IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When reseeding the CRNG periodically, arch_get_random_seed_long() is
called to obtain entropy from an architecture specific source if one
is implemented. In most cases, these are special instructions, but in
some cases, such as on ARM, we may want to back this using firmware
calls, which are considerably more expensive.
Another call to arch_get_random_seed_long() exists in the CRNG driver,
in add_interrupt_randomness(), which collects entropy by capturing
inter-interrupt timing and relying on interrupt jitter to provide
random bits. This is done by keeping a per-CPU state, and mixing in
the IRQ number, the cycle counter and the return address every time an
interrupt is taken, and mixing this per-CPU state into the entropy pool
every 64 invocations, or at least once per second. The entropy that is
gathered this way is credited as 1 bit of entropy. Every time this
happens, arch_get_random_seed_long() is invoked, and the result is
mixed in as well, and also credited with 1 bit of entropy.
This means that arch_get_random_seed_long() is called at least once
per second on every CPU, which seems excessive, and doesn't really
scale, especially in a virtualization scenario where CPUs may be
oversubscribed: in cases where arch_get_random_seed_long() is backed
by an instruction that actually goes back to a shared hardware entropy
source (such as RNDRRS on ARM), we will end up hitting it hundreds of
times per second.
So let's drop the call to arch_get_random_seed_long() from
add_interrupt_randomness(), and instead, rely on crng_reseed() to call
the arch hook to get random seed material from the platform.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20201105152944.16953-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Non-cryptographic PRNGs may have great statistical properties, but
are usually trivially predictable to someone who knows the algorithm,
given a small sample of their output. An LFSR like prandom_u32() is
particularly simple, even if the sample is widely scattered bits.
It turns out the network stack uses prandom_u32() for some things like
random port numbers which it would prefer are *not* trivially predictable.
Predictability led to a practical DNS spoofing attack. Oops.
This patch replaces the LFSR with a homebrew cryptographic PRNG based
on the SipHash round function, which is in turn seeded with 128 bits
of strong random key. (The authors of SipHash have *not* been consulted
about this abuse of their algorithm.) Speed is prioritized over security;
attacks are rare, while performance is always wanted.
Replacing all callers of prandom_u32() is the quick fix.
Whether to reinstate a weaker PRNG for uses which can tolerate it
is an open question.
Commit f227e3ec3b ("random32: update the net random state on interrupt
and activity") was an earlier attempt at a solution. This patch replaces
it.
Reported-by: Amit Klein <aksecurity@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Fixes: f227e3ec3b ("random32: update the net random state on interrupt and activity")
Signed-off-by: George Spelvin <lkml@sdf.org>
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
[ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions
to prandom.h for later use; merged George's prandom_seed() proposal;
inlined siprand_u32(); replaced the net_rand_state[] array with 4
members to fix a build issue; cosmetic cleanups to make checkpatch
happy; fixed RANDOM32_SELFTEST build ]
Signed-off-by: Willy Tarreau <w@1wt.eu>
This modifies the first 32 bits out of the 128 bits of a random CPU's
net_rand_state on interrupt or CPU activity to complicate remote
observations that could lead to guessing the network RNG's internal
state.
Note that depending on some network devices' interrupt rate moderation
or binding, this re-seeding might happen on every packet or even almost
never.
In addition, with NOHZ some CPUs might not even get timer interrupts,
leaving their local state rarely updated, while they are running
networked processes making use of the random state. For this reason, we
also perform this update in update_process_times() in order to at least
update the state when there is user or system activity, since it's the
only case we care about.
Reported-by: Amit Klein <aksecurity@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull sysctl fixes from Al Viro:
"Fixups to regressions in sysctl series"
* 'work.sysctl' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
sysctl: reject gigantic reads/write to sysctl files
cdrom: fix an incorrect __user annotation on cdrom_sysctl_info
trace: fix an incorrect __user annotation on stack_trace_sysctl
random: fix an incorrect __user annotation on proc_do_entropy
net/sysctl: remove leftover __user annotations on neigh_proc_dointvec*
net/sysctl: use cpumask_parse in flow_limit_cpu_sysctl
No user pointers for sysctls anymore.
