IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull openat2 support from Al Viro:
"This is the openat2() series from Aleksa Sarai.
I'm afraid that the rest of namei stuff will have to wait - it got
zero review the last time I'd posted #work.namei, and there had been a
leak in the posted series I'd caught only last weekend. I was going to
repost it on Monday, but the window opened and the odds of getting any
review during that... Oh, well.
Anyway, openat2 part should be ready; that _did_ get sane amount of
review and public testing, so here it comes"
From Aleksa's description of the series:
"For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown
flags are present[1].
This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road
to being added to openat(2).
Furthermore, the need for some sort of control over VFS's path
resolution (to avoid malicious paths resulting in inadvertent
breakouts) has been a very long-standing desire of many userspace
applications.
This patchset is a revival of Al Viro's old AT_NO_JUMPS[3] patchset
(which was a variant of David Drysdale's O_BENEATH patchset[4] which
was a spin-off of the Capsicum project[5]) with a few additions and
changes made based on the previous discussion within [6] as well as
others I felt were useful.
In line with the conclusions of the original discussion of
AT_NO_JUMPS, the flag has been split up into separate flags. However,
instead of being an openat(2) flag it is provided through a new
syscall openat2(2) which provides several other improvements to the
openat(2) interface (see the patch description for more details). The
following new LOOKUP_* flags are added:
LOOKUP_NO_XDEV:
Blocks all mountpoint crossings (upwards, downwards, or through
absolute links). Absolute pathnames alone in openat(2) do not
trigger this. Magic-link traversal which implies a vfsmount jump is
also blocked (though magic-link jumps on the same vfsmount are
permitted).
LOOKUP_NO_MAGICLINKS:
Blocks resolution through /proc/$pid/fd-style links. This is done
by blocking the usage of nd_jump_link() during resolution in a
filesystem. The term "magic-links" is used to match with the only
reference to these links in Documentation/, but I'm happy to change
the name.
It should be noted that this is different to the scope of
~LOOKUP_FOLLOW in that it applies to all path components. However,
you can do openat2(NO_FOLLOW|NO_MAGICLINKS) on a magic-link and it
will *not* fail (assuming that no parent component was a
magic-link), and you will have an fd for the magic-link.
In order to correctly detect magic-links, the introduction of a new
LOOKUP_MAGICLINK_JUMPED state flag was required.
LOOKUP_BENEATH:
Disallows escapes to outside the starting dirfd's
tree, using techniques such as ".." or absolute links. Absolute
paths in openat(2) are also disallowed.
Conceptually this flag is to ensure you "stay below" a certain
point in the filesystem tree -- but this requires some additional
to protect against various races that would allow escape using
"..".
Currently LOOKUP_BENEATH implies LOOKUP_NO_MAGICLINKS, because it
can trivially beam you around the filesystem (breaking the
protection). In future, there might be similar safety checks done
as in LOOKUP_IN_ROOT, but that requires more discussion.
In addition, two new flags are added that expand on the above ideas:
LOOKUP_NO_SYMLINKS:
Does what it says on the tin. No symlink resolution is allowed at
all, including magic-links. Just as with LOOKUP_NO_MAGICLINKS this
can still be used with NOFOLLOW to open an fd for the symlink as
long as no parent path had a symlink component.
LOOKUP_IN_ROOT:
This is an extension of LOOKUP_BENEATH that, rather than blocking
attempts to move past the root, forces all such movements to be
scoped to the starting point. This provides chroot(2)-like
protection but without the cost of a chroot(2) for each filesystem
operation, as well as being safe against race attacks that
chroot(2) is not.
If a race is detected (as with LOOKUP_BENEATH) then an error is
generated, and similar to LOOKUP_BENEATH it is not permitted to
cross magic-links with LOOKUP_IN_ROOT.
The primary need for this is from container runtimes, which
currently need to do symlink scoping in userspace[7] when opening
paths in a potentially malicious container.
There is a long list of CVEs that could have bene mitigated by
having RESOLVE_THIS_ROOT (such as CVE-2017-1002101,
CVE-2017-1002102, CVE-2018-15664, and CVE-2019-5736, just to name a
few).
In order to make all of the above more usable, I'm working on
libpathrs[8] which is a C-friendly library for safe path resolution.
It features a userspace-emulated backend if the kernel doesn't support
openat2(2). Hopefully we can get userspace to switch to using it, and
thus get openat2(2) support for free once it's ready.
