10190 Commits

Author SHA1 Message Date
Tejun Heo
dcd989cb73 workqueue: implement several utility APIs
Implement the following utility APIs.

 workqueue_set_max_active()	: adjust max_active of a wq
 workqueue_congested()		: test whether a wq is contested
 work_cpu()			: determine the last / current cpu of a work
 work_busy()			: query whether a work is busy

* Anton Blanchard fixed missing ret initialization in work_busy().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Anton Blanchard <anton@samba.org>
2010-06-29 10:07:14 +02:00
Tejun Heo
d320c03830 workqueue: s/__create_workqueue()/alloc_workqueue()/, and add system workqueues
This patch makes changes to make new workqueue features available to
its users.

* Now that workqueue is more featureful, there should be a public
  workqueue creation function which takes paramters to control them.
  Rename __create_workqueue() to alloc_workqueue() and make 0
  max_active mean WQ_DFL_ACTIVE.  In the long run, all
  create_workqueue_*() will be converted over to alloc_workqueue().

* To further unify access interface, rename keventd_wq to system_wq
  and export it.

* Add system_long_wq and system_nrt_wq.  The former is to host long
  running works separately (so that flush_scheduled_work() dosen't
  take so long) and the latter guarantees any queued work item is
  never executed in parallel by multiple CPUs.  These will be used by
  future patches to update workqueue users.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:14 +02:00
Tejun Heo
b71ab8c202 workqueue: increase max_active of keventd and kill current_is_keventd()
Define WQ_MAX_ACTIVE and create keventd with max_active set to half of
it which means that keventd now can process upto WQ_MAX_ACTIVE / 2 - 1
works concurrently.  Unless some combination can result in dependency
loop longer than max_active, deadlock won't happen and thus it's
unnecessary to check whether current_is_keventd() before trying to
schedule a work.  Kill current_is_keventd().

(Lockdep annotations are broken.  We need lock_map_acquire_read_norecurse())

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
2010-06-29 10:07:14 +02:00
Tejun Heo
e22bee782b workqueue: implement concurrency managed dynamic worker pool
Instead of creating a worker for each cwq and putting it into the
shared pool, manage per-cpu workers dynamically.

Works aren't supposed to be cpu cycle hogs and maintaining just enough
concurrency to prevent work processing from stalling due to lack of
processing context is optimal.  gcwq keeps the number of concurrent
active workers to minimum but no less.  As long as there's one or more
running workers on the cpu, no new worker is scheduled so that works
can be processed in batch as much as possible but when the last
running worker blocks, gcwq immediately schedules new worker so that
the cpu doesn't sit idle while there are works to be processed.

gcwq always keeps at least single idle worker around.  When a new
worker is necessary and the worker is the last idle one, the worker
assumes the role of "manager" and manages the worker pool -
ie. creates another worker.  Forward-progress is guaranteed by having
dedicated rescue workers for workqueues which may be necessary while
creating a new worker.  When the manager is having problem creating a
new worker, mayday timer activates and rescue workers are summoned to
the cpu and execute works which might be necessary to create new
workers.

Trustee is expanded to serve the role of manager while a CPU is being
taken down and stays down.  As no new works are supposed to be queued
on a dead cpu, it just needs to drain all the existing ones.  Trustee
continues to try to create new workers and summon rescuers as long as
there are pending works.  If the CPU is brought back up while the
trustee is still trying to drain the gcwq from the previous offlining,
the trustee will kill all idles ones and tell workers which are still
busy to rebind to the cpu, and pass control over to gcwq which assumes
the manager role as necessary.

Concurrency managed worker pool reduces the number of workers
drastically.  Only workers which are necessary to keep the processing
going are created and kept.  Also, it reduces cache footprint by
avoiding unnecessarily switching contexts between different workers.