Fixes: 32927393dc ("sysctl: pass kernel pointers to ->proc_handler")
Reported-by: build test robot <lkp@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Remove this header and fold it into <crypto/sha.h> which already
contains constants and functions for SHA-1 (along with SHA-2).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The library implementation of the SHA-1 compression function is
confusingly called just "sha_transform()". Alongside it are some "SHA_"
constants and "sha_init()". Presumably these are left over from a time
when SHA just meant SHA-1. But now there are also SHA-2 and SHA-3, and
moreover SHA-1 is now considered insecure and thus shouldn't be used.
Therefore, rename these functions and constants to make it very clear
that they are for SHA-1. Also add a comment to make it clear that these
shouldn't be used.
For the extra-misleadingly named "SHA_MESSAGE_BYTES", rename it to
SHA1_BLOCK_SIZE and define it to just '64' rather than '(512/8)' so that
it matches the same definition in <crypto/sha.h>. This prepares for
merging <linux/cryptohash.h> into <crypto/sha.h>.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
As crng_initialize_secondary() is only called by do_numa_crng_init(),
and the latter is under ifdeffery for CONFIG_NUMA, when CONFIG_NUMA is
not selected the compiler will warn that the former is unused:
| drivers/char/random.c:820:13: warning: 'crng_initialize_secondary' defined but not used [-Wunused-function]
| 820 | static void crng_initialize_secondary(struct crng_state *crng)
| | ^~~~~~~~~~~~~~~~~~~~~~~~~
Stephen reports that this happens for x86_64 noallconfig builds.
We could move crng_initialize_secondary() and crng_init_try_arch() under
the CONFIG_NUMA ifdeffery, but this has the unfortunate property of
separating them from crng_initialize_primary() and
crng_init_try_arch_early() respectively. Instead, let's mark
crng_initialize_secondary() as __maybe_unused.
Link: https://lore.kernel.org/r/20200310121747.GA49602@lakrids.cambridge.arm.com
Fixes: 5cbe0f13b5 ("random: split primary/secondary crng init paths")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Fields in "struct timer_rand_state" could be accessed concurrently.
Lockless plain reads and writes result in data races. Fix them by adding
pairs of READ|WRITE_ONCE(). The data races were reported by KCSAN,
BUG: KCSAN: data-race in add_timer_randomness / add_timer_randomness
write to 0xffff9f320a0a01d0 of 8 bytes by interrupt on cpu 22:
add_timer_randomness+0x100/0x190
add_timer_randomness at drivers/char/random.c:1152
add_disk_randomness+0x85/0x280
scsi_end_request+0x43a/0x4a0
scsi_io_completion+0xb7/0x7e0
scsi_finish_command+0x1ed/0x2a0
scsi_softirq_done+0x1c9/0x1d0
blk_done_softirq+0x181/0x1d0
__do_softirq+0xd9/0x57c
irq_exit+0xa2/0xc0
do_IRQ+0x8b/0x190
ret_from_intr+0x0/0x42
cpuidle_enter_state+0x15e/0x980
cpuidle_enter+0x69/0xc0
call_cpuidle+0x23/0x40
do_idle+0x248/0x280
cpu_startup_entry+0x1d/0x1f
start_secondary+0x1b2/0x230
secondary_startup_64+0xb6/0xc0
no locks held by swapper/22/0.
irq event stamp: 32871382
_raw_spin_unlock_irqrestore+0x53/0x60
_raw_spin_lock_irqsave+0x21/0x60
_local_bh_enable+0x21/0x30
irq_exit+0xa2/0xc0
read to 0xffff9f320a0a01d0 of 8 bytes by interrupt on cpu 2:
add_timer_randomness+0xe8/0x190
add_disk_randomness+0x85/0x280
scsi_end_request+0x43a/0x4a0
scsi_io_completion+0xb7/0x7e0
scsi_finish_command+0x1ed/0x2a0
scsi_softirq_done+0x1c9/0x1d0
blk_done_softirq+0x181/0x1d0
__do_softirq+0xd9/0x57c
irq_exit+0xa2/0xc0
do_IRQ+0x8b/0x190
ret_from_intr+0x0/0x42
cpuidle_enter_state+0x15e/0x980
cpuidle_enter+0x69/0xc0
call_cpuidle+0x23/0x40
do_idle+0x248/0x280
cpu_startup_entry+0x1d/0x1f
start_secondary+0x1b2/0x230
secondary_startup_64+0xb6/0xc0
no locks held by swapper/2/0.
