15 Commits

Author SHA1 Message Date
David Howells
1362729b16 FS-Cache: Simplify cookie retention for fscache_objects, fixing oops
Simplify the way fscache cache objects retain their cookie.  The way I
implemented the cookie storage handling made synchronisation a pain (ie. the
object state machine can't rely on the cookie actually still being there).

Instead of the the object being detached from the cookie and the cookie being
freed in __fscache_relinquish_cookie(), we defer both operations:

 (*) The detachment of the object from the list in the cookie now takes place
     in fscache_drop_object() and is thus governed by the object state machine
     (fscache_detach_from_cookie() has been removed).

 (*) The release of the cookie is now in fscache_object_destroy() - which is
     called by the cache backend just before it frees the object.

This means that the fscache_cookie struct is now available to the cache all the
way through from ->alloc_object() to ->drop_object() and ->put_object() -
meaning that it's no longer necessary to take object->lock to guarantee access.

However, __fscache_relinquish_cookie() doesn't wait for the object to go all
the way through to destruction before letting the netfs proceed.  That would
massively slow down the netfs.  Since __fscache_relinquish_cookie() leaves the
cookie around, in must therefore break all attachments to the netfs - which
includes ->def, ->netfs_data and any outstanding page read/writes.

To handle this, struct fscache_cookie now has an n_active counter:

 (1) This starts off initialised to 1.

 (2) Any time the cache needs to get at the netfs data, it calls
     fscache_use_cookie() to increment it - if it is not zero.  If it was zero,
     then access is not permitted.

 (3) When the cache has finished with the data, it calls fscache_unuse_cookie()
     to decrement it.  This does a wake-up on it if it reaches 0.

 (4) __fscache_relinquish_cookie() decrements n_active and then waits for it to
     reach 0.  The initialisation to 1 in step (1) ensures that we only get
     wake ups when we're trying to get rid of the cookie.

This leaves __fscache_relinquish_cookie() a lot simpler.


***
This fixes a problem in the current code whereby if fscache_invalidate() is
followed sufficiently quickly by fscache_relinquish_cookie() then it is
possible for __fscache_relinquish_cookie() to have detached the cookie from the
object and cleared the pointer before a thread is dispatched to process the
invalidation state in the object state machine.

Since the pending write clearance was deferred to the invalidation state to
make it asynchronous, we need to either wait in relinquishment for the stores
tree to be cleared in the invalidation state or we need to handle the clearance
in relinquishment.

Further, if the relinquishment code does clear the tree, then the invalidation
state need to make the clearance contingent on still having the cookie to hand
(since that's where the tree is rooted) and we have to prevent the cookie from
disappearing for the duration.

This can lead to an oops like the following:

BUG: unable to handle kernel NULL pointer dereference at 000000000000000c
...
RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30
...
CR2: 000000000000000c ...
...
Process kslowd002 (...)
....
Call Trace:
 [<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache]
 [<ffffffff810096f0>] ? __switch_to+0xd0/0x320
 [<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150
 [<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180
 [<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache]
 [<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0
 [<ffffffff8110e233>] slow_work_execute+0x233/0x310
 [<ffffffff8110e515>] slow_work_thread+0x205/0x360
 [<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40
 [<ffffffff8110e310>] ? slow_work_thread+0x0/0x360
 [<ffffffff81096936>] kthread+0x96/0xa0
 [<ffffffff8100c0ca>] child_rip+0xa/0x20
 [<ffffffff810968a0>] ? kthread+0x0/0xa0
 [<ffffffff8100c0c0>] ? child_rip+0x0/0x20

The parameter to fscache_invalidate_writes() was object->cookie which is NULL.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells
caaef6900b FS-Cache: Fix object state machine to have separate work and wait states
Fix object state machine to have separate work and wait states as that makes
it easier to envision.

There are now three kinds of state:

 (1) Work state.  This is an execution state.  No event processing is performed
     by a work state.  The function attached to a work state returns a pointer
     indicating the next state to which the OSM should transition.  Returning
     NO_TRANSIT repeats the current state, but goes back to the scheduler
     first.

 (2) Wait state.  This is an event processing state.  No execution is
     performed by a wait state.  Wait states are just tables of "if event X
     occurs, clear it and transition to state Y".  The dispatcher returns to
     the scheduler if none of the events in which the wait state has an
     interest are currently pending.