Please note that this patch does not increase max_active of any
workqueue.  All workqueues can still only process one work per cpu.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:14 +02:00
Tejun Heo
d302f01782 workqueue: implement worker_{set|clr}_flags()
Implement worker_{set|clr}_flags() to manipulate worker flags.  These
are currently simple wrappers but logics to track the current worker
state and the current level of concurrency will be added.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
7e11629d0e workqueue: use shared worklist and pool all workers per cpu
Use gcwq->worklist instead of cwq->worklist and break the strict
association between a cwq and its worker.  All works queued on a cpu
are queued on gcwq->worklist and processed by any available worker on
the gcwq.

As there no longer is strict association between a cwq and its worker,
whether a work is executing can now only be determined by calling
[__]find_worker_executing_work().

After this change, the only association between a cwq and its worker
is that a cwq puts a worker into shared worker pool on creation and
kills it on destruction.  As all workqueues are still limited to
max_active of one, this means that there are always at least as many
workers as active works and thus there's no danger for deadlock.

The break of strong association between cwqs and workers requires
somewhat clumsy changes to current_is_keventd() and
destroy_workqueue().  Dynamic worker pool management will remove both
clumsy changes.  current_is_keventd() won't be necessary at all as the
only reason it exists is to avoid queueing a work from a work which
will be allowed just fine.  The clumsy part of destroy_workqueue() is
added because a worker can only be destroyed while idle and there's no
guarantee a worker is idle when its wq is going down.  With dynamic
pool management, workers are not associated with workqueues at all and
only idle ones will be submitted to destroy_workqueue() so the code
won't be necessary anymore.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
18aa9effad workqueue: implement WQ_NON_REENTRANT
With gcwq managing all the workers and work->data pointing to the last
gcwq it was on, non-reentrance can be easily implemented by checking
whether the work is still running on the previous gcwq on queueing.
Implement it.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
7a22ad757e workqueue: carry cpu number in work data once execution starts
To implement non-reentrant workqueue, the last gcwq a work was
executed on must be reliably obtainable as long as the work structure
is valid even if the previous workqueue has been destroyed.

To achieve this, work->data will be overloaded to carry the last cpu
number once execution starts so that the previous gcwq can be located
reliably.  This means that cwq can't be obtained from work after
execution starts but only gcwq.

Implement set_work_{cwq|cpu}(), get_work_[g]cwq() and
clear_work_data() to set work data to the cpu number when starting
execution, access the overloaded work data and clear it after
cancellation.

queue_delayed_work_on() is updated to preserve the last cpu while
in-flight in timer and other callers which depended on getting cwq
from work after execution starts are converted to depend on gcwq
instead.

* Anton Blanchard fixed compile error on powerpc due to missing
  linux/threads.h include.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Anton Blanchard <anton@samba.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
8cca0eea39 workqueue: add find_worker_executing_work() and track current_cwq
Now that all the workers are tracked by gcwq, we can find which worker
is executing a work from gcwq.  Implement find_worker_executing_work()
and make worker track its current_cwq so that we can find things the
other way around.  This will be used to implement non-reentrant wqs.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
502ca9d819 workqueue: make single thread workqueue shared worker pool friendly
Reimplement st (single thread) workqueue so that it's friendly to
shared worker pool.  It was originally implemented by confining st
workqueues to use cwq of a fixed cpu and always having a worker for
the cpu.  This implementation isn't very friendly to shared worker
pool and suboptimal in that it ends up crossing cpu boundaries often.

Reimplement st workqueue using dynamic single cpu binding and
cwq->limit.  WQ_SINGLE_THREAD is replaced with WQ_SINGLE_CPU.  In a
single cpu workqueue, at most single cwq is bound to the wq at any
given time.  Arbitration is done using atomic accesses to
wq->single_cpu when queueing a work.  Once bound, the binding stays
till the workqueue is drained.

Note that the binding is never broken while a workqueue is frozen.
This is because idle cwqs may have works waiting in delayed_works
queue while frozen.  On thaw, the cwq is restarted if there are any
delayed works or unbound otherwise.