irq event stamp: 37846304
_raw_spin_unlock_irqrestore+0x53/0x60
_raw_spin_lock_irqsave+0x21/0x60
_local_bh_enable+0x21/0x30
irq_exit+0xa2/0xc0
Reported by Kernel Concurrency Sanitizer on:
Hardware name: HP ProLiant BL660c Gen9, BIOS I38 10/17/2018
Link: https://lore.kernel.org/r/1582648024-13111-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
It turns out that RDRAND is pretty slow. Comparing these two
constructions:
for (i = 0; i < CHACHA_BLOCK_SIZE; i += sizeof(ret))
arch_get_random_long(&ret);
and
long buf[CHACHA_BLOCK_SIZE / sizeof(long)];
extract_crng((u8 *)buf);
it amortizes out to 352 cycles per long for the top one and 107 cycles
per long for the bottom one, on Coffee Lake Refresh, Intel Core i9-9880H.
And importantly, the top one has the drawback of not benefiting from the
real rng, whereas the bottom one has all the nice benefits of using our
own chacha rng. As get_random_u{32,64} gets used in more places (perhaps
beyond what it was originally intended for when it was introduced as
get_random_{int,long} back in the md5 monstrosity era), it seems like it
might be a good thing to strengthen its posture a tiny bit. Doing this
should only be stronger and not any weaker because that pool is already
initialized with a bunch of rdrand data (when available). This way, we
get the benefits of the hardware rng as well as our own rng.
Another benefit of this is that we no longer hit pitfalls of the recent
stream of AMD bugs in RDRAND. One often used code pattern for various
things is:
do {
val = get_random_u32();
} while (hash_table_contains_key(val));
That recent AMD bug rendered that pattern useless, whereas we're really
very certain that chacha20 output will give pretty distributed numbers,
no matter what.
So, this simplification seems better both from a security perspective
and from a performance perspective.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20200221201037.30231-1-Jason@zx2c4.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Some architectures (e.g. arm64) can have heterogeneous CPUs, and the
boot CPU may be able to provide entropy while secondary CPUs cannot. On
such systems, arch_get_random_long() and arch_get_random_seed_long()
will fail unless support for RNG instructions has been detected on all
CPUs. This prevents the boot CPU from being able to provide
(potentially) trusted entropy when seeding the primary CRNG.
To make it possible to seed the primary CRNG from the boot CPU without
adversely affecting the runtime versions of arch_get_random_long() and
arch_get_random_seed_long(), this patch adds new early versions of the
functions used when initializing the primary CRNG.
Default implementations are provided atop of the existing
arch_get_random_long() and arch_get_random_seed_long() so that only
architectures with such constraints need to provide the new helpers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200210130015.17664-3-mark.rutland@arm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently crng_initialize() is used for both the primary CRNG and
secondary CRNGs. While we wish to share common logic, we need to do a
number of additional things for the primary CRNG, and this would be
easier to deal with were these handled in separate functions.
This patch splits crng_initialize() into crng_initialize_primary() and
crng_initialize_secondary(), with common logic factored out into a
crng_init_try_arch() helper.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200210130015.17664-2-mark.rutland@arm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Prefix all printk/pr_<level> messages with "random: " to make the
logging a bit more consistent.
Miscellanea:
o Convert a printks to pr_notice
o Whitespace to align to open parentheses
o Remove embedded "random: " from pr_* as pr_fmt adds it
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Link: https://lore.kernel.org/r/20190607182517.28266-3-tiny.windzz@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This patch changes the read semantics of /dev/random to be the same
as /dev/urandom except that reads will block until the CRNG is
ready.
None of the cleanups that this enables have been done yet. As a
result, this gives a warning about an unused function.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/5e6ac8831c6cf2e56a7a4b39616d1732b2bdd06c.1577088521.git.luto@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The separate blocking pool is going away. Start by ignoring
GRND_RANDOM in getentropy(2).
