IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In the Rx protocol, every packet generated is marked with a per-connection
monotonically increasing serial number. This number can be referenced in
an ACK packet generated in response to an incoming packet - thereby
allowing the sender to use this for RTT determination, amongst other
things.
However, if the reference field in the ACK is zero, it doesn't refer to any
incoming packet (it could be a ping to find out if a packet got lost, for
example) - so we shouldn't generate zero serial numbers.
Fix the generation of serial numbers to retry if it comes up with a zero.
Furthermore, since the serial numbers are only ever allocated within the
I/O thread this connection is bound to, there's no need for atomics so
remove that too.
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
rxrpc normally has the Don't Fragment flag set on the UDP packets it
transmits, except when it has decided that DATA packets aren't getting
through - in which case it turns it off just for the DATA transmissions.
This can be a problem, however, for RESPONSE packets that convey
authentication and crypto data from the client to the server as ticket may
be larger than can fit in the MTU.
In such a case, rxrpc gets itself into an infinite loop as the sendmsg
returns an error (EMSGSIZE), which causes rxkad_send_response() to return
-EAGAIN - and the CHALLENGE packet is put back on the Rx queue to retry,
leading to the I/O thread endlessly attempting to perform the transmission.
Fix this by disabling DF on RESPONSE packets for now. The use of DF and
best data MTU determination needs reconsidering at some point in the
future.
Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/1581852.1704813048@warthog.procyon.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Log ack.rwind in the rxrpc_tx_ack tracepoint. This value is useful to see
as it represents flow-control information to the peer.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
We no longer need local->defrag_sem as all DATA packet transmission is now
done from one thread, so remove it.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Now that general ACK transmission is done from the same thread as incoming
DATA packet wrangling, there's no possibility that the SACK table will be
being updated by the latter whilst the former is trying to copy it to an
ACK.
This means that we can safely rotate the SACK table whilst updating it
without having to take a lock, rather than keeping all the bits inside it
in fixed place and copying and then rotating it in the transmitter.
Therefore, simplify SACK handing by keeping track of starting point in the
ring and rotate slots down as we consume them.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
call->ackr_window doesn't need to be atomic as ACK generation and ACK
transmission are now done in the same thread, so drop the atomic64 handling
and split it into two separate members.
Similarly, call->ackr_nr_unacked doesn't need to be atomic now either.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
When doing a call that has a single transmitted data packet and a massive
amount of received data packets, we only ping for one RTT sample, which
means we don't get a good reading on it.
Fix this by converting occasional IDLE ACKs into PING ACKs to elicit a
response.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
All the setters of call->state are now in the I/O thread and thus the state
lock is now unnecessary.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Clean up connection abort, using the connection state_lock to gate access
to change that state, and use an rxrpc_call_completion value to indicate
the difference between local and remote aborts as these can be pasted
directly into the call state.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
For ACKs generated inside the I/O thread, transmit the ACK at the point of
generation. Where the ACK is generated outside of the I/O thread, it's
offloaded to the I/O thread to transmit it.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Add a tracepoint to log when a cwnd reset occurs due to lack of
transmission on a call.
Add stat counters to count transmission underflows (ie. when we have tx
window space, but sendmsg doesn't manage to keep up), cwnd resets and
transmission failures.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
None of the spinlocks in rxrpc need a _bh annotation now as the RCU
callback routines no longer take spinlocks and the bulk of the packet
wrangling code is now run in the I/O thread, not softirq context.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Move the functions from the call->processor and local->processor work items
into the domain of the I/O thread.
The call event processor, now called from the I/O thread, then takes over
the job of cranking the call state machine, processing incoming packets and
transmitting DATA, ACK and ABORT packets. In a future patch,
rxrpc_send_ACK() will transmit the ACK on the spot rather than queuing it
for later transmission.
The call event processor becomes purely received-skb driven. It only
transmits things in response to events. We use "pokes" to queue a dummy
skb to make it do things like start/resume transmitting data. Timer expiry
also results in pokes.
The connection event processor, becomes similar, though crypto events, such
as dealing with CHALLENGE and RESPONSE packets is offloaded to a work item
to avoid doing crypto in the I/O thread.
The local event processor is removed and VERSION response packets are
generated directly from the packet parser. Similarly, ABORTs generated in
response to protocol errors will be transmitted immediately rather than
being pushed onto a queue for later transmission.
