1828 Commits

Author SHA1 Message Date
Linus Torvalds
512b7931ad Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "257 patches.

  Subsystems affected by this patch series: scripts, ocfs2, vfs, and
  mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
  gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
  pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
  memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
  vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
  cleanups, kfence, and damon)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
  mm/damon: remove return value from before_terminate callback
  mm/damon: fix a few spelling mistakes in comments and a pr_debug message
  mm/damon: simplify stop mechanism
  Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
  Docs/admin-guide/mm/damon/start: simplify the content
  Docs/admin-guide/mm/damon/start: fix a wrong link
  Docs/admin-guide/mm/damon/start: fix wrong example commands
  mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
  mm/damon: remove unnecessary variable initialization
  Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
  mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
  selftests/damon: support watermarks
  mm/damon/dbgfs: support watermarks
  mm/damon/schemes: activate schemes based on a watermarks mechanism
  tools/selftests/damon: update for regions prioritization of schemes
  mm/damon/dbgfs: support prioritization weights
  mm/damon/vaddr,paddr: support pageout prioritization
  mm/damon/schemes: prioritize regions within the quotas
  mm/damon/selftests: support schemes quotas
  mm/damon/dbgfs: support quotas of schemes
  ...
2021-11-06 14:08:17 -07:00
Mel Gorman
132b0d21d2 mm/page_alloc: remove the throttling logic from the page allocator
The page allocator stalls based on the number of pages that are waiting
for writeback to start but this should now be redundant.
shrink_inactive_list() will wake flusher threads if the LRU tail are
unqueued dirty pages so the flusher should be active.  If it fails to
make progress due to pages under writeback not being completed quickly
then it should stall on VMSCAN_THROTTLE_WRITEBACK.

Link: https://lkml.kernel.org/r/20211022144651.19914-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:40 -07:00
Mel Gorman
8cd7c588de mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5.

This series that removes all calls to congestion_wait in mm/ and deletes
wait_iff_congested.  It's not a clever implementation but
congestion_wait has been broken for a long time [1].

Even if congestion throttling worked, it was never a great idea.  While
excessive dirty/writeback pages at the tail of the LRU is one
possibility that reclaim may be slow, there is also the problem of too
many pages being isolated and reclaim failing for other reasons
(elevated references, too many pages isolated, excessive LRU contention
etc).

This series replaces the "congestion" throttling with 3 different types.

 - If there are too many dirty/writeback pages, sleep until a timeout or
   enough pages get cleaned

 - If too many pages are isolated, sleep until enough isolated pages are
   either reclaimed or put back on the LRU

 - If no progress is being made, direct reclaim tasks sleep until
   another task makes progress with acceptable efficiency.

This was initially tested with a mix of workloads that used to trigger
corner cases that no longer work.  A new test case was created called
"stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly
created XFS filesystem.  Note that it may be necessary to increase the
timeout of ssh if executing remotely as ssh itself can get throttled and
the connection may timeout.

stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4
to check the impact as the number of direct reclaimers increase.  It has
four types of worker.

 - One "anon latency" worker creates small mappings with mmap() and
   times how long it takes to fault the mapping reading it 4K at a time

 - X file writers which is fio randomly writing X files where the total
   size of the files add up to the allowed dirty_ratio. fio is allowed
   to run for a warmup period to allow some file-backed pages to
   accumulate. The duration of the warmup is based on the best-case
   linear write speed of the storage.

 - Y file readers which is fio randomly reading small files

 - Z anon memory hogs which continually map (100-dirty_ratio)% of memory

 - Total estimated WSS = (100+dirty_ration) percentage of memory

X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4

The intent is to maximise the total WSS with a mix of file and anon
memory where some anonymous memory must be swapped and there is a high
likelihood of dirty/writeback pages reaching the end of the LRU.

The test can be configured to have no background readers to stress
dirty/writeback pages.  The results below are based on having zero
readers.

The short summary of the results is that the series works and stalls
until some event occurs but the timeouts may need adjustment.

The test results are not broken down by patch as the series should be
treated as one block that replaces a broken throttling mechanism with a
working one.

Finally, three machines were tested but I'm reporting the worst set of
results.  The other two machines had much better latencies for example.

First the results of the "anon latency" latency

  stutterp
                                5.15.0-rc1             5.15.0-rc1
                                   vanilla mm-reclaimcongest-v5r4
  Amean     mmap-4      31.4003 (   0.00%)   2661.0198 (-8374.52%)
  Amean     mmap-7      38.1641 (   0.00%)    149.2891 (-291.18%)
  Amean     mmap-12     60.0981 (   0.00%)    187.8105 (-212.51%)
  Amean     mmap-21    161.2699 (   0.00%)    213.9107 ( -32.64%)
  Amean     mmap-30    174.5589 (   0.00%)    377.7548 (-116.41%)
  Amean     mmap-48   8106.8160 (   0.00%)   1070.5616 (  86.79%)
  Stddev    mmap-4      41.3455 (   0.00%)  27573.9676 (-66591.66%)
  Stddev    mmap-7      53.5556 (   0.00%)   4608.5860 (-8505.23%)
  Stddev    mmap-12    171.3897 (   0.00%)   5559.4542 (-3143.75%)
  Stddev    mmap-21   1506.6752 (   0.00%)   5746.2507 (-281.39%)
  Stddev    mmap-30    557.5806 (   0.00%)   7678.1624 (-1277.05%)
  Stddev    mmap-48  61681.5718 (   0.00%)  14507.2830 (  76.48%)
  Max-90    mmap-4      31.4243 (   0.00%)     83.1457 (-164.59%)
  Max-90    mmap-7      41.0410 (   0.00%)     41.0720 (  -0.08%)
  Max-90    mmap-12     66.5255 (   0.00%)     53.9073 (  18.97%)
  Max-90    mmap-21    146.7479 (   0.00%)    105.9540 (  27.80%)
  Max-90    mmap-30    193.9513 (   0.00%)     64.3067 (  66.84%)
  Max-90    mmap-48    277.9137 (   0.00%)    591.0594 (-112.68%)
  Max       mmap-4    1913.8009 (   0.00%) 299623.9695 (-15555.96%)
  Max       mmap-7    2423.9665 (   0.00%) 204453.1708 (-8334.65%)
  Max       mmap-12   6845.6573 (   0.00%) 221090.3366 (-3129.64%)
  Max       mmap-21  56278.6508 (   0.00%) 213877.3496 (-280.03%)
  Max       mmap-30  19716.2990 (   0.00%) 216287.6229 (-997.00%)
  Max       mmap-48 477923.9400 (   0.00%) 245414.8238 (  48.65%)

For most thread counts, the time to mmap() is unfortunately increased.
In earlier versions of the series, this was lower but a large number of
throttling events were reaching their timeout increasing the amount of
inefficient scanning of the LRU.  There is no prioritisation of reclaim
tasks making progress based on each tasks rate of page allocation versus
progress of reclaim.  The variance is also impacted for high worker
counts but in all cases, the differences in latency are not
statistically significant due to very large maximum outliers.  Max-90
shows that 90% of the stalls are comparable but the Max results show the
massive outliers which are increased to to stalling.

It is expected that this will be very machine dependant.  Due to the
test design, reclaim is difficult so allocations stall and there are
variances depending on whether THPs can be allocated or not.  The amount
of memory will affect exactly how bad the corner cases are and how often
they trigger.  The warmup period calculation is not ideal as it's based
on linear writes where as fio is randomly writing multiple files from
multiple tasks so the start state of the test is variable.  For example,
these are the latencies on a single-socket machine that had more memory

  Amean     mmap-4      42.2287 (   0.00%)     49.6838 * -17.65%*
  Amean     mmap-7     216.4326 (   0.00%)     47.4451 *  78.08%*
  Amean     mmap-12   2412.0588 (   0.00%)     51.7497 (  97.85%)
  Amean     mmap-21   5546.2548 (   0.00%)     51.8862 (  99.06%)
  Amean     mmap-30   1085.3121 (   0.00%)     72.1004 (  93.36%)

The overall system CPU usage and elapsed time is as follows

                    5.15.0-rc3  5.15.0-rc3
                       vanilla mm-reclaimcongest-v5r4
  Duration User        6989.03      983.42
  Duration System      7308.12      799.68
  Duration Elapsed     2277.67     2092.98

The patches reduce system CPU usage by 89% as the vanilla kernel is rarely
stalling.

The high-level /proc/vmstats show

                                       5.15.0-rc1     5.15.0-rc1
                                          vanilla mm-reclaimcongest-v5r2
  Ops Direct pages scanned          1056608451.00   503594991.00
  Ops Kswapd pages scanned           109795048.00   147289810.00
  Ops Kswapd pages reclaimed          63269243.00    31036005.00
  Ops Direct pages reclaimed          10803973.00     6328887.00
  Ops Kswapd efficiency %                   57.62          21.07
  Ops Kswapd velocity                    48204.98       57572.86
  Ops Direct efficiency %                    1.02           1.26
  Ops Direct velocity                   463898.83      196845.97

Kswapd scanned less pages but the detailed pattern is different.  The
vanilla kernel scans slowly over time where as the patches exhibits
burst patterns of scan activity.  Direct reclaim scanning is reduced by
52% due to stalling.