Future work would include implementing things like
RESOLVE_NO_AUTOMOUNT and possibly a RESOLVE_NO_REMOTE (to allow
programs to be sure they don't hit DoSes though stale NFS handles)"
* 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
Documentation: path-lookup: include new LOOKUP flags
selftests: add openat2(2) selftests
open: introduce openat2(2) syscall
namei: LOOKUP_{IN_ROOT,BENEATH}: permit limited ".." resolution
namei: LOOKUP_IN_ROOT: chroot-like scoped resolution
namei: LOOKUP_BENEATH: O_BENEATH-like scoped resolution
namei: LOOKUP_NO_XDEV: block mountpoint crossing
namei: LOOKUP_NO_MAGICLINKS: block magic-link resolution
namei: LOOKUP_NO_SYMLINKS: block symlink resolution
namei: allow set_root() to produce errors
namei: allow nd_jump_link() to produce errors
nsfs: clean-up ns_get_path() signature to return int
namei: only return -ECHILD from follow_dotdot_rcu()
Time Namespace isolates clock values.
The kernel provides access to several clocks CLOCK_REALTIME,
CLOCK_MONOTONIC, CLOCK_BOOTTIME, etc.
CLOCK_REALTIME
System-wide clock that measures real (i.e., wall-clock) time.
CLOCK_MONOTONIC
Clock that cannot be set and represents monotonic time since
some unspecified starting point.
CLOCK_BOOTTIME
Identical to CLOCK_MONOTONIC, except it also includes any time
that the system is suspended.
For many users, the time namespace means the ability to changes date and
time in a container (CLOCK_REALTIME). Providing per namespace notions of
CLOCK_REALTIME would be complex with a massive overhead, but has a dubious
value.
But in the context of checkpoint/restore functionality, monotonic and
boottime clocks become interesting. Both clocks are monotonic with
unspecified starting points. These clocks are widely used to measure time
slices and set timers. After restoring or migrating processes, it has to be
guaranteed that they never go backward. In an ideal case, the behavior of
these clocks should be the same as for a case when a whole system is
suspended. All this means that it is required to set CLOCK_MONOTONIC and
CLOCK_BOOTTIME clocks, which can be achieved by adding per-namespace
offsets for clocks.
A time namespace is similar to a pid namespace in the way how it is
created: unshare(CLONE_NEWTIME) system call creates a new time namespace,
but doesn't set it to the current process. Then all children of the process
will be born in the new time namespace, or a process can use the setns()
system call to join a namespace.
This scheme allows setting clock offsets for a namespace, before any
processes appear in it.
All available clone flags have been used, so CLONE_NEWTIME uses the highest
bit of CSIGNAL. It means that it can be used only with the unshare() and
the clone3() system calls.
[ tglx: Adjusted paragraph about clone3() to reality and massaged the
changelog a bit. ]
Co-developed-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://criu.org/Time_namespace
Link: https://lists.openvz.org/pipermail/criu/2018-June/041504.html
Link: https://lore.kernel.org/r/20191112012724.250792-4-dima@arista.com
In preparation for LOOKUP_NO_MAGICLINKS, it's necessary to add the
ability for nd_jump_link() to return an error which the corresponding
get_link() caller must propogate back up to the VFS.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
ns_get_path() and ns_get_path_cb() only ever return either NULL or an
ERR_PTR. It is far more idiomatic to simply return an integer, and it
makes all of the callers of ns_get_path() more straightforward to read.
Fixes: e149ed2b80 ("take the targets of /proc/*/ns/* symlinks to separate fs")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
First of all, calling pid_revalidate() in the end of <pid>/* lookups
is *not* about closing any kind of races; that used to be true once
upon a time, but these days those comments are actively misleading.
Especially since pid_revalidate() doesn't even do d_drop() on
failure anymore. It doesn't matter, anyway, since once
pid_revalidate() starts returning false, ->d_delete() of those
dentries starts saying "don't keep"; they won't get stuck in
dcache any longer than they are pinned.
These calls cannot be just removed, though - the side effect of
pid_revalidate() (updating i_uid/i_gid/etc.) is what we are calling
it for here.
Let's separate the "update ownership" into a new helper (pid_update_inode())
and use it, both in lookups and in pid_revalidate() itself.
The comments in pid_revalidate() are also out of date - they refer to
the time when pid_revalidate() used to call d_drop() directly...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
pid_ns_for_children set by a task is known only to the task itself, and
it's impossible to identify it from outside.
It's a big problem for checkpoint/restore software like CRIU, because it
can't correctly handle tasks, that do setns(CLONE_NEWPID) in proccess of
their work.