This should not materially break any API. Any code that worked
without this change should work at least as well with this change.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/705c5a091b63cc5da70c99304bb97e0109be0a26.1577088521.git.luto@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
/dev/random and getrandom() never warn. Split the meat of
urandom_read() into urandom_read_nowarn() and leave the warning code
in urandom_read().
This has no effect on kernel behavior, but it makes subsequent
patches more straightforward. It also makes the fact that
getrandom() never warns more obvious.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/c87ab200588de746431d9f916501ef11e5242b13.1577088521.git.luto@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Recently, there's been some compat ioctl cleanup, in which large
hardcoded lists were replaced with compat_ptr_ioctl. One of these
changes involved removing the random.c hardcoded list entries and adding
a compat ioctl function pointer to the random.c fops. In the process,
urandom was forgotten about, so this commit fixes that oversight.
Fixes: 507e4e2b43 ("compat_ioctl: remove /dev/random commands")
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20191217172455.186395-1-Jason@zx2c4.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As part of the cleanup of some remaining y2038 issues, I came to
fs/compat_ioctl.c, which still has a couple of commands that need support
for time64_t.
In completely unrelated work, I spent time on cleaning up parts of this
file in the past, moving things out into drivers instead.
After Al Viro reviewed an earlier version of this series and did a lot
more of that cleanup, I decided to try to completely eliminate the rest
of it and move it all into drivers.
This series incorporates some of Al's work and many patches of my own,
but in the end stops short of actually removing the last part, which is
the scsi ioctl handlers. I have patches for those as well, but they need
more testing or possibly a rewrite.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJdsHCdAAoJEJpsee/mABjZtYkP/1JGl3jFv3Iq/5BCdPkaePP1
RtMJRNfURgK3GeuHUui330PvVjI/pLWXU/VXMK2MPTASpJLzYz3uCaZrpVWEMpDZ
+ImzGmgJkITlW1uWU3zOcQhOxTyb1hCZ0Ci+2xn9QAmyOL7prXoXCXDWv3h6iyiF
lwG+nW+HNtyx41YG+9bRfKNoG0ZJ+nkJ70BV6u0acQHXWn7Xuupa9YUmBL87hxAL
6dlJfLTJg6q8QSv/Q6LxslfWk2Ti8OOJZOwtFM5R8Bgl0iUcvshiRCKfv/3t9jXD
dJNvF1uq8z+gracWK49Qsfq5dnZ2ZxHFUo9u0NjbCrxNvWH/sdvhbaUBuJI75seH
VIznCkdxFhrqitJJ8KmxANxG08u+9zSKjSlxG2SmlA4qFx/AoStoHwQXcogJscNb
YIXYKmWBvwPzYu09QFAXdHFPmZvp/3HhMWU6o92lvDhsDwzkSGt3XKhCJea4DCaT
m+oCcoACqSWhMwdbJOEFofSub4bY43s5iaYuKes+c8O261/Dwg6v/pgIVez9mxXm
TBnvCsotq5m8wbwzv99eFqGeJH8zpDHrXxEtRR5KQqMqjLq/OQVaEzmpHZTEuK7n
e/V/PAKo2/V63g4k6GApQXDxnjwT+m0aWToWoeEzPYXS6KmtWC91r4bWtslu3rdl
bN65armTm7bFFR32Avnu
=lgCl
-----END PGP SIGNATURE-----
Merge tag 'compat-ioctl-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground
Pull removal of most of fs/compat_ioctl.c from Arnd Bergmann:
"As part of the cleanup of some remaining y2038 issues, I came to
fs/compat_ioctl.c, which still has a couple of commands that need
support for time64_t.
In completely unrelated work, I spent time on cleaning up parts of
this file in the past, moving things out into drivers instead.
After Al Viro reviewed an earlier version of this series and did a lot
more of that cleanup, I decided to try to completely eliminate the
rest of it and move it all into drivers.