The pattern for stealing pages is also slightly different.  Both kernels
exhibit spikes but the vanilla kernel when reclaiming shows pages being
reclaimed over a period of time where as the patches tend to reclaim in
spikes.  The difference is that vanilla is not throttling and instead
scanning constantly finding some pages over time where as the patched
kernel throttles and reclaims in spikes.

  Ops Percentage direct scans               90.59          77.37

For direct reclaim, vanilla scanned 90.59% of pages where as with the
patches, 77.37% were direct reclaim due to throttling

  Ops Page writes by reclaim           2613590.00     1687131.00

Page writes from reclaim context are reduced.

  Ops Page writes anon                 2932752.00     1917048.00

And there is less swapping.

  Ops Page reclaim immediate         996248528.00   107664764.00

The number of pages encountered at the tail of the LRU tagged for
immediate reclaim but still dirty/writeback is reduced by 89%.

  Ops Slabs scanned                     164284.00      153608.00

Slab scan activity is similar.

ftrace was used to gather stall activity

  Vanilla
  -------
      1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000
      2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000
      8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000
     29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000
  82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0

The fast majority of wait_iff_congested calls do not stall at all.  What
is likely happening is that cond_resched() reschedules the task for a
short period when the BDI is not registering congestion (which it never
will in this test setup).

      1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000
      2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000
      4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000
    380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000
    778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000

congestion_wait if called always exceeds the timeout as there is no
trigger to wake it up.

Bottom line: Vanilla will throttle but it's not effective.

Patch series
------------

Kswapd throttle activity was always due to scanning pages tagged for
immediate reclaim at the tail of the LRU

      1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
      4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
      6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
     94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
    112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK

The majority of events did not stall or stalled for a short period.
Roughly 16% of stalls reached the timeout before expiry.  For direct
reclaim, the number of times stalled for each reason were

   6624 reason=VMSCAN_THROTTLE_ISOLATED
  93246 reason=VMSCAN_THROTTLE_NOPROGRESS
  96934 reason=VMSCAN_THROTTLE_WRITEBACK

The most common reason to stall was due to excessive pages tagged for
immediate reclaim at the tail of the LRU followed by a failure to make
forward.  A relatively small number were due to too many pages isolated
from the LRU by parallel threads

For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was

      9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED
     12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED
     83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED
   6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED

Most did not stall at all.  A small number reached the timeout.

For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over
the map

      1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS
      6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS
     11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS
     13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS
     13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS
     16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS
     18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS
     21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS
     23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS
     23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS
     25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS
     25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS
     26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS
     27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS
     28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS
     29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS
     30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS
     30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS
     31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS
     32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS
     33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS
     35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS
     35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS
     36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS
     36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS
     37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS
     38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS
     40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS
     43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS
     55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS
     56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS
     58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS
     59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS
     61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS
     71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS
     71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS
     79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS
     82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS
     82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS
     85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS
     85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS
     88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS
     90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS
     90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS
     94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS
    118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS
    119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS
    126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS
    146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS
    148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS
    148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS
    159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS
    178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS
    183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS
    237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS
    266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS
    313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS
    347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS
    470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS
    559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS
    964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS
   2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS
   2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS
   7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS
  22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS
  51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS

The full timeout is often hit but a large number also do not stall at
all.  The remainder slept a little allowing other reclaim tasks to make
progress.

While this timeout could be further increased, it could also negatively
impact worst-case behaviour when there is no prioritisation of what task
should make progress.

For VMSCAN_THROTTLE_WRITEBACK, the breakdown was

      1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK
      2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK
      3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK
      6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
      7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK
     12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK
     16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK
     24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK
     28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK
     30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK
     30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK
     32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK
     42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK
     77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK
     99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK
    137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK
    190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
    339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
    518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
    852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
   3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
   7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
  83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK

The majority hit the timeout in direct reclaim context although a
sizable number did not stall at all.  This is very different to kswapd
where only a tiny percentage of stalls due to writeback reached the
timeout.

Bottom line, the throttling appears to work and the wakeup events may
limit worst case stalls.  There might be some grounds for adjusting
timeouts but it's likely futile as the worst-case scenarios depend on
the workload, memory size and the speed of the storage.  A better
approach to improve the series further would be to prioritise tasks
based on their rate of allocation with the caveat that it may be very
expensive to track.

This patch (of 5):

Page reclaim throttles on wait_iff_congested under the following
conditions:

 - kswapd is encountering pages under writeback and marked for immediate
   reclaim implying that pages are cycling through the LRU faster than
   pages can be cleaned.

 - Direct reclaim will stall if all dirty pages are backed by congested
   inodes.

wait_iff_congested is almost completely broken with few exceptions.
This patch adds a new node-based workqueue and tracks the number of
throttled tasks and pages written back since throttling started.  If
enough pages belonging to the node are written back then the throttled
tasks will wake early.  If not, the throttled tasks sleeps until the
timeout expires.

[neilb@suse.de: Uninterruptible sleep and simpler wakeups]
[hdanton@sina.com: Avoid race when reclaim starts]
[vbabka@suse.cz: vmstat irq-safe api, clarifications]

Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1]
Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: NeilBrown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:40 -07:00
Liangcai Fan
bd3400ea17 mm: khugepaged: recalculate min_free_kbytes after stopping khugepaged
When initializing transparent huge pages, min_free_kbytes would be
calculated according to what khugepaged expected.

So when transparent huge pages get disabled, min_free_kbytes should be
recalculated instead of the higher value set by khugepaged.

Link: https://lkml.kernel.org/r/1633937809-16558-1-git-send-email-liangcaifan19@gmail.com
Signed-off-by: Liangcai Fan <liangcaifan19@gmail.com>
Signed-off-by: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:39 -07:00
Wang ShaoBo
59d336bdf6 mm/page_alloc: use clamp() to simplify code
This patch uses clamp() to simplify code in init_per_zone_wmark_min().

Link: https://lkml.kernel.org/r/20211021034830.1049150-1-bobo.shaobowang@huawei.com
Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Li Bin <huawei.libin@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Sebastian Andrzej Siewior
9c25cbfcb3 mm: page_alloc: use migrate_disable() in drain_local_pages_wq()
drain_local_pages_wq() disables preemption to avoid CPU migration during
CPU hotplug and can't use cpus_read_lock().

Using migrate_disable() works here, too.  The scheduler won't take the
CPU offline until the task left the migrate-disable section.  The
problem with disabled preemption here is that drain_local_pages()
acquires locks which are turned into sleeping locks on PREEMPT_RT and
can't be acquired with disabled preemption.

Use migrate_disable() in drain_local_pages_wq().

Link: https://lkml.kernel.org/r/20211015210933.viw6rjvo64qtqxn4@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Liangcai Fan
a6ea8b5b9f mm/page_alloc.c: show watermark_boost of zone in zoneinfo
min/low/high_wmark_pages(z) is defined as

  (z->_watermark[WMARK_MIN/LOW/HIGH] + z->watermark_boost)

If kswapd is frequently woken up due to the increase of
min/low/high_wmark_pages, printing watermark_boost can quickly locate
whether watermark_boost or _watermark[WMARK_MIN/LOW/HIGH] caused
min/low/high_wmark_pages to increase.

Link: https://lkml.kernel.org/r/1632472566-12246-1-git-send-email-liangcaifan19@gmail.com
Signed-off-by: Liangcai Fan <liangcaifan19@gmail.com>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Feng Tang
8ca1b5a498 mm/page_alloc: detect allocation forbidden by cpuset and bail out early
There was a report that starting an Ubuntu in docker while using cpuset
to bind it to movable nodes (a node only has movable zone, like a node
for hotplug or a Persistent Memory node in normal usage) will fail due
to memory allocation failure, and then OOM is involved and many other
innocent processes got killed.

