166 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Howard McLauchlan
|
4f6923fbb3 |
mm: make should_failslab always available for fault injection
should_failslab() is a convenient function to hook into for directed error injection into kmalloc(). However, it is only available if a config flag is set. The following BCC script, for example, fails kmalloc() calls after a btrfs umount: from bcc import BPF prog = r""" BPF_HASH(flag); #include <linux/mm.h> int kprobe__btrfs_close_devices(void *ctx) { u64 key = 1; flag.update(&key, &key); return 0; } int kprobe__should_failslab(struct pt_regs *ctx) { u64 key = 1; u64 *res; res = flag.lookup(&key); if (res != 0) { bpf_override_return(ctx, -ENOMEM); } return 0; } """ b = BPF(text=prog) while 1: b.kprobe_poll() This patch refactors the should_failslab implementation so that the function is always available for error injection, independent of flags. This change would be similar in nature to commit f5490d3ec921 ("block: Add should_fail_bio() for bpf error injection"). Link: http://lkml.kernel.org/r/20180222020320.6944-1-hmclauchlan@fb.com Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mikulas Patocka
|
1ba586de22 |
mm/slab_common.c: remove test if cache name is accessible
Since commit db265eca7700 ("mm/sl[aou]b: Move duping of slab name to slab_common.c"), the kernel always duplicates the slab cache name when creating a slab cache, so the test if the slab name is accessible is useless. Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1803231133310.22626@file01.intranet.prod.int.rdu2.redhat.com Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
613a5eb567 |
slab, slub: remove size disparity on debug kernel
I have noticed on debug kernel with SLAB, the size of some non-root slabs were larger than their corresponding root slabs. e.g. for radix_tree_node: $cat /proc/slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 15052 15075 4096 1 1 ... $cat /cgroup/memory/temp/memory.kmem.slabinfo | grep radix name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ... radix_tree_node 1581 158 4120 1 2 ... However for SLUB in debug kernel, the sizes were same. On further inspection it is found that SLUB always use kmem_cache.object_size to measure the kmem_cache.size while SLAB use the given kmem_cache.size. In the debug kernel the slab's size can be larger than its object_size. Thus in the creation of non-root slab, the SLAB uses the root's size as base to calculate the non-root slab's size and thus non-root slab's size can be larger than the root slab's size. For SLUB, the non-root slab's size is measured based on the root's object_size and thus the size will remain same for root and non-root slab. This patch makes slab's object_size the default base to measure the slab's size. Link: http://lkml.kernel.org/r/20180313165428.58699-1-shakeelb@google.com Fixes: 794b1248be4e ("memcg, slab: separate memcg vs root cache creation paths") Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
302d55d51d |
slab: use 32-bit arithmetic in freelist_randomize()
SLAB doesn't support 4GB+ of objects per slab, therefore randomization doesn't need size_t. Link: http://lkml.kernel.org/r/20180305200730.15812-25-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
7bbdb81ee3 |
slab: make usercopy region 32-bit
If kmem case sizes are 32-bit, then usecopy region should be too. Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
1b473f29d5 |
slub: make ->object_size unsigned int
Linux doesn't support negative length objects. Link: http://lkml.kernel.org/r/20180305200730.15812-17-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
ac914d08bb |
slab: make size_index_elem() unsigned int
size_index_elem() always works with small sizes (kmalloc caches are 32-bit) and returns small indexes. Link: http://lkml.kernel.org/r/20180305200730.15812-8-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
d5f866550d |
slab: make size_index[] array u8
All those small numbers are reverse indexes into kmalloc caches array and can't be negative. On x86_64 "unsigned int = fls()" can drop CDQE instruction: add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-2 (-2) Function old new delta kmalloc_slab 101 99 -2 Link: http://lkml.kernel.org/r/20180305200730.15812-7-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
f4957d5bd0 |
slab: make kmem_cache_create() work with 32-bit sizes
struct kmem_cache::size and ::align were always 32-bit. Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0. kmem_cache_create(1UL<<32+1) created 1-byte cache as expected. size_t doesn't work and never did. Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
361d575e5c |
slab: make create_boot_cache() work with 32-bit sizes
struct kmem_cache::size has always been "int", all those "size_t size" are fake. Link: http://lkml.kernel.org/r/20180305200730.15812-5-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
55de8b9c60 |
slab: make create_kmalloc_cache() work with 32-bit sizes