This patch solves the problem, and it exposes pid_ns_for_children to ns
directory in standard way with the name "pid_for_children":
~# ls /proc/5531/ns -l | grep pid
lrwxrwxrwx 1 root root 0 Jan 14 16:38 pid -> pid:[4026531836]
lrwxrwxrwx 1 root root 0 Jan 14 16:38 pid_for_children -> pid:[4026532286]
Link: http://lkml.kernel.org/r/149201123914.6007.2187327078064239572.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Andrei Vagin <avagin@virtuozzo.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass the file mode of the proc inode to be created to
proc_pid_make_inode. In proc_pid_make_inode, initialize inode->i_mode
before calling security_task_to_inode. This allows selinux to set
isec->sclass right away without introducing "half-initialized" inode
security structs.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Introduce the ability to create new cgroup namespace. The newly created
cgroup namespace remembers the cgroup of the process at the point
of creation of the cgroup namespace (referred as cgroupns-root).
The main purpose of cgroup namespace is to virtualize the contents
of /proc/self/cgroup file. Processes inside a cgroup namespace
are only able to see paths relative to their namespace root
(unless they are moved outside of their cgroupns-root, at which point
they will see a relative path from their cgroupns-root).
For a correctly setup container this enables container-tools
(like libcontainer, lxc, lmctfy, etc.) to create completely virtualized
containers without leaking system level cgroup hierarchy to the task.
This patch only implements the 'unshare' part of the cgroupns.
Signed-off-by: Aditya Kali <adityakali@google.com>
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
By checking the effective credentials instead of the real UID / permitted
capabilities, ensure that the calling process actually intended to use its
credentials.
To ensure that all ptrace checks use the correct caller credentials (e.g.
in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS
flag), use two new flags and require one of them to be set.
The problem was that when a privileged task had temporarily dropped its
privileges, e.g. by calling setreuid(0, user_uid), with the intent to
perform following syscalls with the credentials of a user, it still passed
ptrace access checks that the user would not be able to pass.
While an attacker should not be able to convince the privileged task to
perform a ptrace() syscall, this is a problem because the ptrace access
check is reused for things in procfs.
In particular, the following somewhat interesting procfs entries only rely
on ptrace access checks:
/proc/$pid/stat - uses the check for determining whether pointers
should be visible, useful for bypassing ASLR
/proc/$pid/maps - also useful for bypassing ASLR
/proc/$pid/cwd - useful for gaining access to restricted
directories that contain files with lax permissions, e.g. in
this scenario:
lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar
drwx------ root root /root
drwxr-xr-x root root /root/foobar
-rw-r--r-- root root /root/foobar/secret
Therefore, on a system where a root-owned mode 6755 binary changes its
effective credentials as described and then dumps a user-specified file,
this could be used by an attacker to reveal the memory layout of root's
processes or reveal the contents of files he is not allowed to access
(through /proc/$pid/cwd).
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
new method: ->get_link(); replacement of ->follow_link(). The differences
are:
* inode and dentry are passed separately
* might be called both in RCU and non-RCU mode;
the former is indicated by passing it a NULL dentry.
* when called that way it isn't allowed to block
and should return ERR_PTR(-ECHILD) if it needs to be called
in non-RCU mode.
It's a flagday change - the old method is gone, all in-tree instances
converted. Conversion isn't hard; said that, so far very few instances
do not immediately bail out when called in RCU mode. That'll change
in the next commits.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body. Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks. Stored pointer
is ignored in all cases except the last one.
Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().
b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is. In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New pseudo-filesystem: nsfs. Targets of /proc/*/ns/* live there now.
It's not mountable (not even registered, so it's not in /proc/filesystems,
etc.). Files on it *are* bindable - we explicitly permit that in do_loopback().
This stuff lives in fs/nsfs.c now; proc_ns_fget() moved there as well.
get_proc_ns() is a macro now (it's simply returning ->i_private; would
have been an inline, if not for header ordering headache).
proc_ns_inode() is an ex-parrot. The interface used in procfs is
ns_get_path(path, task, ops) and ns_get_name(buf, size, task, ops).
Dentries and inodes are never hashed; a non-counting reference to dentry
is stashed in ns_common (removed by ->d_prune()) and reused by ns_get_path()
if present. See ns_get_path()/ns_prune_dentry/nsfs_evict() for details
of that mechanism.
As the result, proc_ns_follow_link() has stopped poking in nd->path.mnt;
it does nd_jump_link() on a consistent <vfsmount,dentry> pair it gets
from ns_get_path().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) make get_proc_ns() return a pointer to struct ns_common
b) mirror ns_ops in dentry->d_fsdata of ns dentries, so that
is_mnt_ns_file() could get away with fewer dereferences.
That way struct proc_ns becomes invisible outside of fs/proc/*.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rename simple_delete_dentry() to always_delete_dentry() and export it.
Export simple_dentry_operations, while we are at it, and get rid of
their duplicates
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Split the proc namespace stuff out into linux/proc_ns.h.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Update proc_ns_follow_link to use nd_jump_link instead of just
manually updating nd.path.dentry.