When combined with max_active limit of 1, single cpu workqueue has
exactly the same execution properties as the original single thread
workqueue while allowing sharing of per-cpu workers.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:13 +02:00
Tejun Heo
db7bccf45c workqueue: reimplement CPU hotplugging support using trustee
Reimplement CPU hotplugging support using trustee thread.  On CPU
down, a trustee thread is created and each step of CPU down is
executed by the trustee and workqueue_cpu_callback() simply drives and
waits for trustee state transitions.

CPU down operation no longer waits for works to be drained but trustee
sticks around till all pending works have been completed.  If CPU is
brought back up while works are still draining,
workqueue_cpu_callback() tells trustee to step down and tell workers
to rebind to the cpu.

As it's difficult to tell whether cwqs are empty if it's freezing or
frozen, trustee doesn't consider draining to be complete while a gcwq
is freezing or frozen (tracked by new GCWQ_FREEZING flag).  Also,
workers which get unbound from their cpu are marked with WORKER_ROGUE.

Trustee based implementation doesn't bring any new feature at this
point but it will be used to manage worker pool when dynamic shared
worker pool is implemented.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
c8e55f3602 workqueue: implement worker states
Implement worker states.  After created, a worker is STARTED.  While a
worker isn't processing a work, it's IDLE and chained on
gcwq->idle_list.  While processing a work, a worker is BUSY and
chained on gcwq->busy_hash.  Also, gcwq now counts the number of all
workers and idle ones.

worker_thread() is restructured to reflect state transitions.
cwq->more_work is removed and waking up a worker makes it check for
events.  A worker is killed by setting DIE flag while it's IDLE and
waking it up.

This gives gcwq better visibility of what's going on and allows it to
find out whether a work is executing quickly which is necessary to
have multiple workers processing the same cwq.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
8b03ae3cde workqueue: introduce global cwq and unify cwq locks
There is one gcwq (global cwq) per each cpu and all cwqs on an cpu
point to it.  A gcwq contains a lock to be used by all cwqs on the cpu
and an ida to give IDs to workers belonging to the cpu.

This patch introduces gcwq, moves worker_ida into gcwq and make all
cwqs on the same cpu use the cpu's gcwq->lock instead of separate
locks.  gcwq->ida is now protected by gcwq->lock too.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
a0a1a5fd4f workqueue: reimplement workqueue freeze using max_active
Currently, workqueue freezing is implemented by marking the worker
freezeable and calling try_to_freeze() from dispatch loop.
Reimplement it using cwq->limit so that the workqueue is frozen
instead of the worker.

* workqueue_struct->saved_max_active is added which stores the
  specified max_active on initialization.

* On freeze, all cwq->max_active's are quenched to zero.  Freezing is
  complete when nr_active on all cwqs reach zero.

* On thaw, all cwq->max_active's are restored to wq->saved_max_active
  and the worklist is repopulated.

This new implementation allows having single shared pool of workers
per cpu.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
1e19ffc63d workqueue: implement per-cwq active work limit
Add cwq->nr_active, cwq->max_active and cwq->delayed_work.  nr_active
counts the number of active works per cwq.  A work is active if it's
flushable (colored) and is on cwq's worklist.  If nr_active reaches
max_active, new works are queued on cwq->delayed_work and activated
later as works on the cwq complete and decrement nr_active.

cwq->max_active can be specified via the new @max_active parameter to
__create_workqueue() and is set to 1 for all workqueues for now.  As
each cwq has only single worker now, this double queueing doesn't
cause any behavior difference visible to its users.

This will be used to reimplement freeze/thaw and implement shared
worker pool.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
affee4b294 workqueue: reimplement work flushing using linked works
A work is linked to the next one by having WORK_STRUCT_LINKED bit set
and these links can be chained.  When a linked work is dispatched to a
worker, all linked works are dispatched to the worker's newly added
->scheduled queue and processed back-to-back.