KMALLOC_MAX_CACHE_SIZE is 32-bit so is the largest kmalloc cache size. Christoph said: : : Ok SLABs maximum allocation size is limited to 32M (see : include/linux/slab.h: : : #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ : (MAX_ORDER + PAGE_SHIFT - 1) : 25) : : And SLUB/SLOB pass all larger requests to the page allocator anyways. Link: http://lkml.kernel.org/r/20180305200730.15812-4-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
0be70327ec |
slab: make kmalloc_size() return "unsigned int"
kmalloc_size() derives size of kmalloc cache from internal index, which can't be negative. Propagate unsignedness a bit. Link: http://lkml.kernel.org/r/20180305200730.15812-3-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
c86305743b |
slab: fixup calculate_alignment() argument type
Link: http://lkml.kernel.org/r/20180305200730.15812-1-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
1c99ba2918 |
mm/slab_common.c: mark kmalloc machinery as __ro_after_init
kmalloc caches aren't relocated after being set up neither does "size_index" array. Link: http://lkml.kernel.org/r/20180226203519.GA6886@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
617aebe6a9 |
Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass all hardened usercopy checks since these sizes cannot change at runtime.) This new check is WARN-by-default, so any mistakes can be found over the next several releases without breaking anyone's system. The series has roughly the following sections: - remove %p and improve reporting with offset - prepare infrastructure and whitelist kmalloc - update VFS subsystem with whitelists - update SCSI subsystem with whitelists - update network subsystem with whitelists - update process memory with whitelists - update per-architecture thread_struct with whitelists - update KVM with whitelists and fix ioctl bug - mark all other allocations as not whitelisted - update lkdtm for more sensible test overage -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 Comment: Kees Cook <kees@outflux.net> iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4 43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q 9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1 gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc JgOmUnQNJWCTwUUw5AS1 =tzmJ -----END PGP SIGNATURE----- Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardened usercopy whitelisting from Kees Cook: "Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass all hardened usercopy checks since these sizes cannot change at runtime.) This new check is WARN-by-default, so any mistakes can be found over the next several releases without breaking anyone's system. The series has roughly the following sections: - remove %p and improve reporting with offset - prepare infrastructure and whitelist kmalloc - update VFS subsystem with whitelists - update SCSI subsystem with whitelists - update network subsystem with whitelists - update process memory with whitelists - update per-architecture thread_struct with whitelists - update KVM with whitelists and fix ioctl bug - mark all other allocations as not whitelisted - update lkdtm for more sensible test overage" * tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits) lkdtm: Update usercopy tests for whitelisting usercopy: Restrict non-usercopy caches to size 0 kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl kvm: whitelist struct kvm_vcpu_arch arm: Implement thread_struct whitelist for hardened usercopy arm64: Implement thread_struct whitelist for hardened usercopy x86: Implement thread_struct whitelist for hardened usercopy fork: Provide usercopy whitelisting for task_struct fork: Define usercopy region in thread_stack slab caches fork: Define usercopy region in mm_struct slab caches net: Restrict unwhitelisted proto caches to size 0 sctp: Copy struct sctp_sock.autoclose to userspace using put_user() sctp: Define usercopy region in SCTP proto slab cache caif: Define usercopy region in caif proto slab cache ip: Define usercopy region in IP proto slab cache net: Define usercopy region in struct proto slab cache scsi: Define usercopy region in scsi_sense_cache slab cache cifs: Define usercopy region in cifs_request slab cache vxfs: Define usercopy region in vxfs_inode slab cache ufs: Define usercopy region in ufs_inode_cache slab cache ... |
||
Byongho Lee
|
692ae74aaf |
mm/slab_common.c: make calculate_alignment() static
calculate_alignment() function is only used inside slab_common.c. So make it static and let the compiler do more optimizations. After this patch there's a small improvement in text and data size. $ gcc --version gcc (GCC) 7.2.1 20171128 Before: text data bss dec hex filename 9890457 3828702 1212364 14931523 e3d643 vmlinux After: text data bss dec hex filename 9890437 3828670 1212364 14931471 e3d60f vmlinux Also I fixed a style problem reported by checkpatch. WARNING: Missing a blank line after declarations #53: FILE: mm/slab_common.c:286: + unsigned long ralign = cache_line_size(); + while (size <= ralign / 2) Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.com Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