This fixes the BUG_ON(nd->inode != parent->d_inode) reported by Dave
Jones and reproduced trivially with mkdir /proc/self/ns/uts/a.
Sigh it looks like the VFS change to require use of nd_jump_link
happend while proc_ns_follow_link was baking and since the common case
of proc_ns_follow_link continued to work without problems the need for
making this change was overlooked.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Assign a unique proc inode to each namespace, and use that
inode number to ensure we only allocate at most one proc
inode for every namespace in proc.
A single proc inode per namespace allows userspace to test
to see if two processes are in the same namespace.
This has been a long requested feature and only blocked because
a naive implementation would put the id in a global space and
would ultimately require having a namespace for the names of
namespaces, making migration and certain virtualization tricks
impossible.
We still don't have per superblock inode numbers for proc, which
appears necessary for application unaware checkpoint/restart and
migrations (if the application is using namespace file descriptors)
but that is now allowd by the design if it becomes important.
I have preallocated the ipc and uts initial proc inode numbers so
their structures can be statically initialized.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Change the proc namespace files into symlinks so that
we won't cache the dentries for the namespace files
which can bypass the ptrace_may_access checks.
To support the symlinks create an additional namespace
inode with it's own set of operations distinct from the
proc pid inode and dentry methods as those no longer
make sense.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This allows entering a user namespace, and the ability
to store a reference to a user namespace with a bind
mount.
Addition of missing userns_ns_put in userns_install
from Gao feng <gaofeng@cn.fujitsu.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
setns support for the mount namespace is a little tricky as an
arbitrary decision must be made about what to set fs->root and
fs->pwd to, as there is no expectation of a relationship between
the two mount namespaces. Therefore I arbitrarily find the root
mount point, and follow every mount on top of it to find the top
of the mount stack. Then I set fs->root and fs->pwd to that
location. The topmost root of the mount stack seems like a
reasonable place to be.
Bind mount support for the mount namespace inodes has the
possibility of creating circular dependencies between mount
namespaces. Circular dependencies can result in loops that
prevent mount namespaces from every being freed. I avoid
creating those circular dependencies by adding a sequence number
to the mount namespace and require all bind mounts be of a
younger mount namespace into an older mount namespace.
Add a helper function proc_ns_inode so it is possible to
detect when we are attempting to bind mound a namespace inode.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
- Pid namespaces are designed to be inescapable so verify that the
passed in pid namespace is a child of the currently active
pid namespace or the currently active pid namespace itself.
Allowing the currently active pid namespace is important so
the effects of an earlier setns can be cancelled.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Just the flags; only NFS cares even about that, but there are
legitimate uses for such argument. And getting rid of that
completely would require splitting ->lookup() into a couple
of methods (at least), so let's leave that alone for now...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If CONFIG_NET_NS, CONFIG_UTS_NS and CONFIG_IPC_NS are disabled,
ns_entries[] becomes empty and things like
ns_entries[ARRAY_SIZE(ns_entries) - 1] will explode.
Reported-by: Richard Weinberger <richard@nod.at>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The namespace cleanup path leaks a dentry which holds a reference count
on a network namespace. Keeping that network namespace from being freed
when the last user goes away. Leaving things like vlan devices in the
leaked network namespace.
If you use ip netns add for much real work this problem becomes apparent
pretty quickly. It light testing the problem hides because frequently
you simply don't notice the leak.
Use d_set_d_op() so that DCACHE_OP_* flags are set correctly.
This issue exists back to 3.0.
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: Justin Pettit <jpettit@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Jesse Gross <jesse@nicira.com>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't call iput with the inode half setup to be a namespace filedescriptor.
Instead rearrange the code so that we don't initialize ei->ns_ops until
after I ns_ops->get succeeds, preventing us from invoking ns_ops->put
when ns_ops->get failed.
Reported-by: Ingo Saitz <Ingo.Saitz@stud.uni-hannover.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Implementing file descriptors for the network namespace
is simple and straight forward.
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Create files under /proc/<pid>/ns/ to allow controlling the
namespaces of a process.
This addresses three specific problems that can make namespaces hard to
work with.
- Namespaces require a dedicated process to pin them in memory.
- It is not possible to use a namespace unless you are the child
of the original creator.
- Namespaces don't have names that userspace can use to talk about
them.
The namespace files under /proc/<pid>/ns/ can be opened and the
file descriptor can be used to talk about a specific namespace, and
to keep the specified namespace alive.
A namespace can be kept alive by either holding the file descriptor
open or bind mounting the file someplace else. aka:
mount --bind /proc/self/ns/net /some/filesystem/path
mount --bind /proc/self/fd/<N> /some/filesystem/path
This allows namespaces to be named with userspace policy.
It requires additional support to make use of these filedescriptors
and that will be comming in the following patches.
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>