Currently, as there's only single worker per cwq, having linked works
doesn't make any visible behavior difference.  This change is to
prepare for multiple shared workers per cpu.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:12 +02:00
Tejun Heo
c34056a3fd workqueue: introduce worker
Separate out worker thread related information to struct worker from
struct cpu_workqueue_struct and implement helper functions to deal
with the new struct worker.  The only change which is visible outside
is that now workqueue worker are all named "kworker/CPUID:WORKERID"
where WORKERID is allocated from per-cpu ida.

This is in preparation of concurrency managed workqueue where shared
multiple workers would be available per cpu.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:11 +02:00
Tejun Heo
73f53c4aa7 workqueue: reimplement workqueue flushing using color coded works
Reimplement workqueue flushing using color coded works.  wq has the
current work color which is painted on the works being issued via
cwqs.  Flushing a workqueue is achieved by advancing the current work
colors of cwqs and waiting for all the works which have any of the
previous colors to drain.

Currently there are 16 possible colors, one is reserved for no color
and 15 colors are useable allowing 14 concurrent flushes.  When color
space gets full, flush attempts are batched up and processed together
when color frees up, so even with many concurrent flushers, the new
implementation won't build up huge queue of flushers which has to be
processed one after another.

Only works which are queued via __queue_work() are colored.  Works
which are directly put on queue using insert_work() use NO_COLOR and
don't participate in workqueue flushing.  Currently only works used
for work-specific flush fall in this category.

This new implementation leaves only cleanup_workqueue_thread() as the
user of flush_cpu_workqueue().  Just make its users use
flush_workqueue() and kthread_stop() directly and kill
cleanup_workqueue_thread().  As workqueue flushing doesn't use barrier
request anymore, the comment describing the complex synchronization
around it in cleanup_workqueue_thread() is removed together with the
function.

This new implementation is to allow having and sharing multiple
workers per cpu.

Please note that one more bit is reserved for a future work flag by
this patch.  This is to avoid shifting bits and updating comments
later.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:11 +02:00
Tejun Heo
0f900049cb workqueue: update cwq alignement
work->data field is used for two purposes.  It points to cwq it's
queued on and the lower bits are used for flags.  Currently, two bits
are reserved which is always safe as 4 byte alignment is guaranteed on
every architecture.  However, future changes will need more flag bits.

On SMP, the percpu allocator is capable of honoring larger alignment
(there are other users which depend on it) and larger alignment works
just fine.  On UP, percpu allocator is a thin wrapper around
kzalloc/kfree() and don't honor alignment request.

This patch introduces WORK_STRUCT_FLAG_BITS and implements
alloc/free_cwqs() which guarantees max(1 << WORK_STRUCT_FLAG_BITS,
__alignof__(unsigned long long) alignment both on SMP and UP.  On SMP,
simply wrapping percpu allocator is enough.  On UP, extra space is
allocated so that cwq can be aligned and the original pointer can be
stored after it which is used in the free path.

* Alignment problem on UP is reported by Michal Simek.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reported-by: Michal Simek <michal.simek@petalogix.com>
2010-06-29 10:07:11 +02:00
Tejun Heo
1537663f57 workqueue: kill cpu_populated_map
Worker management is about to be overhauled.  Simplify things by
removing cpu_populated_map, creating workers for all possible cpus and
making single threaded workqueues behave more like multi threaded
ones.

After this patch, all cwqs are always initialized, all workqueues are
linked on the workqueues list and workers for all possibles cpus
always exist.  This also makes CPU hotplug support simpler - checking
->cpus_allowed before processing works in worker_thread() and flushing
cwqs on CPU_POST_DEAD are enough.