6d07d1cd30 |
usercopy: Restrict non-usercopy caches to size 0
With all known usercopied cache whitelists now defined in the kernel, switch the default usercopy region of kmem_cache_create() to size 0. Any new caches with usercopy regions will now need to use kmem_cache_create_usercopy() instead of kmem_cache_create(). This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Cc: David Windsor <dave@nullcore.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Signed-off-by: Kees Cook <keescook@chromium.org> |
||
David Windsor
|
6c0c21adc7 |
usercopy: Mark kmalloc caches as usercopy caches
Mark the kmalloc slab caches as entirely whitelisted. These caches are frequently used to fulfill kernel allocations that contain data to be copied to/from userspace. Internal-only uses are also common, but are scattered in the kernel. For now, mark all the kmalloc caches as whitelisted. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: David Windsor <dave@nullcore.net> [kees: merged in moved kmalloc hunks, adjust commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com> |
||
Kees Cook
|
2d891fbc3b |
usercopy: Allow strict enforcement of whitelists
This introduces CONFIG_HARDENED_USERCOPY_FALLBACK to control the behavior of hardened usercopy whitelist violations. By default, whitelist violations will continue to WARN() so that any bad or missing usercopy whitelists can be discovered without being too disruptive. If this config is disabled at build time or a system is booted with "slab_common.usercopy_fallback=0", usercopy whitelists will BUG() instead of WARN(). This is useful for admins that want to use usercopy whitelists immediately. Suggested-by: Matthew Garrett <mjg59@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> |
||
David Windsor
|
8eb8284b41 |
usercopy: Prepare for usercopy whitelisting
This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com> |
||
Levin, Alexander (Sasha Levin)
|
75f296d93b |
kmemcheck: stop using GFP_NOTRACK and SLAB_NOTRACK
Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
d50112edde |
slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON, etc). SLAB is bloated temporarily by switching to "unsigned long", but only temporarily. Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
852d8be0ad |
mm: oom: show unreclaimable slab info when unreclaimable slabs > user memory
The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
5b36577109 |
mm: slabinfo: remove CONFIG_SLABINFO
According to discussion with Christoph (https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like it is pointless to keep CONFIG_SLABINFO around. This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo is still available. [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Johannes Weiner
|
f80c7dab95 |
mm: memcontrol: use vmalloc fallback for large kmem memcg arrays
For quick per-memcg indexing, slab caches and list_lru structures maintain linear arrays of descriptors. As the number of concurrent memory cgroups in the system goes up, this requires large contiguous allocations (8k cgroups = order-5, 16k cgroups = order-6 etc.) for every existing slab cache and list_lru, which can easily fail on loaded systems. E.g.: mkdir: page allocation failure: order:5, mode:0x14040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null) CPU: 1 PID: 6399 Comm: mkdir Not tainted 4.13.0-mm1-00065-g720bbe532b7c-dirty #481 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 Call Trace: ? __alloc_pages_direct_compact+0x4c/0x110 __alloc_pages_nodemask+0xf50/0x1430 alloc_pages_current+0x60/0xc0 kmalloc_order_trace+0x29/0x1b0 __kmalloc+0x1f4/0x320 memcg_update_all_list_lrus+0xca/0x2e0 mem_cgroup_css_alloc+0x612/0x670 cgroup_apply_control_enable+0x19e/0x360 cgroup_mkdir+0x322/0x490 kernfs_iop_mkdir+0x55/0x80 vfs_mkdir+0xd0/0x120 SyS_mkdirat+0x6c/0xe0 SyS_mkdir+0x14/0x20 entry_SYSCALL_64_fastpath+0x18/0xad Mem-Info: active_anon:2965 inactive_anon:19 isolated_anon:0 active_file:100270 inactive_file:98846 isolated_file:0 unevictable:0 dirty:0 writeback:0 unstable:0 slab_reclaimable:7328 slab_unreclaimable:16402 mapped:771 shmem:52 pagetables:278 bounce:0 free:13718 free_pcp:0 free_cma:0 This output is from an artificial reproducer, but we have repeatedly observed order-7 failures in production in the Facebook fleet. These systems become useless as they cannot run more jobs, even though there is plenty of memory to allocate 128 individual pages. Use kvmalloc and kvzalloc to fall back to vmalloc space if these arrays prove too large for allocating them physically contiguous. Link: http://lkml.kernel.org/r/20170918184919.20644-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Josef Bacik <jbacik@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kees Cook
|
7660a6fddc |
mm: allow slab_nomerge to be set at build time