It can be reproduced with command:

    $ docker run -it --rm --cpuset-mems 4 ubuntu:latest bash -c "grep Mems_allowed /proc/self/status"

(where node 4 is a movable node)

  runc:[2:INIT] invoked oom-killer: gfp_mask=0x500cc2(GFP_HIGHUSER|__GFP_ACCOUNT), order=0, oom_score_adj=0
  CPU: 8 PID: 8291 Comm: runc:[2:INIT] Tainted: G        W I E     5.8.2-0.g71b519a-default #1 openSUSE Tumbleweed (unreleased)
  Hardware name: Dell Inc. PowerEdge R640/0PHYDR, BIOS 2.6.4 04/09/2020
  Call Trace:
   dump_stack+0x6b/0x88
   dump_header+0x4a/0x1e2
   oom_kill_process.cold+0xb/0x10
   out_of_memory.part.0+0xaf/0x230
   out_of_memory+0x3d/0x80
   __alloc_pages_slowpath.constprop.0+0x954/0xa20
   __alloc_pages_nodemask+0x2d3/0x300
   pipe_write+0x322/0x590
   new_sync_write+0x196/0x1b0
   vfs_write+0x1c3/0x1f0
   ksys_write+0xa7/0xe0
   do_syscall_64+0x52/0xd0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

  Mem-Info:
  active_anon:392832 inactive_anon:182 isolated_anon:0
   active_file:68130 inactive_file:151527 isolated_file:0
   unevictable:2701 dirty:0 writeback:7
   slab_reclaimable:51418 slab_unreclaimable:116300
   mapped:45825 shmem:735 pagetables:2540 bounce:0
   free:159849484 free_pcp:73 free_cma:0
  Node 4 active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB all_unreclaimable? no
  Node 4 Movable free:130021408kB min:9140kB low:139160kB high:269180kB reserved_highatomic:0KB active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:130023424kB managed:130023424kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:292kB local_pcp:84kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0 0
  Node 4 Movable: 1*4kB (M) 0*8kB 0*16kB 1*32kB (M) 0*64kB 0*128kB 1*256kB (M) 1*512kB (M) 1*1024kB (M) 0*2048kB 31743*4096kB (M) = 130021156kB

  oom-kill:constraint=CONSTRAINT_CPUSET,nodemask=(null),cpuset=docker-9976a269caec812c134fa317f27487ee36e1129beba7278a463dd53e5fb9997b.scope,mems_allowed=4,global_oom,task_memcg=/system.slice/containerd.service,task=containerd,pid=4100,uid=0
  Out of memory: Killed process 4100 (containerd) total-vm:4077036kB, anon-rss:51184kB, file-rss:26016kB, shmem-rss:0kB, UID:0 pgtables:676kB oom_score_adj:0
  oom_reaper: reaped process 8248 (docker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
  oom_reaper: reaped process 2054 (node_exporter), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
  oom_reaper: reaped process 1452 (systemd-journal), now anon-rss:0kB, file-rss:8564kB, shmem-rss:4kB
  oom_reaper: reaped process 2146 (munin-node), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
  oom_reaper: reaped process 8291 (runc:[2:INIT]), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

The reason is that in this case, the target cpuset nodes only have
movable zone, while the creation of an OS in docker sometimes needs to
allocate memory in non-movable zones (dma/dma32/normal) like
GFP_HIGHUSER, and the cpuset limit forbids the allocation, then
out-of-memory killing is involved even when normal nodes and movable
nodes both have many free memory.

The OOM killer cannot help to resolve the situation as there is no
usable memory for the request in the cpuset scope.  The only reasonable
measure to take is to fail the allocation right away and have the caller
to deal with it.

So add a check for cases like this in the slowpath of allocation, and
bail out early returning NULL for the allocation.

As page allocation is one of the hottest path in kernel, this check will
hurt all users with sane cpuset configuration, add a static branch check
and detect the abnormal config in cpuset memory binding setup so that
the extra check cost in page allocation is not paid by everyone.

[thanks to Micho Hocko and David Rientjes for suggesting not handling
 it inside OOM code, adding cpuset check, refining comments]

Link: https://lkml.kernel.org/r/1632481657-68112-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Eric Dumazet
8446b59baa mm/page_alloc.c: do not acquire zone lock in is_free_buddy_page()
Grabbing zone lock in is_free_buddy_page() gives a wrong sense of
safety, and has potential performance implications when zone is
experiencing lock contention.

In any case, if a caller needs a stable result, it should grab zone lock
before calling this function.

Link: https://lkml.kernel.org/r/20210922152833.4023972-1-eric.dumazet@gmail.com
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Geert Uytterhoeven
61bb6cd2f7 mm: move node_reclaim_distance to fix NUMA without SMP
Patch series "Fix NUMA without SMP".

SuperH is the only architecture which still supports NUMA without SMP,
for good reasons (various memories scattered around the address space,
each with varying latencies).

This series fixes two build errors due to variables and functions used
by the NUMA code being provided by SMP-only source files or sections.

This patch (of 2):

If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig):

    sh4-linux-gnu-ld: mm/page_alloc.o: in function `get_page_from_freelist':
    page_alloc.c:(.text+0x2c24): undefined reference to `node_reclaim_distance'

Fix this by moving the declaration of node_reclaim_distance from an
SMP-only to a generic file.

Link: https://lkml.kernel.org/r/cover.1631781495.git.geert+renesas@glider.be
Link: https://lkml.kernel.org/r/6432666a648dde85635341e6c918cee97c97d264.1631781495.git.geert+renesas@glider.be
Fixes: a55c7454a8c887b2 ("sched/topology: Improve load balancing on AMD EPYC systems")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Cc: Rich Felker <dalias@libc.org>
Cc: Gon Solo <gonsolo@gmail.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Krupa Ramakrishnan
54d032ced9 mm/page_alloc: use accumulated load when building node fallback list
In build_zonelists(), when the fallback list is built for the nodes, the
node load gets reinitialized during each iteration.  This results in
nodes with same distances occupying the same slot in different node
fallback lists rather than appearing in the intended round- robin
manner.  This results in one node getting picked for allocation more
compared to other nodes with the same distance.

As an example, consider a 4 node system with the following distance
matrix.

  Node 0  1  2  3
  ----------------
  0    10 12 32 32
  1    12 10 32 32
  2    32 32 10 12
  3    32 32 12 10

For this case, the node fallback list gets built like this:

  Node  Fallback list
  ---------------------
  0     0 1 2 3
  1     1 0 3 2
  2     2 3 0 1
  3     3 2 0 1 <-- Unexpected fallback order

In the fallback list for nodes 2 and 3, the nodes 0 and 1 appear in the
same order which results in more allocations getting satisfied from node
0 compared to node 1.

The effect of this on remote memory bandwidth as seen by stream
benchmark is shown below:

  Case 1: Bandwidth from cores on nodes 2 & 3 to memory on nodes 0 & 1
	(numactl -m 0,1 ./stream_lowOverhead ... --cores <from 2, 3>)
  Case 2: Bandwidth from cores on nodes 0 & 1 to memory on nodes 2 & 3
	(numactl -m 2,3 ./stream_lowOverhead ... --cores <from 0, 1>)

  ----------------------------------------
		BANDWIDTH (MB/s)
      TEST	Case 1		Case 2
  ----------------------------------------
      COPY	57479.6		110791.8
     SCALE	55372.9		105685.9
       ADD	50460.6		96734.2
    TRIADD	50397.6		97119.1
  ----------------------------------------

The bandwidth drop in Case 1 occurs because most of the allocations get
satisfied by node 0 as it appears first in the fallback order for both
nodes 2 and 3.

This can be fixed by accumulating the node load in build_zonelists()
rather than reinitializing it during each iteration.  With this the
nodes with the same distance rightly get assigned in the round robin
manner.

In fact this was how it was originally until commit f0c0b2b808f2
("change zonelist order: zonelist order selection logic") dropped the
load accumulation and resorted to initializing the load during each
iteration.

While zonelist ordering was removed by commit c9bff3eebc09 ("mm,
page_alloc: rip out ZONELIST_ORDER_ZONE"), the change to the node load
accumulation in build_zonelists() remained.  So essentially this patch
reverts back to the accumulated node load logic.

After this fix, the fallback order gets built like this:

  Node Fallback list
  ------------------
  0    0 1 2 3
  1    1 0 3 2
  2    2 3 0 1
  3    3 2 1 0 <-- Note the change here

The bandwidth in Case 1 improves and matches Case 2 as shown below.

  ----------------------------------------
		BANDWIDTH (MB/s)
      TEST	Case 1		Case 2
  ----------------------------------------
      COPY	110438.9	110107.2
     SCALE	105930.5	105817.5
       ADD	97005.1		96159.8
    TRIADD	97441.5		96757.1
  ----------------------------------------

The correctness of the fallback list generation has been verified for
the above node configuration where the node 3 starts as memory-less node
and comes up online only during memory hotplug.

[bharata@amd.com: Added changelog, review, test validation]

Link: https://lkml.kernel.org/r/20210830121603.1081-3-bharata@amd.com
Fixes: f0c0b2b808f2 ("change zonelist order: zonelist order selection logic")
Signed-off-by: Krupa Ramakrishnan <krupa.ramakrishnan@amd.com>
Co-developed-by: Sadagopan Srinivasan <Sadagopan.Srinivasan@amd.com>
Signed-off-by: Sadagopan Srinivasan <Sadagopan.Srinivasan@amd.com>
Signed-off-by: Bharata B Rao <bharata@amd.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Bharata B Rao
6cf253925d mm/page_alloc: print node fallback order
Patch series "Fix NUMA nodes fallback list ordering".

For a NUMA system that has multiple nodes at same distance from other
nodes, the fallback list generation prefers same node order for them
instead of round-robin thereby penalizing one node over others.  This
series fixes it.

More description of the problem and the fix is present in the patch
description.

This patch (of 2):

Print information message about the allocation fallback order for each
NUMA node during boot.

No functional changes here.  This makes it easier to illustrate the
problem in the node fallback list generation, which the next patch
fixes.