While at it, make get_cwq() always return the cwq for the specified
cpu, add target_cwq() for cases where single thread distinction is
necessary and drop all direct usage of per_cpu_ptr() on wq->cpu_wq.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:11 +02:00
Tejun Heo
6416669975 workqueue: temporarily remove workqueue tracing
Strip tracing code from workqueue and remove workqueue tracing.  This
is temporary measure till concurrency managed workqueue is complete.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
2010-06-29 10:07:11 +02:00
Tejun Heo
a62428c0ae workqueue: separate out process_one_work()
Separate out process_one_work() out of run_workqueue().  This patch
doesn't cause any behavior change.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:10 +02:00
Tejun Heo
22df02bb3f workqueue: define masks for work flags and conditionalize STATIC flags
Work flags are about to see more traditional mask handling.  Define
WORK_STRUCT_*_BIT as the bit position constant and redefine
WORK_STRUCT_* as bit masks.  Also, make WORK_STRUCT_STATIC_* flags
conditional

While at it, re-define these constants as enums and use
WORK_STRUCT_STATIC instead of hard-coding 2 in
WORK_DATA_STATIC_INIT().

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:10 +02:00
Tejun Heo
97e37d7b9e workqueue: merge feature parameters into flags
Currently, __create_workqueue_key() takes @singlethread and
@freezeable paramters and store them separately in workqueue_struct.
Merge them into a single flags parameter and field and use
WQ_FREEZEABLE and WQ_SINGLE_THREAD.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:10 +02:00
Tejun Heo
4690c4ab56 workqueue: misc/cosmetic updates
Make the following updates in preparation of concurrency managed
workqueue.  None of these changes causes any visible behavior
difference.

* Add comments and adjust indentations to data structures and several
  functions.

* Rename wq_per_cpu() to get_cwq() and swap the position of two
  parameters for consistency.  Convert a direct per_cpu_ptr() access
  to wq->cpu_wq to get_cwq().

* Add work_static() and Update set_wq_data() such that it sets the
  flags part to WORK_STRUCT_PENDING | WORK_STRUCT_STATIC if static |
  @extra_flags.

* Move santiy check on work->entry emptiness from queue_work_on() to
  __queue_work() which all queueing paths share.

* Make __queue_work() take @cpu and @wq instead of @cwq.

* Restructure flush_work() and __create_workqueue_key() to make them
  easier to modify.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:10 +02:00
Tejun Heo
c790bce048 workqueue: kill RT workqueue
With stop_machine() converted to use cpu_stop, RT workqueue doesn't
have any user left.  Kill RT workqueue support.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:09 +02:00
Tejun Heo
82805ab77d kthread: implement kthread_data()
Implement kthread_data() which takes @task pointing to a kthread and
returns @data specified when creating the kthread.  The caller is
responsible for ensuring the validity of @task when calling this
function.

Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 10:07:09 +02:00
Tejun Heo
b56c0d8937 kthread: implement kthread_worker
Implement simple work processor for kthread.  This is to ease using
kthread.  Single thread workqueue used to be used for things like this
but workqueue won't guarantee fixed kthread association anymore to
enable worker sharing.

This can be used in cases where specific kthread association is
necessary, for example, when it should have RT priority or be assigned
to certain cgroup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
2010-06-29 10:07:09 +02:00
Steven Rostedt
a1d0ce8213 tracing: Use class->reg() for all registering of events
Because kprobes and syscalls need special processing to register
events, the class->reg() method was created to handle the differences.

But instead of creating a default ->reg for perf and ftrace events,
the code was scattered with:

	if (class->reg)
		class->reg();
	else
		default_reg();

This is messy and can also lead to bugs.

This patch cleans up this code and creates a default reg() entry for
the events allowing for the code to directly call the class->reg()
without the condition.