Changes:
========
ver #2)
- Fix a couple of introduced lock context imbalances.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Remove the RCU requirements from the peer's list of error targets so that
the error distributor can call sleeping functions.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Move DATA transmission into the call processor work item. In a future
patch, this will be called from the I/O thread rather than being itsown
work item.
This will allow DATA transmission to be driven directly by incoming ACKs,
pokes and timers as those are processed.
The Tx queue is also split: The queue of packets prepared by sendmsg is now
places in call->tx_sendmsg and the packet dispatcher decants the packets
into call->tx_buffer as space becomes available in the transmission
window. This allows sendmsg to run ahead of the available space to try and
prevent an underflow in transmission.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Copy client call parameters into rxrpc_call earlier so that that can be
used to convey them to the connection code - which can then be offloaded to
the I/O thread.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the sk_buff tracepoint.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the rxrpc_call tracepoint
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the rxrpc_local tracepoint
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Remove the rxrpc_conn_parameters struct from the rxrpc_connection and
rxrpc_bundle structs and emplace the members directly. These are going to
get filled in from the rxrpc_call struct in future.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Remove the kproto() and _proto() debugging macros in preference to using
tracepoints for this.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmN0mecACgkQ+7dXa6fL
C2sHIg/8Ce7qGGeGBlDXtpHumvLAOKh/Aq45GC68M6ZyScckIOXUYKSHnM+3XWln
lUcuidsTyjHK7YRXzSLYZ56WREbr3GelEF1jh4iTt+UxBUn0gNV5C5PJQBL4KWcR
qU5ZVlnbOHb19XzRsWSMjAhdAulwnG7nhvuKB+Zo1mx7VVLKED9DCQ3A+Mm92Dm9
DjV/skzh0PI1zTBMdM7DolydftizGOO6yiFjhd8ktzIZj0TdifB63bVbMgoasQrO
SO+ZT9F4l/swiv12qgsYUH09SFdp2fdX3gt4Lj1JhwmXq/iSmeiHnvpJdbUW7RiI
jDKLiE0XpXwix29P26gq+Sdsb2pd7Ni3+YY6Qteln7RekIe6g3g2xwOLbkIgpTvc
NcwAbn0CL+ZLLts/udeIKHL5+ux1HZAAaHwftgysCHULLvxP4NrIcWrzVqzOLA9V
SH2MI6fYuOUbpgsoGxgv0+8f7MOrgUW2C9ySHjZfUPAqhAG8DinqX9gdUiYPMVF9
GrqrETmmaJCxuQaFQ8BsWKkP+KLfsi3UfEOwv7HdHjOqvCKSXOg5hHjv6Ctpp5Kv
yTj2BcAHjKB8FtuJ4h30UzVLhF1gquud+lPiO3Gbvbjhp1G1EQPwtcYjUamUre+w
lxZ870Z/jEbqEOrH7Xh1VvoKcgtp8Y9idJeU+8VNLL/r96nCF2E=
=xivU
-----END PGP SIGNATURE-----
Merge tag 'rxrpc-next-20221116' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
David Howells says:
====================
rxrpc: Fix oops and missing config conditionals
The patches that were pulled into net-next previously[1] had some issues
that this patchset fixes:
(1) Fix missing IPV6 config conditionals.
(2) Fix an oops caused by calling udpv6_sendmsg() directly on an AF_INET
socket.
(3) Fix the validation of network addresses on entry to socket functions
so that we don't allow an AF_INET6 address if we've selected an
AF_INET transport socket.
Link: https://lore.kernel.org/r/166794587113.2389296.16484814996876530222.stgit@warthog.procyon.org.uk/ [1]
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The "pkt" was supposed to have been deleted in a previous patch. It
leads to an uninitialized variable bug.
Fixes: 72f0c6fb0579 ("rxrpc: Allocate ACK records at proposal and queue for transmission")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If rxrpc sees an IPv6 address, it assumes it can call udpv6_sendmsg() on it
- even if it got it on an IPv4 socket. Fix do_udp_sendmsg() to give an
error in such a case.
general protection fault, probably for non-canonical address
0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
...