Link: https://lkml.kernel.org/r/20210830121603.1081-1-bharata@amd.com
Link: https://lkml.kernel.org/r/20210830121603.1081-2-bharata@amd.com
Signed-off-by: Bharata B Rao <bharata@amd.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Krupa Ramakrishnan <krupa.ramakrishnan@amd.com>
Cc: Sadagopan Srinivasan <Sadagopan.Srinivasan@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Miaohe Lin
ba7f1b9e3f mm/page_alloc.c: avoid allocating highmem pages via alloc_pages_exact[_nid]
Don't use with __GFP_HIGHMEM because page_address() cannot represent
highmem pages without kmap().  Newly allocated pages would leak as
page_address() will return NULL for highmem pages here.  But It works
now because the callers do not specify __GFP_HIGHMEM now.

Link: https://lkml.kernel.org/r/20210902121242.41607-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Miaohe Lin
86fb05b9cc mm/page_alloc.c: use helper function zone_spans_pfn()
Use helper function zone_spans_pfn() to check whether pfn is within a
zone to simplify the code slightly.

Link: https://lkml.kernel.org/r/20210902121242.41607-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Miaohe Lin
7cba630bd8 mm/page_alloc.c: fix obsolete comment in free_pcppages_bulk()
The second two paragraphs about "all pages pinned" and pages_scanned is
obsolete.  And There are PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP orders
in pcp.  So the same order assumption is not held now.

Link: https://lkml.kernel.org/r/20210902121242.41607-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Miaohe Lin
ff7ed9e453 mm/page_alloc.c: simplify the code by using macro K()
Use helper macro K() to convert the pages to the corresponding size.
Minor readability improvement.

Link: https://lkml.kernel.org/r/20210902121242.41607-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Miaohe Lin
ea808b4efd mm/page_alloc.c: remove meaningless VM_BUG_ON() in pindex_to_order()
Patch series "Cleanups and fixup for page_alloc", v2.

This series contains cleanups to remove meaningless VM_BUG_ON(), use
helpers to simplify the code and remove obsolete comment.  Also we avoid
allocating highmem pages via alloc_pages_exact[_nid].  More details can be
found in the respective changelogs.

This patch (of 5):

It's meaningless to VM_BUG_ON() order != pageblock_order just after
setting order to pageblock_order.  Remove it.

Link: https://lkml.kernel.org/r/20210902121242.41607-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210902121242.41607-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Eric Dumazet
084f7e2377 mm/large system hash: avoid possible NULL deref in alloc_large_system_hash
If __vmalloc() returned NULL, is_vm_area_hugepages(NULL) will fault if
CONFIG_HAVE_ARCH_HUGE_VMALLOC=y

Link: https://lkml.kernel.org/r/20210915212530.2321545-1-eric.dumazet@gmail.com
Fixes: 121e6f3258fe ("mm/vmalloc: hugepage vmalloc mappings")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:37 -07:00
Linus Torvalds
49f8275c7d Memory folios
Add memory folios, a new type to represent either order-0 pages or
 the head page of a compound page.  This should be enough infrastructure
 to support filesystems converting from pages to folios.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmF9uI0ACgkQDpNsjXcp
 gj7MUAf/R7LCZ+xFiIedw7SAgb/DGK0C9uVjuBEIZgAw21ZUw/GuPI6cuKBMFGGf
 rRcdtlvMpwi7yZJcoNXxaqU/xPaaJMjf2XxscIvYJP1mjlZVuwmP9dOx0neNvWOc
 T+8lqR6c1TLl82lpqIjGFLwvj2eVowq2d3J5jsaIJFd4odmmYVInrhJXOzC/LQ54
 Niloj5ksehf+KUIRLDz7ycppvIHhlVsoAl0eM2dWBAtL0mvT7Nyn/3y+vnMfV2v3
 Flb4opwJUgTJleYc16oxTn9svT2yS8q2uuUemRDLW8ABghoAtH3fUUk43RN+5Krd
 LYCtbeawtkikPVXZMfWybsx5vn0c3Q==
 =7SBe
 -----END PGP SIGNATURE-----

Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache

Pull memory folios from Matthew Wilcox:
 "Add memory folios, a new type to represent either order-0 pages or the
  head page of a compound page. This should be enough infrastructure to
  support filesystems converting from pages to folios.

  The point of all this churn is to allow filesystems and the page cache
  to manage memory in larger chunks than PAGE_SIZE. The original plan
  was to use compound pages like THP does, but I ran into problems with
  some functions expecting only a head page while others expect the
  precise page containing a particular byte.

  The folio type allows a function to declare that it's expecting only a
  head page. Almost incidentally, this allows us to remove various calls
  to VM_BUG_ON(PageTail(page)) and compound_head().

  This converts just parts of the core MM and the page cache. For 5.17,
  we intend to convert various filesystems (XFS and AFS are ready; other
  filesystems may make it) and also convert more of the MM and page
  cache to folios. For 5.18, multi-page folios should be ready.

  The multi-page folios offer some improvement to some workloads. The
  80% win is real, but appears to be an artificial benchmark (postgres
  startup, which isn't a serious workload). Real workloads (eg building
  the kernel, running postgres in a steady state, etc) seem to benefit
  between 0-10%. I haven't heard of any performance losses as a result
  of this series. Nobody has done any serious performance tuning; I
  imagine that tweaking the readahead algorithm could provide some more
  interesting wins. There are also other places where we could choose to
  create large folios and currently do not, such as writes that are
  larger than PAGE_SIZE.

  I'd like to thank all my reviewers who've offered review/ack tags:
  Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes
  Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil
  Babka, William Kucharski, Yu Zhao and Zi Yan.

  I'd also like to thank those who gave feedback I incorporated but
  haven't offered up review tags for this part of the series: Nick
  Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard,
  Hugh Dickins, and probably a few others who I forget"

* tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits)
  mm/writeback: Add folio_write_one
  mm/filemap: Add FGP_STABLE
  mm/filemap: Add filemap_get_folio
  mm/filemap: Convert mapping_get_entry to return a folio
  mm/filemap: Add filemap_add_folio()
  mm/filemap: Add filemap_alloc_folio
  mm/page_alloc: Add folio allocation functions
  mm/lru: Add folio_add_lru()
  mm/lru: Convert __pagevec_lru_add_fn to take a folio
  mm: Add folio_evictable()
  mm/workingset: Convert workingset_refault() to take a folio
  mm/filemap: Add readahead_folio()
  mm/filemap: Add folio_mkwrite_check_truncate()
  mm/filemap: Add i_blocks_per_folio()
  mm/writeback: Add folio_redirty_for_writepage()
  mm/writeback: Add folio_account_redirty()
  mm/writeback: Add folio_clear_dirty_for_io()
  mm/writeback: Add folio_cancel_dirty()
  mm/writeback: Add folio_account_cleaned()
  mm/writeback: Add filemap_dirty_folio()
  ...
2021-11-01 08:47:59 -07:00
Yang Shi
eac96c3efd mm: filemap: check if THP has hwpoisoned subpage for PMD page fault
When handling shmem page fault the THP with corrupted subpage could be
PMD mapped if certain conditions are satisfied.  But kernel is supposed
to send SIGBUS when trying to map hwpoisoned page.

There are two paths which may do PMD map: fault around and regular
fault.

Before commit f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault()
codepaths") the thing was even worse in fault around path.  The THP
could be PMD mapped as long as the VMA fits regardless what subpage is
accessed and corrupted.  After this commit as long as head page is not
corrupted the THP could be PMD mapped.

In the regular fault path the THP could be PMD mapped as long as the
corrupted page is not accessed and the VMA fits.

This loophole could be fixed by iterating every subpage to check if any
of them is hwpoisoned or not, but it is somewhat costly in page fault
path.

So introduce a new page flag called HasHWPoisoned on the first tail
page.  It indicates the THP has hwpoisoned subpage(s).  It is set if any
subpage of THP is found hwpoisoned by memory failure and after the
refcount is bumped successfully, then cleared when the THP is freed or
split.

The soft offline path doesn't need this since soft offline handler just
marks a subpage hwpoisoned when the subpage is migrated successfully.
But shmem THP didn't get split then migrated at all.

Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com
Fixes: 800d8c63b2e9 ("shmem: add huge pages support")
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-28 17:18:55 -07:00
Shakeel Butt
8dcb3060d8 memcg: page_alloc: skip bulk allocator for __GFP_ACCOUNT
Commit 5c1f4e690eec ("mm/vmalloc: switch to bulk allocator in
__vmalloc_area_node()") switched to bulk page allocator for order 0
allocation backing vmalloc.  However bulk page allocator does not
support __GFP_ACCOUNT allocations and there are several users of
kvmalloc(__GFP_ACCOUNT).

For now make __GFP_ACCOUNT allocations bypass bulk page allocator.  In
future if there is workload that can be significantly improved with the
bulk page allocator with __GFP_ACCCOUNT support, we can revisit the
decision.