This series incorporates some of Al's work and many patches of my own,
but in the end stops short of actually removing the last part, which
is the scsi ioctl handlers. I have patches for those as well, but they
need more testing or possibly a rewrite"
* tag 'compat-ioctl-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground: (42 commits)
scsi: sd: enable compat ioctls for sed-opal
pktcdvd: add compat_ioctl handler
compat_ioctl: move SG_GET_REQUEST_TABLE handling
compat_ioctl: ppp: move simple commands into ppp_generic.c
compat_ioctl: handle PPPIOCGIDLE for 64-bit time_t
compat_ioctl: move PPPIOCSCOMPRESS to ppp_generic
compat_ioctl: unify copy-in of ppp filters
tty: handle compat PPP ioctls
compat_ioctl: move SIOCOUTQ out of compat_ioctl.c
compat_ioctl: handle SIOCOUTQNSD
af_unix: add compat_ioctl support
compat_ioctl: reimplement SG_IO handling
compat_ioctl: move WDIOC handling into wdt drivers
fs: compat_ioctl: move FITRIM emulation into file systems
gfs2: add compat_ioctl support
compat_ioctl: remove unused convert_in_user macro
compat_ioctl: remove last RAID handling code
compat_ioctl: remove /dev/raw ioctl translation
compat_ioctl: remove PCI ioctl translation
compat_ioctl: remove joystick ioctl translation
...
Pull crypto fix from Herbert Xu:
"This reverts a number of changes to the khwrng thread which feeds the
kernel random number pool from hwrng drivers. They were trying to fix
issues with suspend-and-resume but ended up causing regressions"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
Revert "hwrng: core - Freeze khwrng thread during suspend"
This reverts commit 03a3bb7ae6 ("hwrng: core - Freeze khwrng
thread during suspend"), ff296293b3 ("random: Support freezable
kthreads in add_hwgenerator_randomness()") and 59b569480d ("random:
Use wait_event_freezable() in add_hwgenerator_randomness()").
These patches introduced regressions and we need more time to
get them ready for mainline.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These are all handled by the random driver, so instead of listing
each ioctl, we can use the generic compat_ptr_ioctl() helper.
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
On Tue, Oct 01, 2019 at 10:14:40AM -0700, Linus Torvalds wrote:
> The previous state of the file didn't have that 0xa at the end, so you get that
>
>
> -EXPORT_SYMBOL_GPL(add_bootloader_randomness);
> \ No newline at end of file
> +EXPORT_SYMBOL_GPL(add_bootloader_randomness);
>
> which is "the '-' line doesn't have a newline, the '+' line does" marker.
Aaha, that makes total sense, thanks for explaining. Oh well, let's fix
it then so that people don't scratch heads like me.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge active entropy generation updates.
This is admittedly partly "for discussion". We need to have a way
forward for the boot time deadlocks where user space ends up waiting for
more entropy, but no entropy is forthcoming because the system is
entirely idle just waiting for something to happen.
While this was triggered by what is arguably a user space bug with
GDM/gnome-session asking for secure randomness during early boot, when
they didn't even need any such truly secure thing, the issue ends up
being that our "getrandom()" interface is prone to that kind of
confusion, because people don't think very hard about whether they want
to block for sufficient amounts of entropy.
The approach here-in is to decide to not just passively wait for entropy
to happen, but to start actively collecting it if it is missing. This
is not necessarily always possible, but if the architecture has a CPU
cycle counter, there is a fair amount of noise in the exact timings of
reasonably complex loads.
We may end up tweaking the load and the entropy estimates, but this
should be at least a reasonable starting point.
As part of this, we also revert the revert of the ext4 IO pattern
improvement that ended up triggering the reported lack of external
entropy.
* getrandom() active entropy waiting:
Revert "Revert "ext4: make __ext4_get_inode_loc plug""
random: try to actively add entropy rather than passively wait for it
For 5.3 we had to revert a nice ext4 IO pattern improvement, because it
caused a bootup regression due to lack of entropy at bootup together
with arguably broken user space that was asking for secure random
numbers when it really didn't need to.
See commit 72dbcf7215 (Revert "ext4: make __ext4_get_inode_loc plug").
This aims to solve the issue by actively generating entropy noise using
the CPU cycle counter when waiting for the random number generator to
initialize. This only works when you have a high-frequency time stamp
counter available, but that's the case on all modern x86 CPU's, and on
most other modern CPU's too.
What we do is to generate jitter entropy from the CPU cycle counter
under a somewhat complex load: calling the scheduler while also
guaranteeing a certain amount of timing noise by also triggering a
timer.