RIP: 0010:ipv6_addr_v4mapped include/net/ipv6.h:749 [inline]
RIP: 0010:udpv6_sendmsg+0xd0a/0x2c70 net/ipv6/udp.c:1361
...
Call Trace:
do_udp_sendmsg net/rxrpc/output.c:27 [inline]
do_udp_sendmsg net/rxrpc/output.c:21 [inline]
rxrpc_send_abort_packet+0x73b/0x860 net/rxrpc/output.c:367
rxrpc_release_calls_on_socket+0x211/0x300 net/rxrpc/call_object.c:595
rxrpc_release_sock net/rxrpc/af_rxrpc.c:886 [inline]
rxrpc_release+0x263/0x5a0 net/rxrpc/af_rxrpc.c:917
__sock_release+0xcd/0x280 net/socket.c:650
sock_close+0x18/0x20 net/socket.c:1365
__fput+0x27c/0xa90 fs/file_table.c:320
task_work_run+0x16b/0x270 kernel/task_work.c:179
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0xb35/0x2a20 kernel/exit.c:820
do_group_exit+0xd0/0x2a0 kernel/exit.c:950
__do_sys_exit_group kernel/exit.c:961 [inline]
__se_sys_exit_group kernel/exit.c:959 [inline]
__x64_sys_exit_group+0x3a/0x50 kernel/exit.c:959
Fixes: ed472b0c8783 ("rxrpc: Call udp_sendmsg() directly")
Reported-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
rxrpc has a problem in its congestion management in that it saves the
congestion window size (cwnd) from one call to another, but if this is 0 at
the time is saved, then the next call may not actually manage to ever
transmit anything.
To this end:
(1) Don't save cwnd between calls, but rather reset back down to the
initial cwnd and re-enter slow-start if data transmission is idle for
more than an RTT.
(2) Preserve ssthresh instead, as that is a handy estimate of pipe
capacity. Knowing roughly when to stop slow start and enter
congestion avoidance can reduce the tendency to overshoot and drop
larger amounts of packets when probing.
In future, cwind growth also needs to be constrained when the window isn't
being filled due to being application limited.
Reported-by: Simon Wilkinson <sxw@auristor.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
call->lock is no longer necessary, so remove it.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Change the way the Tx queueing works to make the following ends easier to
achieve:
(1) The filling of packets, the encryption of packets and the transmission
of packets can be handled in parallel by separate threads, rather than
rxrpc_sendmsg() allocating, filling, encrypting and transmitting each
packet before moving onto the next one.
(2) Get rid of the fixed-size ring which sets a hard limit on the number
of packets that can be retained in the ring. This allows the number
of packets to increase without having to allocate a very large ring or
having variable-sized rings.
[Note: the downside of this is that it's then less efficient to locate
a packet for retransmission as we then have to step through a list and
examine each buffer in the list.]
(3) Allow the filler/encrypter to run ahead of the transmission window.
(4) Make it easier to do zero copy UDP from the packet buffers.
(5) Make it easier to do zero copy from userspace to the packet buffers -
and thence to UDP (only if for unauthenticated connections).
To that end, the following changes are made:
(1) Use the new rxrpc_txbuf struct instead of sk_buff for keeping packets
to be transmitted in. This allows them to be placed on multiple
queues simultaneously. An sk_buff isn't really necessary as it's
never passed on to lower-level networking code.
(2) Keep the transmissable packets in a linked list on the call struct
rather than in a ring. As a consequence, the annotation buffer isn't
used either; rather a flag is set on the packet to indicate ackedness.
(3) Use the RXRPC_CALL_TX_LAST flag to indicate that the last packet to be
transmitted has been queued. Add RXRPC_CALL_TX_ALL_ACKED to indicate
that all packets up to and including the last got hard acked.
(4) Wire headers are now stored in the txbuf rather than being concocted
on the stack and they're stored immediately before the data, thereby
allowing zerocopy of a single span.
(5) Don't bother with instant-resend on transmission failure; rather,
leave it for a timer or an ACK packet to trigger.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Get rid of the Rx ring and replace it with a pair of queues instead. One
queue gets the packets that are in-sequence and are ready for processing by
recvmsg(); the other queue gets the out-of-sequence packets for addition to
the first queue as the holes get filled.