Link: https://lkml.kernel.org/r/20211014151607.2171970-1-shakeelb@google.com
Fixes: 5c1f4e690eec ("mm/vmalloc: switch to bulk allocator in __vmalloc_area_node()")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Vasily Averin <vvs@virtuozzo.com>
Tested-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-28 17:18:54 -07:00
Matthew Wilcox (Oracle)
cc09cb1341 mm/page_alloc: Add folio allocation functions
The __folio_alloc(), __folio_alloc_node() and folio_alloc() functions
are mostly for type safety, but they also ensure that the page allocator
allocates a compound page and initialises the deferred list if the page
is large enough to have one.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-18 07:49:40 -04:00
Matthew Wilcox (Oracle)
bbc6b703b2 mm/memcg: Convert mem_cgroup_uncharge() to take a folio
Convert all the callers to call page_folio().  Most of them were already
using a head page, but a few of them I can't prove were, so this may
actually fix a bug.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27 09:27:31 -04:00
Miaohe Lin
053cfda102 mm/page_alloc.c: avoid accessing uninitialized pcp page migratetype
If it's not prepared to free unref page, the pcp page migratetype is
unset.  Thus we will get rubbish from get_pcppage_migratetype() and
might list_del(&page->lru) again after it's already deleted from the list
leading to grumble about data corruption.

Link: https://lkml.kernel.org/r/20210902115447.57050-1-linmiaohe@huawei.com
Fixes: df1acc856923 ("mm/page_alloc: avoid conflating IRQs disabled with zone->lock")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Linus Torvalds
2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769330c34b4deabeed939325c77a7ec2f.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
David Hildenbrand
4b09700244 mm: track present early pages per zone
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.

I. Goal

The goal of this series is improving in-kernel auto-online support.  It
tackles the fundamental problems that:

 1) We can create zone imbalances when onlining all memory blindly to
    ZONE_MOVABLE, in the worst case crashing the system. We have to know
    upfront how much memory we are going to hotplug such that we can
    safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
    via "online_movable". This is far from practical and only applicable in
    limited setups -- like inside VMs under the RHV/oVirt hypervisor which
    will never hotplug more than 3 times the boot memory (and the
    limitation is only in place due to the Linux limitation).

 2) We see more setups that implement dynamic VM resizing, hot(un)plugging
    memory to resize VM memory. In these setups, we might hotplug a lot of
    memory, but it might happen in various small steps in both directions
    (e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
    primary driver of this upstream right now, performing such dynamic
    resizing NUMA-aware via multiple virtio-mem devices.

    Onlining all hotplugged memory to ZONE_NORMAL means we basically have
    no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
    easily run into zone imbalances when growing a VM. We want a mixture,
    and we want as much memory as reasonable/configured in ZONE_MOVABLE.
    Details regarding zone imbalances can be found at [1].

 3) Memory devices consist of 1..X memory block devices, however, the
    kernel doesn't really track the relationship. Consequently, also user
    space has no idea. We want to make per-device decisions.

    As one example, for memory hotunplug it doesn't make sense to use a
    mixture of zones within a single DIMM: we want all MOVABLE if
    possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
    block the whole DIMM from getting hotunplugged.

    As another example, virtio-mem operates on individual units that span
    1..X memory blocks. Similar to a DIMM, we want a unit to either be all
    MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
    all units of a virtio-mem device logically belong together and are
    managed (added/removed) by a single driver. We want as much memory of
    a virtio-mem device to be MOVABLE as possible.

 4) We want memory onlining to be done right from the kernel while adding
    memory, not triggered by user space via udev rules; for example, this
    is reqired for fast memory hotplug for drivers that add individual
    memory blocks, like virito-mem. We want a way to configure a policy in
    the kernel and avoid implementing advanced policies in user space.

The auto-onlining support we have in the kernel is not sufficient.  All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online).  This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.

II. Approach

This series does 3 things:

 1) Introduces the "auto-movable" online policy that initially operates on
    individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
    to make a decision whether a memory block will be onlined to
    ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
    memory does not allow for more MOVABLE memory (details in the
    patches). CMA memory is treated like MOVABLE memory.

 2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
    groups and uses group information to make decisions in the
    "auto-movable" online policy across memory blocks of a single memory
    device (modeled as memory group). More details can be found in patch
    #3 or in the DIMM example below.

 3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
    allowing ZONE_NORMAL memory within a dynamic memory group to allow for
    more ZONE_MOVABLE memory within the same memory group. The target use
    case is dynamic VM resizing using virtio-mem. See the virtio-mem
    example below.

I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).

For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.

III. Target Usage

The target usage will be:

 1) Linux boots with "mhp_default_online_type=offline"

 2) User space (e.g., systemd unit) configures memory onlining (according
    to a config file and system properties), for example:
    * Setting memory_hotplug.online_policy=auto-movable
    * Setting memory_hotplug.auto_movable_ratio=301
    * Setting memory_hotplug.auto_movable_numa_aware=true

 3) User space enabled auto onlining via "echo online >
    /sys/devices/system/memory/auto_online_blocks"

 4) User space triggers manual onlining of all already-offline memory
    blocks (go over offline memory blocks and set them to "online")

IV. Example

For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
	Memory block 0-15:    DMA32   (early)
	Memory block 32-47:   Normal  (early)
	Memory block 48-79:   Movable (DIMM 0)
	Memory block 80-111:  Movable (DIMM 1)
	Memory block 112-143: Movable (DIMM 2)
	Memory block 144-275: Normal  (DIMM 3)
	Memory block 176-207: Normal  (DIMM 4)
	... all Normal
	(-> hotplugged Normal memory does not allow for more Movable memory)

For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
	Memory block 0-15:    DMA32   (early)
	Memory block 32-47:   Normal  (early)
	Memory block 48-143:  Movable (virtio-mem, first 12 GiB)
	Memory block 144:     Normal  (virtio-mem, next 128 MiB)
	Memory block 145-147: Movable (virtio-mem, next 384 MiB)
	Memory block 148:     Normal  (virtio-mem, next 128 MiB)
	Memory block 149-151: Movable (virtio-mem, next 384 MiB)
	... Normal/Movable mixture as above
	(-> hotplugged Normal memory allows for more Movable memory within
	    the same device)

Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.

V. Doc Update

I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.

VI. Future Work

 1) Use memory groups for ppc64 dlpar
 2) Being able to specify a portion of (early) kernel memory that will be
    excluded from the ratio. Like "128 MiB globally/per node" are excluded.

    This might be helpful when starting VMs with extremely small memory
    footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
    the first hotplugged units getting onlined to ZONE_MOVABLE. One
    alternative would be a trigger to not consider ZONE_DMA memory
    in the ratio. We'll have to see if this is really rrequired.
 3) Indicate to user space that MOVABLE might be a bad idea -- especially
    relevant when memory ballooning without support for balloon compaction
    is active.

This patch (of 9):

For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages.  Let's track these pages per zone.

Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.

It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early".  add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.

Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Mike Rapoport
859a85ddf9 mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE
Patch series "mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE".

After recent updates to freeing unused parts of the memory map, no
architecture can have holes in the memory map within a pageblock.  This
makes pfn_valid_within() check and CONFIG_HOLES_IN_ZONE configuration
option redundant.

The first patch removes them both in a mechanical way and the second patch
simplifies memory_hotplug::test_pages_in_a_zone() that had
pfn_valid_within() surrounded by more logic than simple if.

This patch (of 2):

After recent changes in freeing of the unused parts of the memory map and
rework of pfn_valid() in arm and arm64 there are no architectures that can
have holes in the memory map within a pageblock and so nothing can enable
CONFIG_HOLES_IN_ZONE which guards non trivial implementation of
pfn_valid_within().

With that, pfn_valid_within() is always hardwired to 1 and can be
completely removed.

Remove calls to pfn_valid_within() and CONFIG_HOLES_IN_ZONE.

Link: https://lkml.kernel.org/r/20210713080035.7464-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210713080035.7464-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:22 -07:00
Yang Shi
5ac95884a7 mm/migrate: enable returning precise migrate_pages() success count
Under normal circumstances, migrate_pages() returns the number of pages
migrated.  In error conditions, it returns an error code.  When returning
an error code, there is no way to know how many pages were migrated or not
migrated.

Make migrate_pages() return how many pages are demoted successfully for
all cases, including when encountering errors.  Page reclaim behavior will
depend on this in subsequent patches.

Link: https://lkml.kernel.org/r/20210721063926.3024591-3-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-4-ying.huang@intel.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Oscar Salvador <osalvador@suse.de> [optional parameter]
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Dave Hansen
79c28a4167 mm/numa: automatically generate node migration order
Patch series "Migrate Pages in lieu of discard", v11.

We're starting to see systems with more and more kinds of memory such as
Intel's implementation of persistent memory.

Let's say you have a system with some DRAM and some persistent memory.
Today, once DRAM fills up, reclaim will start and some of the DRAM
contents will be thrown out.  Allocations will, at some point, start
falling over to the slower persistent memory.

That has two nasty properties.  First, the newer allocations can end up in
the slower persistent memory.  Second, reclaimed data in DRAM are just
discarded even if there are gobs of space in persistent memory that could
be used.

This patchset implements a solution to these problems.  At the end of the
reclaim process in shrink_page_list() just before the last page refcount
is dropped, the page is migrated to persistent memory instead of being
dropped.

While I've talked about a DRAM/PMEM pairing, this approach would function
in any environment where memory tiers exist.

This is not perfect.  It "strands" pages in slower memory and never brings
them back to fast DRAM.  Huang Ying has follow-on work which repurposes
NUMA balancing to promote hot pages back to DRAM.