I'm sure we can tweak this, and that people will want to look at other
alternatives, but there's been a number of papers written on jitter
entropy, and this should really be fairly conservative by crediting one
bit of entropy for every timer-induced jump in the cycle counter. Not
because the timer itself would be all that unpredictable, but because
the interaction between the timer and the loop is going to be.
Even if (and perhaps particularly if) the timer actually happens on
another CPU, the cacheline interaction between the loop that reads the
cycle counter and the timer itself firing is going to add perturbations
to the cycle counter values that get mixed into the entropy pool.
As Thomas pointed out, with a modern out-of-order CPU, even quite simple
loops show a fair amount of hard-to-predict timing variability even in
the absense of external interrupts. But this tries to take that further
by actually having a fairly complex interaction.
This is not going to solve the entropy issue for architectures that have
no CPU cycle counter, but it's not clear how (and if) that is solvable,
and the hardware in question is largely starting to be irrelevant. And
by doing this we can at least avoid some of the even more contentious
approaches (like making the entropy waiting time out in order to avoid
the possibly unbounded waiting).
Cc: Ahmed Darwish <darwish.07@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Nicholas Mc Guire <hofrat@opentech.at>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Alexander E. Patrakov <patrakov@gmail.com>
Cc: Lennart Poettering <mzxreary@0pointer.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto updates from Herbert Xu:
"API:
- Add the ability to abort a skcipher walk.
Algorithms:
- Fix XTS to actually do the stealing.
- Add library helpers for AES and DES for single-block users.
- Add library helpers for SHA256.
- Add new DES key verification helper.
- Add surrounding bits for ESSIV generator.
- Add accelerations for aegis128.
- Add test vectors for lzo-rle.
Drivers:
- Add i.MX8MQ support to caam.
- Add gcm/ccm/cfb/ofb aes support in inside-secure.
- Add ofb/cfb aes support in media-tek.
- Add HiSilicon ZIP accelerator support.
Others:
- Fix potential race condition in padata.
- Use unbound workqueues in padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (311 commits)
crypto: caam - Cast to long first before pointer conversion
crypto: ccree - enable CTS support in AES-XTS
crypto: inside-secure - Probe transform record cache RAM sizes
crypto: inside-secure - Base RD fetchcount on actual RD FIFO size
crypto: inside-secure - Base CD fetchcount on actual CD FIFO size
crypto: inside-secure - Enable extended algorithms on newer HW
crypto: inside-secure: Corrected configuration of EIP96_TOKEN_CTRL
crypto: inside-secure - Add EIP97/EIP197 and endianness detection
padata: remove cpu_index from the parallel_queue
padata: unbind parallel jobs from specific CPUs
padata: use separate workqueues for parallel and serial work
padata, pcrypt: take CPU hotplug lock internally in padata_alloc_possible
crypto: pcrypt - remove padata cpumask notifier
padata: make padata_do_parallel find alternate callback CPU
workqueue: require CPU hotplug read exclusion for apply_workqueue_attrs
workqueue: unconfine alloc/apply/free_workqueue_attrs()
padata: allocate workqueue internally
arm64: dts: imx8mq: Add CAAM node
random: Use wait_event_freezable() in add_hwgenerator_randomness()
crypto: ux500 - Fix COMPILE_TEST warnings
...
Sebastian reports that after commit ff296293b3 ("random: Support freezable
kthreads in add_hwgenerator_randomness()") we can call might_sleep() when the
task state is TASK_INTERRUPTIBLE (state=1). This leads to the following warning.