The annotation ring is removed and replaced with a SACK table. The SACK
table has the bits set that correspond exactly to the sequence number of
the packet being acked. The SACK ring is copied when an ACK packet is
being assembled and rotated so that the first ACK is in byte 0.
Flow control handling is altered so that packets that are moved to the
in-sequence queue are hard-ACK'd even before they're consumed - and then
the Rx window size in the ACK packet (rsize) is shrunk down to compensate
(even going to 0 if the window is full).
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Split up received jumbo packets into separate skbuffs by cloning the
original skbuff for each subpacket and setting the offset and length of the
data in that subpacket in the skbuff's private data. The subpackets are
then placed on the recvmsg queue separately. The security class then gets
to revise the offset and length to remove its metadata.
If we fail to clone a packet, we just drop it and let the peer resend it.
The original packet gets used for the final subpacket.
This should make it easier to handle parallel decryption of the subpackets.
It also simplifies the handling of lost or misordered packets in the
queuing/buffering loop as the possibility of overlapping jumbo packets no
longer needs to be considered.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Clean up the rxrpc_propose_ACK() function. If deferred PING ACK proposal
is split out, it's only really needed for deferred DELAY ACKs. All other
ACKs, bar terminal IDLE ACK are sent immediately. The deferred IDLE ACK
submission can be handled by conversion of a DELAY ACK into an IDLE ACK if
there's nothing to be SACK'd.
Also, because there's a delay between an ACK being generated and being
transmitted, it's possible that other ACKs of the same type will be
generated during that interval. Apart from the ACK time and the serial
number responded to, most of the ACK body, including window and SACK
parameters, are not filled out till the point of transmission - so we can
avoid generating a new ACK if there's one pending that will cover the SACK
data we need to convey.
Therefore, don't propose a new DELAY or IDLE ACK for a call if there's one
already pending.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Allocate rxrpc_txbuf records for ACKs and put onto a queue for the
transmitter thread to dispatch.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Call udp_sendmsg() and udpv6_sendmsg() directly rather than calling
kernel_sendmsg() as the latter assumes we want a kvec-class iterator.
However, zerocopy explicitly doesn't work with such an iterator.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
ack.bufferSize should be set to 0 when generating an ack.
Fixes: 8d94aa381dab ("rxrpc: Calls shouldn't hold socket refs")
Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Record stats for why the REQUEST-ACK flag is being set.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Record statistics about the different types of ACKs that have been
transmitted and received and the number of ACKs that have been filled out
and transmitted or that have been skipped.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Add a procfile, /proc/net/rxrpc/stats, to display some statistics about
what rxrpc has been doing. Writing a blank line to the stats file will
clear the increment-only counters. Allocated resource counters don't get
cleared.
Add some counters to count various things about DATA packets, including the
number created, transmitted and retransmitted and the number received, the
number of ACK-requests markings and the number of jumbo packets received.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Add a tracepoint to log why the request-ack flag is set on an outgoing DATA
packet, allowing debugging as to why.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Fix the decision on when to generate an IDLE ACK by keeping a count of the
number of packets we've received, but not yet soft-ACK'd, and the number of
packets we've processed, but not yet hard-ACK'd, rather than trying to keep
track of which DATA sequence numbers correspond to those points.
We then generate an ACK when either counter exceeds 2. The counters are
both cleared when we transcribe the information into any sort of ACK packet
for transmission. IDLE and DELAY ACKs are skipped if both counters are 0
(ie. no change).
Fixes: 805b21b929e2 ("rxrpc: Send an ACK after every few DATA packets we receive")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
The previousPacket field in the rx ACK packet should never go backwards -
it's now the highest DATA sequence number received, not the last on
received (it used to be used for out of sequence detection).
Fixes: 248f219cb8bc ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Improve retransmission backoff by only backing off when we retransmit data
packets rather than when we set the lost ack timer.
To this end:
(1) In rxrpc_resend(), use rxrpc_get_rto_backoff() when setting the
retransmission timer and only tell it that we are retransmitting if we
actually have things to retransmit.
Note that it's possible for the retransmission algorithm to race with
the processing of a received ACK, so we may see no packets needing
retransmission.
(2) In rxrpc_send_data_packet(), don't bump the backoff when setting the
ack_lost_at timer, as it may then get bumped twice.