This is also all based on an upstream mechanism that allows persistent
memory to be onlined and used as if it were volatile:

	http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com

With that, the DRAM and PMEM in each socket will be represented as 2
separate NUMA nodes, with the CPUs sit in the DRAM node.  So the
general inter-NUMA demotion mechanism introduced in the patchset can
migrate the cold DRAM pages to the PMEM node.

We have tested the patchset with the postgresql and pgbench.  On a
2-socket server machine with DRAM and PMEM, the kernel with the patchset
can improve the score of pgbench up to 22.1% compared with that of the
DRAM only + disk case.  This comes from the reduced disk read throughput
(which reduces up to 70.8%).

== Open Issues ==

 * Memory policies and cpusets that, for instance, restrict allocations
   to DRAM can be demoted to PMEM whenever they opt in to this
   new mechanism.  A cgroup-level API to opt-in or opt-out of
   these migrations will likely be required as a follow-on.
 * Could be more aggressive about where anon LRU scanning occurs
   since it no longer necessarily involves I/O.  get_scan_count()
   for instance says: "If we have no swap space, do not bother
   scanning anon pages"

This patch (of 9):

Prepare for the kernel to auto-migrate pages to other memory nodes with a
node migration table.  This allows creating single migration target for
each NUMA node to enable the kernel to do NUMA page migrations instead of
simply discarding colder pages.  A node with no target is a "terminal
node", so reclaim acts normally there.  The migration target does not
fundamentally _need_ to be a single node, but this implementation starts
there to limit complexity.

When memory fills up on a node, memory contents can be automatically
migrated to another node.  The biggest problems are knowing when to
migrate and to where the migration should be targeted.

The most straightforward way to generate the "to where" list would be to
follow the page allocator fallback lists.  Those lists already tell us if
memory is full where to look next.  It would also be logical to move
memory in that order.

But, the allocator fallback lists have a fatal flaw: most nodes appear in
all the lists.  This would potentially lead to migration cycles (A->B,
B->A, A->B, ...).

Instead of using the allocator fallback lists directly, keep a separate
node migration ordering.  But, reuse the same data used to generate page
allocator fallback in the first place: find_next_best_node().

This means that the firmware data used to populate node distances
essentially dictates the ordering for now.  It should also be
architecture-neutral since all NUMA architectures have a working
find_next_best_node().

RCU is used to allow lock-less read of node_demotion[] and prevent
demotion cycles been observed.  If multiple reads of node_demotion[] are
performed, a single rcu_read_lock() must be held over all reads to ensure
no cycles are observed.  Details are as follows.

=== What does RCU provide? ===

Imagine a simple loop which walks down the demotion path looking
for the last node:

        terminal_node = start_node;
        while (node_demotion[terminal_node] != NUMA_NO_NODE) {
                terminal_node = node_demotion[terminal_node];
        }

The initial values are:

        node_demotion[0] = 1;
        node_demotion[1] = NUMA_NO_NODE;

and are updated to:

        node_demotion[0] = NUMA_NO_NODE;
        node_demotion[1] = 0;

What guarantees that the cycle is not observed:

        node_demotion[0] = 1;
        node_demotion[1] = 0;

and would loop forever?

With RCU, a rcu_read_lock/unlock() can be placed around the loop.  Since
the write side does a synchronize_rcu(), the loop that observed the old
contents is known to be complete before the synchronize_rcu() has
completed.

RCU, combined with disable_all_migrate_targets(), ensures that the old
migration state is not visible by the time __set_migration_target_nodes()
is called.

=== What does READ_ONCE() provide? ===

READ_ONCE() forbids the compiler from merging or reordering successive
reads of node_demotion[].  This ensures that any updates are *eventually*
observed.

Consider the above loop again.  The compiler could theoretically read the
entirety of node_demotion[] into local storage (registers) and never go
back to memory, and *permanently* observe bad values for node_demotion[].

Note: RCU does not provide any universal compiler-ordering
guarantees:

	https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/

This code is unused for now.  It will be called later in the
series.

Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Vasily Averin
88dc6f2088 mm/page_alloc.c: use in_task()
Obsoleted in_intrrupt() include task context with disabled BH, it's better
to use in_task() instead.

Link: https://lkml.kernel.org/r/877caa99-1994-5545-92d2-d0bb2e394182@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:15 -07:00
Mike Rapoport
3b446da6be mm/page_alloc: make alloc_node_mem_map() __init rather than __ref
alloc_node_mem_map() is never only called from free_area_init_node() that
is an __init function.

Make the actual alloc_node_mem_map() also __init and its stub version
static inline.

Link: https://lkml.kernel.org/r/20210716064124.31865-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:15 -07:00
Nico Pache
b346075fcf mm/page_alloc.c: fix 'zone_id' may be used uninitialized in this function warning
When compiling with -Werror, cc1 will warn that 'zone_id' may be used
uninitialized in this function warning.

Initialize the zone_id as 0.

Its safe to assume that if the code reaches this point it has at least one
numa node with memory, so no need for an assertion before
init_unavilable_range.

Link: https://lkml.kernel.org/r/20210716210336.1114114-1-npache@redhat.com
Fixes: 122e093c1734 ("mm/page_alloc: fix memory map initialization for descending nodes")
Signed-off-by: Nico Pache <npache@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:15 -07:00
Mike Rapoport
c803b3c8b3 mm: introduce memmap_alloc() to unify memory map allocation
There are several places that allocate memory for the memory map:
alloc_node_mem_map() for FLATMEM, sparse_buffer_init() and
__populate_section_memmap() for SPARSEMEM.

The memory allocated in the FLATMEM case is zeroed and it is never
poisoned, regardless of CONFIG_PAGE_POISON setting.

The memory allocated in the SPARSEMEM cases is not zeroed and it is
implicitly poisoned inside memblock if CONFIG_PAGE_POISON is set.

Introduce memmap_alloc() wrapper for memblock allocators that will be used
for both FLATMEM and SPARSEMEM cases and will makei memory map zeroing and
poisoning consistent for different memory models.

Link: https://lkml.kernel.org/r/20210714123739.16493-4-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:15 -07:00
Mike Rapoport
c3ab6baf6a mm/page_alloc: always initialize memory map for the holes
Patch series "mm: ensure consistency of memory map poisoning".

Currently memory map allocation for FLATMEM case does not poison the
struct pages regardless of CONFIG_PAGE_POISON setting.

This happens because allocation of the memory map for FLATMEM and SPARSMEM
use different memblock functions and those that are used for SPARSMEM case
(namely memblock_alloc_try_nid_raw() and memblock_alloc_exact_nid_raw())
implicitly poison the allocated memory.

Another side effect of this implicit poisoning is that early setup code
that uses the same functions to allocate memory burns cycles for the
memory poisoning even if it was not intended.

These patches introduce memmap_alloc() wrapper that ensure that the memory
map allocation is consistent for different memory models.

This patch (of 4):

Currently memory map for the holes is initialized only when SPARSEMEM
memory model is used.  Yet, even with FLATMEM there could be holes in the
physical memory layout that have memory map entries.

For instance, the memory reserved using e820 API on i386 or
"reserved-memory" nodes in device tree would not appear in memblock.memory
and hence the struct pages for such holes will be skipped during memory
map initialization.

These struct pages will be zeroed because the memory map for FLATMEM
systems is allocated with memblock_alloc_node() that clears the allocated
memory.  While zeroed struct pages do not cause immediate problems, the
correct behaviour is to initialize every page using __init_single_page().
Besides, enabling page poison for FLATMEM case will trigger
PF_POISONED_CHECK() unless the memory map is properly initialized.

Make sure init_unavailable_range() is called for both SPARSEMEM and
FLATMEM so that struct pages representing memory holes would appear as
PG_Reserved with any memory layout.

[rppt@kernel.org: fix microblaze]
  Link: https://lkml.kernel.org/r/YQWW3RCE4eWBuMu/@kernel.org

Link: https://lkml.kernel.org/r/20210714123739.16493-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210714123739.16493-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:15 -07:00
liuhailong
eb2169cee3 mm: add kernel_misc_reclaimable in show_free_areas
Print NR_KERNEL_MISC_RECLAIMABLE stat from show_free_areas() so users can
check whether the shrinker is working correctly and to show the current
memory usage.

Link: https://lkml.kernel.org/r/20210813104725.4562-1-liuhailong@oppo.com
Signed-off-by: liuhailong <liuhailong@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:10 -07:00
Matthew Wilcox (Oracle)
4f3eaf452a mm: report a more useful address for reclaim acquisition
A recent lockdep report included these lines:

[   96.177910] 3 locks held by containerd/770:
[   96.177934]  #0: ffff88810815ea28 (&mm->mmap_lock#2){++++}-{3:3},
at: do_user_addr_fault+0x115/0x770
[   96.177999]  #1: ffffffff82915020 (rcu_read_lock){....}-{1:2}, at:
get_swap_device+0x33/0x140
[   96.178057]  #2: ffffffff82955ba0 (fs_reclaim){+.+.}-{0:0}, at:
__fs_reclaim_acquire+0x5/0x30

While it was not useful to that bug report to know where the reclaim lock
had been acquired, it might be useful under other circumstances.  Allow
the caller of __fs_reclaim_acquire to specify the instruction pointer to
use.