do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000349d1489>] prepare_to_wait_event+0x5a/0x180
WARNING: CPU: 0 PID: 828 at kernel/sched/core.c:6741 __might_sleep+0x6f/0x80
Modules linked in:
CPU: 0 PID: 828 Comm: hwrng Not tainted 5.3.0-rc7-next-20190903+ #46
RIP: 0010:__might_sleep+0x6f/0x80
Call Trace:
kthread_freezable_should_stop+0x1b/0x60
add_hwgenerator_randomness+0xdd/0x130
hwrng_fillfn+0xbf/0x120
kthread+0x10c/0x140
ret_from_fork+0x27/0x50
We shouldn't call kthread_freezable_should_stop() from deep within the
wait_event code because the task state is still set as
TASK_INTERRUPTIBLE instead of TASK_RUNNING and
kthread_freezable_should_stop() will try to call into the freezer with
the task in the wrong state. Use wait_event_freezable() instead so that
it calls schedule() in the right place and tries to enter the freezer
when the task state is TASK_RUNNING instead.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Keerthy <j-keerthy@ti.com>
Fixes: ff296293b3 ("random: Support freezable kthreads in add_hwgenerator_randomness()")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Introducing a chosen node, rng-seed, which is an entropy that can be
passed to kernel called very early to increase initial device
randomness. Bootloader should provide this entropy and the value is
read from /chosen/rng-seed in DT.
Obtain of_fdt_crc32 for CRC check after early_init_dt_scan_nodes(),
since early_init_dt_scan_chosen() would modify fdt to erase rng-seed.
Add a new interface add_bootloader_randomness() for rng-seed use case.
Depends on whether the seed is trustworthy, rng seed would be passed to
add_hwgenerator_randomness(). Otherwise it would be passed to
add_device_randomness(). Decision is controlled by kernel config
RANDOM_TRUST_BOOTLOADER.
Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu> # drivers/char/random.c
Signed-off-by: Will Deacon <will@kernel.org>
The kthread calling this function is freezable after commit 03a3bb7ae6
("hwrng: core - Freeze khwrng thread during suspend") is applied.
Unfortunately, this function uses wait_event_interruptible() but doesn't
check for the kthread being woken up by the fake freezer signal. When a
user suspends the system, this kthread will wake up and if it fails the
entropy size check it will immediately go back to sleep and not go into
the freezer. Eventually, suspend will fail because the task never froze
and a warning message like this may appear:
PM: suspend entry (deep)
Filesystems sync: 0.000 seconds
Freezing user space processes ... (elapsed 0.001 seconds) done.
OOM killer disabled.
Freezing remaining freezable tasks ...
Freezing of tasks failed after 20.003 seconds (1 tasks refusing to freeze, wq_busy=0):
hwrng R running task 0 289 2 0x00000020
[<c08c64c4>] (__schedule) from [<c08c6a10>] (schedule+0x3c/0xc0)
[<c08c6a10>] (schedule) from [<c05dbd8c>] (add_hwgenerator_randomness+0xb0/0x100)
[<c05dbd8c>] (add_hwgenerator_randomness) from [<bf1803c8>] (hwrng_fillfn+0xc0/0x14c [rng_core])
[<bf1803c8>] (hwrng_fillfn [rng_core]) from [<c015abec>] (kthread+0x134/0x148)
[<c015abec>] (kthread) from [<c01010e8>] (ret_from_fork+0x14/0x2c)
Check for a freezer signal here and skip adding any randomness if the
task wakes up because it was frozen. This should make the kthread freeze
properly and suspend work again.
Fixes: 03a3bb7ae6 ("hwrng: core - Freeze khwrng thread during suspend")
Reported-by: Keerthy <j-keerthy@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fixes: eb9d1bf079: "random: only read from /dev/random after its pool has received 128 bits"
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The per-CPU variable batched_entropy_uXX is protected by get_cpu_var().
This is just a preempt_disable() which ensures that the variable is only
from the local CPU. It does not protect against users on the same CPU
from another context. It is possible that a preemptible context reads
slot 0 and then an interrupt occurs and the same value is read again.