 (3) Out-of-band state.  This is a special work state.  Transitions to normal
     states can be overridden when an unexpected event occurs (eg. I/O error).
     Instead the dispatcher disables and clears the OOB event and transits to
     the specified work state.  This then acts as an ordinary work state,
     though object->state points to the overridden destination.  Returning
     NO_TRANSIT resumes the overridden transition.

In addition, the states have names in their definitions, so there's no need for
tables of state names.  Further, the EV_REQUEUE event is no longer necessary as
that is automatic for work states.

Since the states are now separate structs rather than values in an enum, it's
not possible to use comparisons other than (non-)equality between them, so use
some object->flags to indicate what phase an object is in.

The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
(EV_KILL).  An object flag now carries the information about retirement.

Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
into an KILL_OBJECT state and additional states have been added for handling
waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).

A state has also been added for synchronising with parent object initialisation
(WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
David Howells
493f7bc114 FS-Cache: Wrap checks on object state
Wrap checks on object state (mostly outside of fs/fscache/object.c) with
inline functions so that the mechanism can be replaced.

Some of the state checks within object.c are left as-is as they will be
replaced.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
2013-06-19 14:16:47 +01:00
Sasha Levin
b67bfe0d42 hlist: drop the node parameter from iterators
I'm not sure why, but the hlist for each entry iterators were conceived

        list_for_each_entry(pos, head, member)

The hlist ones were greedy and wanted an extra parameter:

        hlist_for_each_entry(tpos, pos, head, member)

Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.

Besides the semantic patch, there was some manual work required:

 - Fix up the actual hlist iterators in linux/list.h
 - Fix up the declaration of other iterators based on the hlist ones.
 - A very small amount of places were using the 'node' parameter, this
 was modified to use 'obj->member' instead.
 - Coccinelle didn't handle the hlist_for_each_entry_safe iterator
 properly, so those had to be fixed up manually.

The semantic patch which is mostly the work of Peter Senna Tschudin is here:

@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;

type T;
expression a,c,d,e;
identifier b;
statement S;
@@

-T b;
    <+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
    ...+>

[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27 19:10:24 -08:00
David Howells
ef778e7ae6 FS-Cache: Provide proper invalidation
Provide a proper invalidation method rather than relying on the netfs retiring
the cookie it has and getting a new one.  The problem with this is that isn't
easy for the netfs to make sure that it has completed/cancelled all its
outstanding storage and retrieval operations on the cookie it is retiring.

Instead, have the cache provide an invalidation method that will cancel or wait
for all currently outstanding operations before invalidating the cache, and
will cause new operations to queue up behind that.  Whilst invalidation is in
progress, some requests will be rejected until the cache can stack a barrier on
the operation queue to cause new operations to be deferred behind it.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 22:04:07 +00:00
David Howells
ef46ed888e FS-Cache: Make cookie relinquishment wait for outstanding reads
Make fscache_relinquish_cookie() log a warning and wait if there are any
outstanding reads left on the cookie it was given.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 21:58:25 +00:00
David Howells
0f972b5696 FS-Cache: Check that there are no read ops when cookie relinquished
Check that the netfs isn't trying to relinquish a cookie that still has read
operations in progress upon it.  If there are, then give log a warning and BUG.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20 21:58:25 +00:00
David Howells
2175bb06dc FS-Cache: Add a retirement stat counter
Add a stat counter to count retirement events rather than ordinary release
events (the retire argument to fscache_relinquish_cookie()).

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:38 +00:00
David Howells
1bccf513ac FS-Cache: Fix lock misorder in fscache_write_op()
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state.  Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.

Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock.  Cache operations, on the other
hand, approach from the object side, and get the object lock first.  It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:

 (1) increment the cookie usage counter, drop the object lock and then get both
     locks in order, or

 (2) simply hold the object lock as certain parts of the cookie may not be
     altered whilst the object lock is held.

It is also not permitted to follow either pointer without holding the lock at
the end you start with.  To break the pointers between the cookie and the
object, both locks must be held.

fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it.  This is so that it can access the pending page store tree without
interference from __fscache_write_page().

This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.

The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:25 +00:00
David Howells
b34df792b4 FS-Cache: Use radix tree preload correctly in tracking of pages to be stored
__fscache_write_page() attempts to load the radix tree preallocation pool for
the CPU it is on before calling radix_tree_insert(), as the insertion must be
done inside a pair of spinlocks.

Use of the preallocation pool, however, is contingent on the radix tree being
initialised without __GFP_WAIT specified.  __fscache_acquire_cookie() was
passing GFP_NOFS to INIT_RADIX_TREE() - but that includes __GFP_WAIT.