Link: https://lkml.kernel.org/r/20210719185709.1755149-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:10 -07:00
Doug Berger
47aef6010b mm/page_alloc: don't corrupt pcppage_migratetype
When placing pages on a pcp list, migratetype values over
MIGRATE_PCPTYPES get added to the MIGRATE_MOVABLE pcp list.

However, the actual migratetype is preserved in the page and should
not be changed to MIGRATE_MOVABLE or the page may end up on the wrong
free_list.

The impact is that HIGHATOMIC or CMA pages getting bulk freed from the
PCP lists could potentially end up on the wrong buddy list.  There are
various consequences but minimally NR_FREE_CMA_PAGES accounting could
get screwed up.

[mgorman@techsingularity.net: changelog update]

Link: https://lkml.kernel.org/r/20210811182917.2607994-1-opendmb@gmail.com
Fixes: df1acc856923 ("mm/page_alloc: avoid conflating IRQs disabled with zone->lock")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-08-20 11:31:42 -07:00
Sergei Trofimovich
69e5d322a2 mm: page_alloc: fix page_poison=1 / INIT_ON_ALLOC_DEFAULT_ON interaction
To reproduce the failure we need the following system:

 - kernel command: page_poison=1 init_on_free=0 init_on_alloc=0

 - kernel config:
    * CONFIG_INIT_ON_ALLOC_DEFAULT_ON=y
    * CONFIG_INIT_ON_FREE_DEFAULT_ON=y
    * CONFIG_PAGE_POISONING=y

Resulting in:

    0000000085629bdd: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    0000000022861832: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00000000c597f5b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    CPU: 11 PID: 15195 Comm: bash Kdump: loaded Tainted: G     U     O      5.13.1-gentoo-x86_64 #1
    Hardware name: System manufacturer System Product Name/PRIME Z370-A, BIOS 2801 01/13/2021
    Call Trace:
     dump_stack+0x64/0x7c
     __kernel_unpoison_pages.cold+0x48/0x84
     post_alloc_hook+0x60/0xa0
     get_page_from_freelist+0xdb8/0x1000
     __alloc_pages+0x163/0x2b0
     __get_free_pages+0xc/0x30
     pgd_alloc+0x2e/0x1a0
     mm_init+0x185/0x270
     dup_mm+0x6b/0x4f0
     copy_process+0x190d/0x1b10
     kernel_clone+0xba/0x3b0
     __do_sys_clone+0x8f/0xb0
     do_syscall_64+0x68/0x80
     entry_SYSCALL_64_after_hwframe+0x44/0xae

Before commit 51cba1ebc60d ("init_on_alloc: Optimize static branches")
init_on_alloc never enabled static branch by default.  It could only be
enabed explicitly by init_mem_debugging_and_hardening().

But after commit 51cba1ebc60d, a static branch could already be enabled
by default.  There was no code to ever disable it.  That caused
page_poison=1 / init_on_free=1 conflict.

This change extends init_mem_debugging_and_hardening() to also disable
static branch disabling.

Link: https://lkml.kernel.org/r/20210714031935.4094114-1-keescook@chromium.org
Link: https://lore.kernel.org/r/20210712215816.1512739-1-slyfox@gentoo.org
Fixes: 51cba1ebc60d ("init_on_alloc: Optimize static branches")
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Co-developed-by: Kees Cook <keescook@chromium.org>
Reported-by: Mikhail Morfikov <mmorfikov@gmail.com>
Reported-by: <bowsingbetee@pm.me>
Tested-by: <bowsingbetee@protonmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-23 17:43:28 -07:00
Chuck Lever
061478438d mm/page_alloc: further fix __alloc_pages_bulk() return value
The author of commit b3b64ebd3822 ("mm/page_alloc: do bulk array
bounds check after checking populated elements") was possibly
confused by the mixture of return values throughout the function.

The API contract is clear that the function "Returns the number of pages
on the list or array." It does not list zero as a unique return value with
a special meaning.  Therefore zero is a plausible return value only if
@nr_pages is zero or less.

Clean up the return logic to make it clear that the returned value is
always the total number of pages in the array/list, not the number of
pages that were allocated during this call.

The only change in behavior with this patch is the value returned if
prepare_alloc_pages() fails.  To match the API contract, the number of
pages currently in the array/list is returned in this case.

The call site in __page_pool_alloc_pages_slow() also seems to be confused
on this matter.  It should be attended to by someone who is familiar with
that code.

[mel@techsingularity.net: Return nr_populated if 0 pages are requested]

Link: https://lkml.kernel.org/r/20210713152100.10381-4-mgorman@techsingularity.net
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Cc: Zhang Qiang <Qiang.Zhang@windriver.com>
Cc: Yanfei Xu <yanfei.xu@windriver.com>
Cc: Matteo Croce <mcroce@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-15 10:13:49 -07:00
Yanfei Xu
e5c15cea33 mm/page_alloc: correct return value when failing at preparing
If the array passed in is already partially populated, we should return
"nr_populated" even failing at preparing arguments stage.

Link: https://lkml.kernel.org/r/20210713152100.10381-3-mgorman@techsingularity.net
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20210709102855.55058-1-yanfei.xu@windriver.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-15 10:13:49 -07:00
Mel Gorman
187ad460b8 mm/page_alloc: avoid page allocator recursion with pagesets.lock held
Syzbot is reporting potential deadlocks due to pagesets.lock when
PAGE_OWNER is enabled.  One example from Desmond Cheong Zhi Xi is as
follows

  __alloc_pages_bulk()
    local_lock_irqsave(&pagesets.lock, flags) <---- outer lock here
    prep_new_page():
      post_alloc_hook():
        set_page_owner():
          __set_page_owner():
            save_stack():
              stack_depot_save():
                alloc_pages():
                  alloc_page_interleave():
                    __alloc_pages():
                      get_page_from_freelist():
                        rm_queue():
                          rm_queue_pcplist():
                            local_lock_irqsave(&pagesets.lock, flags);
                            *** DEADLOCK ***

Zhang, Qiang also reported

  BUG: sleeping function called from invalid context at mm/page_alloc.c:5179
  in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
  .....
  __dump_stack lib/dump_stack.c:79 [inline]
  dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:96
  ___might_sleep.cold+0x1f1/0x237 kernel/sched/core.c:9153
  prepare_alloc_pages+0x3da/0x580 mm/page_alloc.c:5179
  __alloc_pages+0x12f/0x500 mm/page_alloc.c:5375
  alloc_page_interleave+0x1e/0x200 mm/mempolicy.c:2147
  alloc_pages+0x238/0x2a0 mm/mempolicy.c:2270
  stack_depot_save+0x39d/0x4e0 lib/stackdepot.c:303
  save_stack+0x15e/0x1e0 mm/page_owner.c:120
  __set_page_owner+0x50/0x290 mm/page_owner.c:181
  prep_new_page mm/page_alloc.c:2445 [inline]
  __alloc_pages_bulk+0x8b9/0x1870 mm/page_alloc.c:5313
  alloc_pages_bulk_array_node include/linux/gfp.h:557 [inline]
  vm_area_alloc_pages mm/vmalloc.c:2775 [inline]
  __vmalloc_area_node mm/vmalloc.c:2845 [inline]
  __vmalloc_node_range+0x39d/0x960 mm/vmalloc.c:2947
  __vmalloc_node mm/vmalloc.c:2996 [inline]
  vzalloc+0x67/0x80 mm/vmalloc.c:3066

There are a number of ways it could be fixed.  The page owner code could
be audited to strip GFP flags that allow sleeping but it'll impair the
functionality of PAGE_OWNER if allocations fail.  The bulk allocator could
add a special case to release/reacquire the lock for prep_new_page and
lookup PCP after the lock is reacquired at the cost of performance.  The
pages requiring prep could be tracked using the least significant bit and
looping through the array although it is more complicated for the list
interface.  The options are relatively complex and the second one still
incurs a performance penalty when PAGE_OWNER is active so this patch takes
the simple approach -- disable bulk allocation of PAGE_OWNER is active.
The caller will be forced to allocate one page at a time incurring a
performance penalty but PAGE_OWNER is already a performance penalty.

Link: https://lkml.kernel.org/r/20210708081434.GV3840@techsingularity.net
Fixes: dbbee9d5cd83 ("mm/page_alloc: convert per-cpu list protection to local_lock")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reported-by: "Zhang, Qiang" <Qiang.Zhang@windriver.com>
Reported-by: syzbot+127fd7828d6eeb611703@syzkaller.appspotmail.com
Tested-by: syzbot+127fd7828d6eeb611703@syzkaller.appspotmail.com
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-15 10:13:49 -07:00
Matteo Croce
54aa386661 Revert "mm/page_alloc: make should_fail_alloc_page() static"
This reverts commit f7173090033c70886d925995e9dfdfb76dbb2441.