The above scenario is confirmed by lockdep if we add a spinlock:
| ================================
| WARNING: inconsistent lock state
| 5.1.0-rc3+ #42 Not tainted
| --------------------------------
| inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
| ksoftirqd/9/56 [HC0[0]:SC1[1]:HE0:SE0] takes:
| (____ptrval____) (batched_entropy_u32.lock){+.?.}, at: get_random_u32+0x3e/0xe0
| {SOFTIRQ-ON-W} state was registered at:
| _raw_spin_lock+0x2a/0x40
| get_random_u32+0x3e/0xe0
| new_slab+0x15c/0x7b0
| ___slab_alloc+0x492/0x620
| __slab_alloc.isra.73+0x53/0xa0
| kmem_cache_alloc_node+0xaf/0x2a0
| copy_process.part.41+0x1e1/0x2370
| _do_fork+0xdb/0x6d0
| kernel_thread+0x20/0x30
| kthreadd+0x1ba/0x220
| ret_from_fork+0x3a/0x50
…
| other info that might help us debug this:
| Possible unsafe locking scenario:
|
| CPU0
| ----
| lock(batched_entropy_u32.lock);
| <Interrupt>
| lock(batched_entropy_u32.lock);
|
| *** DEADLOCK ***
|
| stack backtrace:
| Call Trace:
…
| kmem_cache_alloc_trace+0x20e/0x270
| ipmi_alloc_recv_msg+0x16/0x40
…
| __do_softirq+0xec/0x48d
| run_ksoftirqd+0x37/0x60
| smpboot_thread_fn+0x191/0x290
| kthread+0xfe/0x130
| ret_from_fork+0x3a/0x50
Add a spinlock_t to the batched_entropy data structure and acquire the
lock while accessing it. Acquire the lock with disabled interrupts
because this function may be used from interrupt context.
Remove the batched_entropy_reset_lock lock. Now that we have a lock for
the data scructure, we can access it from a remote CPU.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Explain what these functions are for and when they offer
an advantage over get_random_bytes().
(We still need documentation on rng_is_initialized(), the
random_ready_callback system, and early boot in general.)
Signed-off-by: George Spelvin <lkml@sdf.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When the system boots with random.trust_cpu=1 it doesn't initialize the
per-NUMA CRNGs because it skips the rest of the CRNG startup code. This
means that the code from 1e7f583af6 ("random: make /dev/urandom scalable
for silly userspace programs") is not used when random.trust_cpu=1.
crash> dmesg | grep random:
[ 0.000000] random: get_random_bytes called from start_kernel+0x94/0x530 with crng_init=0
[ 0.314029] random: crng done (trusting CPU's manufacturer)
crash> print crng_node_pool
$6 = (struct crng_state **) 0x0
After adding the missing call to numa_crng_init() the per-NUMA CRNGs are
initialized again:
crash> dmesg | grep random:
[ 0.000000] random: get_random_bytes called from start_kernel+0x94/0x530 with crng_init=0
[ 0.314031] random: crng done (trusting CPU's manufacturer)
crash> print crng_node_pool
$1 = (struct crng_state **) 0xffff9a915f4014a0
The call to invalidate_batched_entropy() was also missing. This is
important for architectures like PPC and S390 which only have the
arch_get_random_seed_* functions.
Fixes: 39a8883a2b ("random: add a config option to trust the CPU's hwrng")
Signed-off-by: Jon DeVree <nuxi@vault24.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Right now rand_initialize() is run as an early_initcall(), but it only
depends on timekeeping_init() (for mixing ktime_get_real() into the
pools). However, the call to boot_init_stack_canary() for stack canary
initialization runs earlier, which triggers a warning at boot:
random: get_random_bytes called from start_kernel+0x357/0x548 with crng_init=0
Instead, this moves rand_initialize() to after timekeeping_init(), and moves
canary initialization here as well.
Note that this warning may still remain for machines that do not have
UEFI RNG support (which initializes the RNG pools during setup_arch()),
or for x86 machines without RDRAND (or booting without "random.trust=on"
or CONFIG_RANDOM_TRUST_CPU=y).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Immediately after boot, we allow reads from /dev/random before its
entropy pool has been fully initialized. Fix this so that we don't
allow this until the blocking pool has received 128 bits.
We do this by repurposing the initialized flag in the entropy pool
struct, and use the initialized flag in the blocking pool to indicate
whether it is safe to pull from the blocking pool.
To do this, we needed to rework when we decide to push entropy from the
input pool to the blocking pool, since the initialized flag for the
input pool was used for this purpose. To simplify things, we no
longer use the initialized flag for that purpose, nor do we use the
entropy_total field any more.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since the definition of struct crng_state is private to random.c, and
primary_crng is neither declared or used elsewhere, there's no reason
for that symbol to have external linkage.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This field is never used, might as well remove it.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Never modified, might as well be put in .rodata.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>