The solution is to AND out __GFP_WAIT.

Additionally, the banner comment to radix_tree_preload() is altered to make
note of this prerequisite.  Possibly there should be a WARN_ON() too.

Without this fix, I have seen the following recursive deadlock caused by
radix_tree_insert() attempting to allocate memory inside the spinlocked
region, which resulted in FS-Cache being called back into to release memory -
which required the spinlock already held.

=============================================
[ INFO: possible recursive locking detected ]
2.6.32-rc6-cachefs #24
---------------------------------------------
nfsiod/7916 is trying to acquire lock:
 (&cookie->lock){+.+.-.}, at: [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]

but task is already holding lock:
 (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]

other info that might help us debug this:
5 locks held by nfsiod/7916:
 #0:  (nfsiod){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
 #1:  (&task->u.tk_work#2){+.+.+.}, at: [<ffffffff81048290>] worker_thread+0x19a/0x2e2
 #2:  (&cookie->lock){+.+.-.}, at: [<ffffffffa0076acc>] __fscache_write_page+0x15c/0x3f3 [fscache]
 #3:  (&object->lock#2){+.+.-.}, at: [<ffffffffa0076b07>] __fscache_write_page+0x197/0x3f3 [fscache]
 #4:  (&cookie->stores_lock){+.+...}, at: [<ffffffffa0076b0f>] __fscache_write_page+0x19f/0x3f3 [fscache]

stack backtrace:
Pid: 7916, comm: nfsiod Not tainted 2.6.32-rc6-cachefs #24
Call Trace:
 [<ffffffff8105ac7f>] __lock_acquire+0x1649/0x16e3
 [<ffffffff81059ded>] ? __lock_acquire+0x7b7/0x16e3
 [<ffffffff8100e27d>] ? dump_trace+0x248/0x257
 [<ffffffff8105ad70>] lock_acquire+0x57/0x6d
 [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffff8135467c>] _spin_lock+0x2c/0x3b
 [<ffffffffa0076872>] ? __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffffa0076872>] __fscache_uncache_page+0xdb/0x160 [fscache]
 [<ffffffffa0077eb7>] ? __fscache_check_page_write+0x0/0x71 [fscache]
 [<ffffffffa00b4755>] nfs_fscache_release_page+0x86/0xc4 [nfs]
 [<ffffffffa00907f0>] nfs_release_page+0x3c/0x41 [nfs]
 [<ffffffff81087ffb>] try_to_release_page+0x32/0x3b
 [<ffffffff81092c2b>] shrink_page_list+0x316/0x4ac
 [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
 [<ffffffff8135451b>] ? _spin_unlock_irq+0x2b/0x31
 [<ffffffff81093153>] shrink_inactive_list+0x392/0x67c
 [<ffffffff81058a9b>] ? mark_held_locks+0x52/0x70
 [<ffffffff810934ca>] shrink_list+0x8d/0x8f
 [<ffffffff81093744>] shrink_zone+0x278/0x33c
 [<ffffffff81052c70>] ? ktime_get_ts+0xad/0xba
 [<ffffffff8109453b>] try_to_free_pages+0x22e/0x392
 [<ffffffff8109184c>] ? isolate_pages_global+0x0/0x212
 [<ffffffff8108e16b>] __alloc_pages_nodemask+0x3dc/0x5cf
 [<ffffffff810ae24a>] cache_alloc_refill+0x34d/0x6c1
 [<ffffffff811bcf74>] ? radix_tree_node_alloc+0x52/0x5c
 [<ffffffff810ae929>] kmem_cache_alloc+0xb2/0x118
 [<ffffffff811bcf74>] radix_tree_node_alloc+0x52/0x5c
 [<ffffffff811bcfd5>] radix_tree_insert+0x57/0x19c
 [<ffffffffa0076b53>] __fscache_write_page+0x1e3/0x3f3 [fscache]
 [<ffffffffa00b4248>] __nfs_readpage_to_fscache+0x58/0x11e [nfs]
 [<ffffffffa009bb77>] nfs_readpage_release+0x34/0x9b [nfs]
 [<ffffffffa009c0d9>] nfs_readpage_release_full+0x32/0x4b [nfs]
 [<ffffffffa0006cff>] rpc_release_calldata+0x12/0x14 [sunrpc]
 [<ffffffffa0006e2d>] rpc_free_task+0x59/0x61 [sunrpc]
 [<ffffffffa0006f03>] rpc_async_release+0x10/0x12 [sunrpc]
 [<ffffffff810482e5>] worker_thread+0x1ef/0x2e2
 [<ffffffff81048290>] ? worker_thread+0x19a/0x2e2
 [<ffffffff81352433>] ? thread_return+0x3e/0x101
 [<ffffffffa0006ef3>] ? rpc_async_release+0x0/0x12 [sunrpc]
 [<ffffffff8104bff5>] ? autoremove_wake_function+0x0/0x34
 [<ffffffff81058d25>] ? trace_hardirqs_on+0xd/0xf
 [<ffffffff810480f6>] ? worker_thread+0x0/0x2e2
 [<ffffffff8104bd21>] kthread+0x7a/0x82
 [<ffffffff8100beda>] child_rip+0xa/0x20
 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
 [<ffffffff8104c2b9>] ? add_wait_queue+0x15/0x44
 [<ffffffff8104bca7>] ? kthread+0x0/0x82
 [<ffffffff8100bed0>] ? child_rip+0x0/0x20