Reported-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 21:13:14 -04:00
Chase Douglas
d62f85d1e2 tracing/function-graph: Use correct string size for snprintf
The nsecs_str string is a local variable defined as:

char nsecs_str[5];

It is possible for the snprintf call to use a size value larger than the
size of the string. This should not cause a buffer overrun as it is
written now due to the value for the string format "%03lu" can not be
larger than 1000. However, this change makes it correct. By making the
size correct we guard against potential future changes that could actually
cause a buffer overrun.

Signed-off-by: Chase Douglas <chase.douglas@canonical.com>
LKML-Reference: <1276619355-18116-1-git-send-email-chase.douglas@canonical.com>

[ added 'UL' to number 8 to fix gcc warning comparing it to sizeof() ]

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 21:11:39 -04:00
Li Zefan
67ead0a6ce tracing: Remove open-coded __trace_add_event_call()
Let trace_module_add_events() and event_trace_init() call
__trace_add_event_call().

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BFA37E9.1020106@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 17:12:55 -04:00
Li Zefan
ffb9f99528 tracing: Remove redundant raw_init callbacks
raw_init callback is optional.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BFA37D4.7070500@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 17:12:53 -04:00
Li Zefan
c9d932cf8a tracing: Remove test of NULL define_fields callback
Every event (or event class) has it's define_fields callback,
so the test is redundant.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BFA37BC.8080707@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 17:12:52 -04:00
Li Zefan
8728fe501e tracing: Don't allocate common fields for every trace events
Every event has the same common fields, so it's a big waste of
memory to have a copy of those fields for every event.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BFA3759.30105@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 17:12:46 -04:00
Li Zefan
c9642c49aa tracing: Use a global field list for all syscall exit events
All syscall exit events have the same fields.

The kernel size drops 2.5K:

   text    data     bss     dec     hex filename
7018612 2034376 7251132 16304120         f8c7f8 vmlinux.o.orig
7018612 2031888 7251132 16301632         f8be40 vmlinux.o

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BFA3746.8070100@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-28 17:12:44 -04:00
Thomas Gleixner
f384c954c9 Merge branch 'linus' into perf/core
Reason: Further changes conflict with upstream fixes

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-06-28 22:33:24 +02:00
Linus Torvalds
5904b3b81d Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  tracing: Fix undeclared ENOSYS in include/linux/tracepoint.h
  perf record: prevent kill(0, SIGTERM);
  perf session: Remove threads from tree on PERF_RECORD_EXIT
  perf/tracing: Fix regression of perf losing kprobe events
  perf_events: Fix Intel Westmere event constraints
  perf record: Don't call newt functions when not initialized
2010-06-28 12:24:43 -07:00
Linus Torvalds
f3866db8f7 Merge branch 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  genirq: Deal with desc->set_type() changing desc->chip
2010-06-28 12:23:12 -07:00
Linus Torvalds
f014d937d6 Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: Prevent compiler from optimising the sched_avg_update() loop
  sched: Fix over-scheduling bug
  sched: Fix PROVE_RCU vs cpu_cgroup
2010-06-28 12:18:30 -07:00
Linus Torvalds
cf91b415c8 Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  nohz: Fix nohz ratelimit
2010-06-28 12:18:02 -07:00
Linus Torvalds
e6cb6281ef Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: silence PROVE_RCU in sched_fork()
  idr: fix RCU lockdep splat in idr_get_next()
  rcu: apply RCU protection to wake_affine()
2010-06-28 12:17:40 -07:00
Will Deacon
0d98bb2656 sched: Prevent compiler from optimising the sched_avg_update() loop
GCC 4.4.1 on ARM has been observed to replace the while loop in
sched_avg_update with a call to uldivmod, resulting in the
following build failure at link-time:

kernel/built-in.o: In function `sched_avg_update':
 kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod'
 kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod'
make: *** [.tmp_vmlinux1] Error 1

This patch introduces a fake data hazard to the loop body to
prevent the compiler optimising the loop away.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-25 16:11:50 +02:00
Frederic Weisbecker
45a73372ef hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.

Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.

So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.

To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.