With this, when looking at one particular packet, the retransmission
intervals were seen to be 1.5ms, 2ms, 3ms, 5ms, 9ms, 17ms, 33ms, 71ms,
136ms, 264ms, 544ms, 1.088s, 2.1s, 4.2s and 8.3s.
Fixes: c410bf01933e ("rxrpc: Fix the excessive initial retransmission timeout")
Suggested-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/164138117069.2023386.17446904856843997127.stgit@warthog.procyon.org.uk/
Signed-off-by: David S. Miller <davem@davemloft.net>
Rewrite the rxrpc client connection manager so that it can support multiple
connections for a given security key to a peer. The following changes are
made:
(1) For each open socket, the code currently maintains an rbtree with the
connections placed into it, keyed by communications parameters. This
is tricky to maintain as connections can be culled from the tree or
replaced within it. Connections can require replacement for a number
of reasons, e.g. their IDs span too great a range for the IDR data
type to represent efficiently, the call ID numbers on that conn would
overflow or the conn got aborted.
This is changed so that there's now a connection bundle object placed
in the tree, keyed on the same parameters. The bundle, however, does
not need to be replaced.
(2) An rxrpc_bundle object can now manage the available channels for a set
of parallel connections. The lock that manages this is moved there
from the rxrpc_connection struct (channel_lock).
(3) There'a a dummy bundle for all incoming connections to share so that
they have a channel_lock too. It might be better to give each
incoming connection its own bundle. This bundle is not needed to
manage which channels incoming calls are made on because that's the
solely at whim of the client.
(4) The restrictions on how many client connections are around are
removed. Instead, a previous patch limits the number of client calls
that can be allocated. Ordinarily, client connections are reaped
after 2 minutes on the idle queue, but when more than a certain number
of connections are in existence, the reaper starts reaping them after
2s of idleness instead to get the numbers back down.
It could also be made such that new call allocations are forced to
wait until the number of outstanding connections subsides.
Signed-off-by: David Howells <dhowells@redhat.com>
The Rx protocol has a mechanism to help generate RTT samples that works by
a client transmitting a REQUESTED-type ACK when it receives a DATA packet
that has the REQUEST_ACK flag set.
The peer, however, may interpose other ACKs before transmitting the
REQUESTED-ACK, as can be seen in the following trace excerpt:
rxrpc_tx_data: c=00000044 DATA d0b5ece8:00000001 00000001 q=00000001 fl=07
rxrpc_rx_ack: c=00000044 00000001 PNG r=00000000 f=00000002 p=00000000 n=0
rxrpc_rx_ack: c=00000044 00000002 REQ r=00000001 f=00000002 p=00000001 n=0
...
DATA packet 1 (q=xx) has REQUEST_ACK set (bit 1 of fl=xx). The incoming
ping (labelled PNG) hard-acks the request DATA packet (f=xx exceeds the
sequence number of the DATA packet), causing it to be discarded from the Tx
ring. The ACK that was requested (labelled REQ, r=xx references the serial
of the DATA packet) comes after the ping, but the sk_buff holding the
timestamp has gone and the RTT sample is lost.
This is particularly noticeable on RPC calls used to probe the service
offered by the peer. A lot of peers end up with an unknown RTT because we
only ever sent a single RPC. This confuses the server rotation algorithm.
Fix this by caching the information about the outgoing packet in RTT
calculations in the rxrpc_call struct rather than looking in the Tx ring.
A four-deep buffer is maintained and both REQUEST_ACK-flagged DATA and
PING-ACK transmissions are recorded in there. When the appropriate
response ACK is received, the buffer is checked for a match and, if found,
an RTT sample is recorded.
If a received ACK refers to a packet with a later serial number than an
entry in the cache, that entry is presumed lost and the entry is made
available to record a new transmission.
ACKs types other than REQUESTED-type and PING-type cause any matching
sample to be cancelled as they don't necessarily represent a useful
measurement.
If there's no space in the buffer on ping/data transmission, the sample
base is discarded.
Fixes: 50235c4b5a2f ("rxrpc: Obtain RTT data by requesting ACKs on DATA packets")
Signed-off-by: David Howells <dhowells@redhat.com>
Add a helper to directly set the IP_MTU_DISCOVER sockopt from kernel
space without going through a fake uaccess.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com> [rxrpc bits]
Signed-off-by: David S. Miller <davem@davemloft.net>
rxrpc currently uses a fixed 4s retransmission timeout until the RTT is
sufficiently sampled. This can cause problems with some fileservers with
calls to the cache manager in the afs filesystem being dropped from the
fileserver because a packet goes missing and the retransmission timeout is
greater than the call expiry timeout.