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:14 +00:00
David Howells
7e311a207d FS-Cache: Clear netfs pointers in cookie after detaching object, not before
Clear the pointers from the fscache_cookie struct to netfs private data after
clearing the pointer to the cookie from the fscache_object struct and
releasing the object lock, rather than before.

This allows the netfs private data pointers to be relied on simply by holding
the object lock, rather than having to hold the cookie lock.  This is makes
things simpler as the cookie lock has to be taken before the object lock, but
sometimes the object pointer is all that the code has.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:11 +00:00
David Howells
52bd75fdb1 FS-Cache: Add counters for entry/exit to/from cache operation functions
Count entries to and exits from cache operation table functions.  Maintain
these as a single counter that's added to or removed from as appropriate.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:08 +00:00
David Howells
4fbf4291aa FS-Cache: Allow the current state of all objects to be dumped
Allow the current state of all fscache objects to be dumped by doing:

	cat /proc/fs/fscache/objects

By default, all objects and all fields will be shown.  This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):

	keyctl add user fscache:objlist "<restrictions>" @s

The <restrictions> are:

	K	Show hexdump of object key (don't show if not given)
	A	Show hexdump of object aux data (don't show if not given)

And paired restrictions:

	C	Show objects that have a cookie
	c	Show objects that don't have a cookie
	B	Show objects that are busy
	b	Show objects that aren't busy
	W	Show objects that have pending writes
	w	Show objects that don't have pending writes
	R	Show objects that have outstanding reads
	r	Show objects that don't have outstanding reads
	S	Show objects that have slow work queued
	s	Show objects that don't have slow work queued

If neither side of a restriction pair is given, then both are implied.  For
example:

	keyctl add user fscache:objlist KB @s

shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data.  It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.

Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19 18:11:04 +00:00
David Howells
ccc4fc3d11 FS-Cache: Implement the cookie management part of the netfs API
Implement the cookie management part of the FS-Cache netfs client API.  The
documentation and API header file were added in a previous patch.

This patch implements the following three functions:

 (1) fscache_acquire_cookie().

     Acquire a cookie to represent an object to the netfs.  If the object in
     question is a non-index object, then that object and its parent indices
     will be created on disk at this point if they don't already exist.  Index
     creation is deferred because an index may reside in multiple caches.

 (2) fscache_relinquish_cookie().

     Retire or release a cookie previously acquired.  At this point, the
     object on disk may be destroyed.

 (3) fscache_update_cookie().

     Update the in-cache representation of a cookie.  This is used to update
     the auxiliary data for coherency management purposes.

With this patch it is possible to have a netfs instruct a cache backend to
look up, validate and create metadata on disk and to destroy it again.
The ability to actually store and retrieve data in the objects so created is
added in later patches.

Note that these functions will never return an error.  _All_ errors are
handled internally to FS-Cache.

The worst that can happen is that fscache_acquire_cookie() may return a NULL
pointer - which is considered a negative cookie pointer and can be passed back
to any function that takes a cookie without harm.  A negative cookie pointer
merely suppresses caching at that level.

The stub in linux/fscache.h will detect inline the negative cookie pointer and
abort the operation as fast as possible.  This means that the compiler doesn't
have to set up for a call in that case.

See the documentation in Documentation/filesystems/caching/netfs-api.txt for
more information.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells
955d00917f FS-Cache: Provide a slab for cookie allocation
Provide a slab from which can be allocated the FS-Cache cookies that will be
presented to the netfs.

Also provide a slab constructor and a function to recursively discard a cookie
and its ancestor chain.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00