So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.

In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.

Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700   Not tainted  (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR>  CR: 44004424  XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170

Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-24 23:33:40 +02:00
Peter Zijlstra
8695159967 sched: silence PROVE_RCU in sched_fork()
Because cgroup_fork() is ran before sched_fork() [ from copy_process() ]
and the child's pid is not yet visible the child is pinned to its
cgroup. Therefore we can silence this warning.

A nicer solution would be moving cgroup_fork() to right after
dup_task_struct() and exclude PF_STARTING from task_subsys_state().

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-06-23 15:14:09 -07:00
Daniel J Blueman
f3b577dec1 rcu: apply RCU protection to wake_affine()
The task_group() function returns a pointer that must be protected
by either RCU, the ->alloc_lock, or the cgroup lock (see the
rcu_dereference_check() in task_subsys_state(), which is invoked by
task_group()).  The wake_affine() function currently does none of these,
which means that a concurrent update would be within its rights to free
the structure returned by task_group().  Because wake_affine() uses this
structure only to compute load-balancing heuristics, there is no reason
to acquire either of the two locks.

Therefore, this commit introduces an RCU read-side critical section that
starts before the first call to task_group() and ends after the last use
of the "tg" pointer returned from task_group().  Thanks to Li Zefan for
pointing out the need to extend the RCU read-side critical section from
that proposed by the original patch.

Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-06-23 06:50:44 -07:00
K.Prasad
f7136c5150 hw_breakpoints: Allow arch-specific cleanup before breakpoint unregistration
Certain architectures (such as PowerPC) have a need to clean up data
structures before a breakpoint is unregistered.  This introduces an
arch-specific hook in release_bp_slot() along with a weak definition
in the form of a stub function.

Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2010-06-22 19:40:50 +10:00
Tejun Heo
0b2e918aa9 sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
Commit 3a101d05 (sched: adjust when cpu_active and cpuset
configurations are updated during cpu on/offlining) added
hotplug notifiers marked with __cpuexit; however, ia64 drops
text in __cpuexit during link unlike x86.

This means that functions which are referenced during init but used
only for cpu hot unplugging afterwards shouldn't be marked with
__cpuexit. Drop __cpuexit from those functions.

Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <4C1FDF5B.1040301@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-22 08:07:39 +02:00
Ingo Molnar
646b1db495 Merge commit 'v2.6.35-rc3' into perf/core
Merge reason: Go from -rc1 base to -rc3 base, merge in fixes.
2010-06-18 10:53:19 +02:00
Oleg Nesterov
8d1f431cbe sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
fastpath_timer_check()->thread_group_cputimer() is racy and
unneeded.

It is racy because another thread can clear ->running before
thread_group_cputimer() takes cputimer->lock. In this case
thread_group_cputimer() will set ->running = true again and call
thread_group_cputime(). But since we do not hold tasklist or
siglock, we can race with fork/exit and copy the wrong results
into cputimer->cputime.

It is unneeded because if ->running == true we can just use
the numbers in cputimer->cputime we already have.

Change fastpath_timer_check() to copy cputimer->cputime into
the local variable under cputimer->lock. We do not re-check
->running under cputimer->lock, run_posix_cpu_timers() does
this check later.

Note: we can add more optimizations on top of this change.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100611180446.GA13025@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-18 10:46:57 +02:00
Oleg Nesterov
0bdd2ed413 sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
run_posix_cpu_timers() doesn't work if current has already passed
exit_notify(). This was needed to prevent the races with do_wait().

Since ea6d290c ->signal is always valid and can't go away. We can
remove the "tsk->exit_state == 0" in fastpath_timer_check() and
convert run_posix_cpu_timers() to use lock_task_sighand().

Note: it makes sense to take group_leader's sighand instead, the
sub-thread still uses CPU after release_task(). But we need more
changes to do this.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100610231018.GA25942@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-18 10:46:57 +02:00