IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Both ARM946 and ARM940 setup functions were corrupting r1 and r2,
which is not permissible - these are used to carry the machine ID
and boot data into the kernel, and must be preserved.
The code responsible for this was the same in both files: they were
using the registers to generate a protection region register value.
Fix this by turning this process into a macro, and using that macro
in both these files with an alternative register allocation. r0,
r3 and r7 can be used for temporary values here.
Reported-by: Alex Dumitrache <broscutamaker@gmail.com>
Tested-by: Georg Hofstetter <g3gg0.de@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch replaces the 'branch to setup()' instructions embedded
in the PROCINFO structs with the offset to that setup function
relative to the base of the struct. This preserves the position
independent nature of that field, but uses a data item rather
than an instruction.
This is mainly done to prevent linker failures on large kernels,
where the setup function is out of reach for the branch.
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv6 and greater introduced a new instruction ("bx") which can be used
to return from function calls. Recent CPUs perform better when the
"bx lr" instruction is used rather than the "mov pc, lr" instruction,
and this sequence is strongly recommended to be used by the ARM
architecture manual (section A.4.1.1).
We provide a new macro "ret" with all its variants for the condition
code which will resolve to the appropriate instruction.
Rather than doing this piecemeal, and miss some instances, change all
the "mov pc" instances to use the new macro, with the exception of
the "movs" instruction and the kprobes code. This allows us to detect
the "mov pc, lr" case and fix it up - and also gives us the possibility
of deploying this for other registers depending on the CPU selection.
Reported-by: Will Deacon <will.deacon@arm.com>
Tested-by: Stephen Warren <swarren@nvidia.com> # Tegra Jetson TK1
Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> # mioa701_bootresume.S
Tested-by: Andrew Lunn <andrew@lunn.ch> # Kirkwood
Tested-by: Shawn Guo <shawn.guo@freescale.com>
Tested-by: Tony Lindgren <tony@atomide.com> # OMAPs
Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> # Armada XP, 375, 385
Acked-by: Sekhar Nori <nsekhar@ti.com> # DaVinci
Acked-by: Christoffer Dall <christoffer.dall@linaro.org> # kvm/hyp
Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com> # PXA3xx
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> # Xen
Tested-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> # ARMv7M
Tested-by: Simon Horman <horms+renesas@verge.net.au> # Shmobile
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
and are flagged as __cpuinit -- so if we remove the __cpuinit from
the arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
related content into no-ops as early as possible, since that will get
rid of these warnings. In any case, they are temporary and harmless.
This removes all the ARM uses of the __cpuinit macros from C code,
and all __CPUINIT from assembly code. It also had two ".previous"
section statements that were paired off against __CPUINIT
(aka .section ".cpuinit.text") that also get removed here.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
ARM v7 architecture introduced the concept of cache levels and related
control registers. New processors like A7 and A15 embed an L2 unified cache
controller that becomes part of the cache level hierarchy. Some operations in
the kernel like cpu_suspend and __cpu_disable do not require a flush of the
entire cache hierarchy to DRAM but just the cache levels belonging to the
Level of Unification Inner Shareable (LoUIS), which in most of ARM v7 systems
correspond to L1.
The current cache flushing API used in cpu_suspend and __cpu_disable,
flush_cache_all(), ends up flushing the whole cache hierarchy since for
v7 it cleans and invalidates all cache levels up to Level of Coherency
(LoC) which cripples system performance when used in hot paths like hotplug
and cpuidle.
Therefore a new kernel cache maintenance API must be added to cope with
latest ARM system requirements.
This patch adds flush_cache_louis() to the ARM kernel cache maintenance API.
This function cleans and invalidates all data cache levels up to the
Level of Unification Inner Shareable (LoUIS) and invalidates the instruction
cache for processors that support it (> v7).
This patch also creates an alias of the cache LoUIS function to flush_kern_all
for all processor versions prior to v7, so that the current cache flushing
behaviour is unchanged for those processors.
v7 cache maintenance code implements a cache LoUIS function that cleans and
invalidates the D-cache up to LoUIS and invalidates the I-cache, according
to the new API.
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
The cacheflush syscall can fail for two reasons:
(1) The arguments are invalid (nonsensical address range or no VMA)
(2) The region generates a translation fault on a VIPT or PIPT cache
This patch allows do_cache_op to return an error code to userspace in
the case of the above. The various coherent_user_range implementations
are modified to return 0 in the case of VIVT caches or -EFAULT in the
case of an abort on v6/v7 cores.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The CPU reset functions disable the MMU and therefore must be executed
with an identity mapping in place.
This patch places the CPU reset functions into the .idmap.text section,
causing the idmap code to include them as part of the identity mapping.
Acked-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This adds core support for saving and restoring CPU coprocessor
registers for suspend/resume support. This contains support for suspend
with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs.
Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Tested-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 81d11955bf ("ARM: 6405/1: Handle __flush_icache_all for
CONFIG_SMP_ON_UP") added a new function to struct cpu_cache_fns:
flush_icache_all(). It also implemented this for v6 and v7 but not
for v5 and backwards. Without the function pointer in place, we
will be calling wrong cache functions.
For example with ep93xx we get following:
Unable to handle kernel paging request at virtual address ee070f38
pgd = c0004000
[ee070f38] *pgd=00000000
Internal error: Oops: 80000005 [#1] PREEMPT
last sysfs file:
Modules linked in:
CPU: 0 Not tainted (2.6.36+ #1)
PC is at 0xee070f38
LR is at __dma_alloc+0x11c/0x2d0
pc : [<ee070f38>] lr : [<c0032c8c>] psr: 60000013
sp : c581bde0 ip : 00000000 fp : c0472000
r10: c0472000 r9 : 000000d0 r8 : 00020000
r7 : 0001ffff r6 : 00000000 r5 : c0472400 r4 : c5980000
r3 : c03ab7e0 r2 : 00000000 r1 : c59a0000 r0 : c5980000
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel
Control: c000717f Table: c0004000 DAC: 00000017
Process swapper (pid: 1, stack limit = 0xc581a270)
[<c0032c8c>] (__dma_alloc+0x11c/0x2d0)
[<c0032e5c>] (dma_alloc_writecombine+0x1c/0x24)
[<c0204148>] (ep93xx_pcm_preallocate_dma_buffer+0x44/0x60)
[<c02041c0>] (ep93xx_pcm_new+0x5c/0x88)
[<c01ff188>] (snd_soc_instantiate_cards+0x8a8/0xbc0)
[<c01ff59c>] (soc_probe+0xfc/0x134)
[<c01adafc>] (platform_drv_probe+0x18/0x1c)
[<c01acca4>] (driver_probe_device+0xb0/0x16c)
[<c01ac284>] (bus_for_each_drv+0x48/0x84)
[<c01ace90>] (device_attach+0x50/0x68)
[<c01ac0f8>] (bus_probe_device+0x24/0x44)
[<c01aad7c>] (device_add+0x2fc/0x44c)
[<c01adfa8>] (platform_device_add+0x104/0x15c)
[<c0015eb8>] (simone_init+0x60/0x94)
[<c0021410>] (do_one_initcall+0xd0/0x1a4)
__dma_alloc() calls (inlined) __dma_alloc_buffer() which ends up
calling dmac_flush_range(). Now since the entries in the
arm920_cache_fns are shifted by one, we jump into address 0xee070f38
which is actually next instruction after the arm920_cache_fns
structure.
So implement flush_icache_all() for the rest of the supported CPUs
using a generic 'invalidate I cache' instruction.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When hotplug CPU is enabled, we need to keep the list of supported CPUs,
their setup functions, and __lookup_processor_type in place so that we
can find and initialize secondary CPUs. Move these into the __CPUINIT
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All implementations of cpu_proc_fin() start by disabling interrupts
and then flush caches. Rather than have every processors proc_fin()
implementation do this, move it out into generic code - and move the
cache flush past setup_mm_for_reboot() (so it can benefit from having
caches still enabled.)
This allows cpu_proc_fin() to become independent of the L1/L2 cache
types, and eventually move the L2 cache flushing into the L2 support
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
Instruction fault status register, IFSR, was introduced on ARMv6 to
provide status information about the last insturction fault. It
needed for proper prefetch abort handling.
Now we have three prefetch abort model:
* legacy - for CPUs before ARMv6. They doesn't provide neither
IFSR nor IFAR. We simulate IFSR with section translation fault
status for them to generalize code;
* ARMv6 - provides IFSR, but not IFAR;
* ARMv7 - provides both IFSR and IFAR.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The CPU's dma_flush_range() operation needs to clean+invalidate the
given memory area if the cache is in writeback mode, or do just the
invalidate part if the cache is in writethrough mode, but the current
proc-arm{925,926,940,946} (incorrectly) do a cache clean in the
latter case. This patch fixes that.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The proc-*.S files have the _prefetch_abort pointer placed at the end
of the processor structure but the cpu-multi32.h defines it in the
second position. The patch also fixes the support for XSC3 and the
MMU-less CPUs (740, 7tdmi, 940, 946 and 9tdmi).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These files want to provide/access ELF hwcap information, so should
be including asm/elf.h rather than asm/procinfo.h
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There is no FSR/FAR register on no-CP15 or MPU cores. This patch adds a
dummy abort handler which returns zero for the base restored Data Abort
model !CPU_CP15_MMU cores. The abort-lv4t.S is still used with the fix-up
for the base updated Data Abort model cores.
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds ARM940T core support which has 4KB D-cache, 4KB I-cache
and a MPU.
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>