Fix an unresolved symbol error when CONFIG_DEBUG_INFO_BTF=y:

    LD      vmlinux
    BTFIDS  vmlinux
  FAILED unresolved symbol should_fail_alloc_page
  make: *** [Makefile:1199: vmlinux] Error 255
  make: *** Deleting file 'vmlinux'

Link: https://lkml.kernel.org/r/20210708191128.153796-1-mcroce@linux.microsoft.com
Fixes: f7173090033c ("mm/page_alloc: make should_fail_alloc_page() static")
Signed-off-by: Matteo Croce <mcroce@microsoft.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-15 10:13:49 -07:00
Mel Gorman
6bce244390 mm/page_alloc: Revert pahole zero-sized workaround
Commit dbbee9d5cd83 ("mm/page_alloc: convert per-cpu list protection to
local_lock") folded in a workaround patch for pahole that was unable to
deal with zero-sized percpu structures.

A superior workaround is achieved with commit a0b8200d06ad ("kbuild:
skip per-CPU BTF generation for pahole v1.18-v1.21").

This patch reverts the dummy field and the pahole version check.

Fixes: dbbee9d5cd83 ("mm/page_alloc: convert per-cpu list protection to local_lock")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-10 16:09:39 -07:00
Linus Torvalds
71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
Mel Gorman
f717309003 mm/page_alloc: make should_fail_alloc_page() static
make W=1 generates the following warning for mm/page_alloc.c

  mm/page_alloc.c:3651:15: warning: no previous prototype for `should_fail_alloc_page' [-Wmissing-prototypes]
   noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
                 ^~~~~~~~~~~~~~~~~~~~~~

This function is deliberately split out for BPF to allow errors to be
injected.  The function is not used anywhere else so it is local to the
file.  Make it static which should still allow error injection to be used
similar to how block/blk-core.c:should_fail_bio() works.

Link: https://lkml.kernel.org/r/20210520084809.8576-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:02 -07:00
Zhen Lei
041711ce7c mm: fix spelling mistakes
Fix some spelling mistakes in comments:
each having differents usage ==> each has a different usage
statments ==> statements
adresses ==> addresses
aggresive ==> aggressive
datas ==> data
posion ==> poison
higer ==> higher
precisly ==> precisely
wont ==> won't
We moves tha ==> We move the
endianess ==> endianness

Link: https://lkml.kernel.org/r/20210519065853.7723-2-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:02 -07:00
Mike Kravetz
7118fc2906 hugetlb: address ref count racing in prep_compound_gigantic_page
In [1], Jann Horn points out a possible race between
prep_compound_gigantic_page and __page_cache_add_speculative.  The root
cause of the possible race is prep_compound_gigantic_page uncondittionally
setting the ref count of pages to zero.  It does this because
prep_compound_gigantic_page is handed a 'group' of pages from an allocator
and needs to convert that group of pages to a compound page.  The ref
count of each page in this 'group' is one as set by the allocator.
However, the ref count of compound page tail pages must be zero.

The potential race comes about when ref counted pages are returned from
the allocator.  When this happens, other mm code could also take a
reference on the page.  __page_cache_add_speculative is one such example.
Therefore, prep_compound_gigantic_page can not just set the ref count of
pages to zero as it does today.  Doing so would lose the reference taken
by any other code.  This would lead to BUGs in code checking ref counts
and could possibly even lead to memory corruption.

There are two possible ways to address this issue.

1) Make all allocators of gigantic groups of pages be able to return a
   properly constructed compound page.

2) Make prep_compound_gigantic_page be more careful when constructing a
   compound page.

This patch takes approach 2.

In prep_compound_gigantic_page, use cmpxchg to only set ref count to zero
if it is one.  If the cmpxchg fails, call synchronize_rcu() in the hope
that the extra ref count will be driopped during a rcu grace period.  This
is not a performance critical code path and the wait should be
accceptable.  If the ref count is still inflated after the grace period,
then undo any modifications made and return an error.

Currently prep_compound_gigantic_page is type void and does not return
errors.  Modify the two callers to check for and handle error returns.  On
error, the caller must free the 'group' of pages as they can not be used
to form a gigantic page.  After freeing pages, the runtime caller
(alloc_fresh_huge_page) will retry the allocation once.  Boot time
allocations can not be retried.

The routine prep_compound_page also unconditionally sets the ref count of
compound page tail pages to zero.  However, in this case the buddy
allocator is constructing a compound page from freshly allocated pages.
The ref count on those freshly allocated pages is already zero, so the
set_page_count(p, 0) is unnecessary and could lead to confusion.  Just
remove it.

[1] https://lore.kernel.org/linux-mm/CAG48ez23q0Jy9cuVnwAe7t_fdhMk2S7N5Hdi-GLcCeq5bsfLxw@mail.gmail.com/

Link: https://lkml.kernel.org/r/20210622021423.154662-3-mike.kravetz@oracle.com
Fixes: 58a84aa92723 ("thp: set compound tail page _count to zero")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jann Horn <jannh@google.com>
Cc: Youquan Song <youquan.song@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:27 -07:00
Linus Torvalds
65090f30ab Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "191 patches.

  Subsystems affected by this patch series: kthread, ia64, scripts,
  ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
  slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
  mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
  pagealloc, and memory-failure)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
  mm,hwpoison: make get_hwpoison_page() call get_any_page()
  mm,hwpoison: send SIGBUS with error virutal address
  mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
  mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
  mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
  mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
  docs: remove description of DISCONTIGMEM
  arch, mm: remove stale mentions of DISCONIGMEM
  mm: remove CONFIG_DISCONTIGMEM
  m68k: remove support for DISCONTIGMEM
  arc: remove support for DISCONTIGMEM
  arc: update comment about HIGHMEM implementation
  alpha: remove DISCONTIGMEM and NUMA
  mm/page_alloc: move free_the_page
  mm/page_alloc: fix counting of managed_pages
  mm/page_alloc: improve memmap_pages dbg msg
  mm: drop SECTION_SHIFT in code comments
  mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
  mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
  mm/page_alloc: scale the number of pages that are batch freed
  ...
2021-06-29 17:29:11 -07:00
Mel Gorman
203c06eef5 mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
Dave Hansen reported the following about Feng Tang's tests on a machine
with persistent memory onlined as a DRAM-like device.

  Feng Tang tossed these on a "Cascade Lake" system with 96 threads and
  ~512G of persistent memory and 128G of DRAM.  The PMEM is in "volatile
  use" mode and being managed via the buddy just like the normal RAM.

  The PMEM zones are big ones:

        present  65011712 = 248 G
        high       134595 = 525 M

  The PMEM nodes, of course, don't have any CPUs in them.

  With your series, the pcp->high value per-cpu is 69584 pages or about
  270MB per CPU.  Scaled up by the 96 CPU threads, that's ~26GB of
  worst-case memory in the pcps per zone, or roughly 10% of the size of
  the zone.

This should not cause a problem as such although it could trigger reclaim
due to pages being stored on per-cpu lists for CPUs remote to a node.  It
is not possible to treat cpuless nodes exactly the same as normal nodes
but the worst-case scenario can be mitigated by splitting pcp->high across
all online CPUs for cpuless memory nodes.

Link: https://lkml.kernel.org/r/20210616110743.GK30378@techsingularity.net
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Tang, Feng" <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mel Gorman
44042b4498 mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
The per-cpu page allocator (PCP) only stores order-0 pages.  This means
that all THP and "cheap" high-order allocations including SLUB contends on
the zone->lock.  This patch extends the PCP allocator to store THP and
"cheap" high-order pages.  Note that struct per_cpu_pages increases in
size to 256 bytes (4 cache lines) on x86-64.

Note that this is not necessarily a universal performance win because of
how it is implemented.  High-order pages can cause pcp->high to be
exceeded prematurely for lower-orders so for example, a large number of
THP pages being freed could release order-0 pages from the PCP lists.
Hence, much depends on the allocation/free pattern as observed by a single
CPU to determine if caching helps or hurts a particular workload.

That said, basic performance testing passed.  The following is a netperf
UDP_STREAM test which hits the relevant patches as some of the network
allocations are high-order.

netperf-udp
                                 5.13.0-rc2             5.13.0-rc2
                           mm-pcpburst-v3r4   mm-pcphighorder-v1r7
Hmean     send-64         261.46 (   0.00%)      266.30 *   1.85%*
Hmean     send-128        516.35 (   0.00%)      536.78 *   3.96%*
Hmean     send-256       1014.13 (   0.00%)     1034.63 *   2.02%*
Hmean     send-1024      3907.65 (   0.00%)     4046.11 *   3.54%*
Hmean     send-2048      7492.93 (   0.00%)     7754.85 *   3.50%*
Hmean     send-3312     11410.04 (   0.00%)    11772.32 *   3.18%*
Hmean     send-4096     13521.95 (   0.00%)    13912.34 *   2.89%*
Hmean     send-8192     21660.50 (   0.00%)    22730.72 *   4.94%*
Hmean     send-16384    31902.32 (   0.00%)    32637.50 *   2.30%*

Functionally, a patch like this is necessary to make bulk allocation of
high-order pages work with similar performance to order-0 bulk
allocations.  The bulk allocator is not updated in this series as it would
have to be determined by bulk allocation users how they want to track the
order of pages allocated with the bulk allocator.

Link: https://lkml.kernel.org/r/20210611135753.GC30378@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00