Fix this by:
(1) Copying the RTT/RTO calculation code from Linux's TCP implementation
and altering it to fit rxrpc.
(2) Altering the various users of the RTT to make use of the new SRTT
value.
(3) Replacing the use of rxrpc_resend_timeout to use the calculated RTO
value instead (which is needed in jiffies), along with a backoff.
Notes:
(1) rxrpc provides RTT samples by matching the serial numbers on outgoing
DATA packets that have the RXRPC_REQUEST_ACK set and PING ACK packets
against the reference serial number in incoming REQUESTED ACK and
PING-RESPONSE ACK packets.
(2) Each packet that is transmitted on an rxrpc connection gets a new
per-connection serial number, even for retransmissions, so an ACK can
be cross-referenced to a specific trigger packet. This allows RTT
information to be drawn from retransmitted DATA packets also.
(3) rxrpc maintains the RTT/RTO state on the rxrpc_peer record rather than
on an rxrpc_call because many RPC calls won't live long enough to
generate more than one sample.
(4) The calculated SRTT value is in units of 8ths of a microsecond rather
than nanoseconds.
The (S)RTT and RTO values are displayed in /proc/net/rxrpc/peers.
Fixes: 17926a79320a ([AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both"")
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the DATA packet transmission to disable nofrag for UDPv4 on an AF_INET6
socket as well as UDPv6 when trying to transmit fragmentably.
Without this, packets filled to the normal size used by the kernel AFS
client of 1412 bytes be rejected by udp_sendmsg() with EMSGSIZE
immediately. The ->sk_error_report() notification hook is called, but
rxrpc doesn't generate a trace for it.
This is a temporary fix; a more permanent solution needs to involve
changing the size of the packets being filled in accordance with the MTU,
which isn't currently done in AF_RXRPC. The reason for not doing so was
that, barring the last packet in an rx jumbo packet, jumbos can only be
assembled out of 1412-byte packets - and the plan was to construct jumbos
on the fly at transmission time.
Also, there's no point turning on IPV6_MTU_DISCOVER, since IPv6 has to
engage in this anyway since fragmentation is only done by the sender. We
can then condense the switch-statement in rxrpc_send_data_packet().
Fixes: 75b54cb57ca3 ("rxrpc: Add IPv6 support")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a call is disconnected, the connection pointer from the call is
cleared to make sure it isn't used again and to prevent further attempted
transmission for the call. Unfortunately, there might be a daemon trying
to use it at the same time to transmit a packet.
Fix this by keeping call->conn set, but setting a flag on the call to
indicate disconnection instead.
Remove also the bits in the transmission functions where the conn pointer is
checked and a ref taken under spinlock as this is now redundant.
Fixes: 8d94aa381dab ("rxrpc: Calls shouldn't hold socket refs")
Signed-off-by: David Howells <dhowells@redhat.com>
Use the previously-added transmit-phase skbuff private flag to simplify the
socket buffer tracing a bit. Which phase the skbuff comes from can now be
divined from the skb rather than having to be guessed from the call state.
We can also reduce the number of rxrpc_skb_trace values by eliminating the
difference between Tx and Rx in the symbols.
Signed-off-by: David Howells <dhowells@redhat.com>
Don't bother generating maxSkew in the ACK packet as it has been obsolete
since AFS 3.1.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeffrey Altman <jaltman@auristor.com>
With gcc 4.1:
net/rxrpc/output.c: In function ‘rxrpc_send_data_packet’:
net/rxrpc/output.c:338: warning: ‘ret’ may be used uninitialized in this function
Indeed, if the first jump to the send_fragmentable label is made, and
the address family is not handled in the switch() statement, ret will be
used uninitialized.
Fix this by BUG()'ing as is done in other places in rxrpc where internal
support for future address families will need adding. It should not be
possible to reach this normally as the address families are checked
up-front.
Fixes: 5a924b8951f835b5 ("rxrpc: Don't store the rxrpc header in the Tx queue sk_buffs")
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>