).

 (6) sk_buffs no longer take a ref on their parent call.

To make this work, the following changes are made:

 (1) Each call's receive buffer is now a circular buffer of sk_buff
     pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
     between the call and the socket.  This permits each sk_buff to be in
     the buffer multiple times.  The receive buffer is reused for the
     transmit buffer.

 (2) A circular buffer of annotations (rxtx_annotations) is kept parallel
     to the data buffer.  Transmission phase annotations indicate whether a
     buffered packet has been ACK'd or not and whether it needs
     retransmission.

     Receive phase annotations indicate whether a slot holds a whole packet
     or a jumbo subpacket and, if the latter, which subpacket.  They also
     note whether the packet has been decrypted in place.

 (3) DATA packet window tracking is much simplified.  Each phase has just
     two numbers representing the window (rx_hard_ack/rx_top and
     tx_hard_ack/tx_top).

     The hard_ack number is the sequence number before base of the window,
     representing the last packet the other side says it has consumed.
     hard_ack starts from 0 and the first packet is sequence number 1.

     The top number is the sequence number of the highest-numbered packet
     residing in the buffer.  Packets between hard_ack+1 and top are
     soft-ACK'd to indicate they've been received, but not yet consumed.

     Four macros, before(), before_eq(), after() and after_eq() are added
     to compare sequence numbers within the window.  This allows for the
     top of the window to wrap when the hard-ack sequence number gets close
     to the limit.

     Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
     to indicate when rx_top and tx_top point at the packets with the
     LAST_PACKET bit set, indicating the end of the phase.

 (4) Calls are queued on the socket 'receive queue' rather than packets.
     This means that we don't need have to invent dummy packets to queue to
     indicate abnormal/terminal states and we don't have to keep metadata
     packets (such as ABORTs) around

 (5) The offset and length of a (sub)packet's content are now passed to
     the verify_packet security op.  This is currently expected to decrypt
     the packet in place and validate it.

     However, there's now nowhere to store the revised offset and length of
     the actual data within the decrypted blob (there may be a header and
     padding to skip) because an sk_buff may represent multiple packets, so
     a locate_data security op is added to retrieve these details from the
     sk_buff content when needed.

 (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
     individually secured and needs to be individually decrypted.  The code
     to do this is broken out into rxrpc_recvmsg_data() and shared with the
     kernel API.  It now iterates over the call's receive buffer rather
     than walking the socket receive queue.

Additional changes:

 (1) The timers are condensed to a single timer that is set for the soonest
     of three timeouts (delayed ACK generation, DATA retransmission and
     call lifespan).

 (2) Transmission of ACK and ABORT packets is effected immediately from
     process-context socket ops/kernel API calls that cause them instead of
     them being punted off to a background work item.  The data_ready
     handler still has to defer to the background, though.

 (3) A shutdown op is added to the AF_RXRPC socket so that the AFS
     filesystem can shut down the socket and flush its own work items
     before closing the socket to deal with any in-progress service calls.

Future additional changes that will need to be considered:

 (1) Make sure that a call doesn't hog the front of the queue by receiving
     data from the network as fast as userspace is consuming it to the
     exclusion of other calls.

 (2) Transmit delayed ACKs from within recvmsg() when we've consumed
     sufficiently more packets to avoid the background work item needing to
     run.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
David Howells
5a42976d4f rxrpc: Add tracepoint for working out where aborts happen
Add a tracepoint for working out where local aborts happen.  Each
tracepoint call is labelled with a 3-letter code so that they can be
distinguished - and the DATA sequence number is added too where available.

rxrpc_kernel_abort_call() also takes a 3-letter code so that AFS can
indicate the circumstances when it aborts a call.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 16:34:40 +01:00
David Howells
278ac0cdd5 rxrpc: Cache the security index in the rxrpc_call struct
Cache the security index in the rxrpc_call struct so that we can get at it
even when the call has been disconnected and the connection pointer
cleared.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 15:30:22 +01:00
David Howells
fff72429c2 rxrpc: Improve the call tracking tracepoint
Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:

  (1) Getting and putting refs for the socket call user ID tree.

  (2) Getting and putting refs for queueing and failing to queue the call
      processor work item.

Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.

An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-07 15:30:22 +01:00
David Howells
3dc20f090d rxrpc Move enum rxrpc_command to sendmsg.c
Move enum rxrpc_command to sendmsg.c as it's now only used in that file.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04 21:41:39 +01:00
David Howells
df423a4af1 rxrpc: Rearrange net/rxrpc/sendmsg.c
Rearrange net/rxrpc/sendmsg.c to be in a more logical order.  This makes it
easier to follow and eliminates forward declarations.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04 21:41:39 +01:00
David Howells
0b58b8a18b rxrpc: Split sendmsg from packet transmission code
Split the sendmsg code from the packet transmission code (mostly to be
found in output.c).

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-04 21:41:39 +01:00