Some hardened environments want to build kernels with slab_nomerge already set (so that they do not depend on remembering to set the kernel command line option). This is desired to reduce the risk of kernel heap overflows being able to overwrite objects from merged caches and changes the requirements for cache layout control, increasing the difficulty of these attacks. By keeping caches unmerged, these kinds of exploits can usually only damage objects in the same cache (though the risk to metadata exploitation is unchanged). Link: http://lkml.kernel.org/r/20170620230911.GA25238@beast Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: David Windsor <dave@nullcore.net> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Tejun Heo <tj@kernel.org> Cc: Daniel Mack <daniel@zonque.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Helge Deller <deller@gmx.de> Cc: Rik van Riel <riel@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Paul E. McKenney
|
5f0d5a3ae7 |
mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted from their assumption that SLAB_DESTROY_BY_RCU provided an existence guarantee, that is, that no block from such a slab would be reallocated during an RCU read-side critical section. Of course, that is not the case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire slab of blocks. However, there is a phrase for this, namely "type safety". This commit therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order to avoid future instances of this sort of confusion. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> [ paulmck: Add comments mentioning the old name, as requested by Eric Dumazet, in order to help people familiar with the old name find the new one. ] Acked-by: David Rientjes <rientjes@google.com> |
||
Greg Thelen
|
f9fa1d919c |
kasan: drain quarantine of memcg slab objects
Per memcg slab accounting and kasan have a problem with kmem_cache destruction. - kmem_cache_create() allocates a kmem_cache, which is used for allocations from processes running in root (top) memcg. - Processes running in non root memcg and allocating with either __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg kmem_cache. - Kasan catches use-after-free by having kfree() and kmem_cache_free() defer freeing of objects. Objects are placed in a quarantine. - kmem_cache_destroy() destroys root and non root kmem_caches. It takes care to drain the quarantine of objects from the root memcg's kmem_cache, but ignores objects associated with non root memcg. This causes leaks because quarantined per memcg objects refer to per memcg kmem cache being destroyed. To see the problem: 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,) 2) from non root memcg, allocate and free a few objects from cache 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy() will trigger a "Slab cache still has objects" warning indicating that the per memcg kmem_cache structure was leaked. Fix the leak by draining kasan quarantined objects allocated from non root memcg. Racing memcg deletion is tricky, but handled. kmem_cache_destroy() => shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache() flushes per memcg quarantined objects, even if that memcg has been rmdir'd and gone through memcg_deactivate_kmem_caches(). This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is enabled. So I don't think it's worth patching stable kernels. Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
17cc4dfeda |
slab: use memcg_kmem_cache_wq for slab destruction operations
If there's contention on slab_mutex, queueing the per-cache destruction work item on the system_wq can unnecessarily create and tie up a lot of kworkers. Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it global and use that workqueue for the destruction work items too. While at it, convert the workqueue from an unbound workqueue to a per-cpu one with concurrency limited to 1. It's generally preferable to use per-cpu workqueues and concurrency limit of 1 is safe enough. This is suggested by Joonsoo Kim. Link: http://lkml.kernel.org/r/20170117235411.9408-11-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
01fb58bcba |
slab: remove synchronous synchronize_sched() from memcg cache deactivation path
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. slub uses synchronize_sched() to deactivate a memcg cache. synchronize_sched() is an expensive and slow operation and doesn't scale when a huge number of caches are destroyed back-to-back. While there used to be a simple batching mechanism, the batching was too restricted to be helpful. This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub can use to schedule sched RCU callback instead of performing synchronize_sched() synchronously while holding cgroup_mutex. While this adds online cpus, mems and slab_mutex operations, operating on these locks back-to-back from the same kworker, which is what's gonna happen when there are many to deactivate, isn't expensive at all and this gets rid of the scalability problem completely. Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
c9fc586403 |
slab: introduce __kmemcg_cache_deactivate()
__kmem_cache_shrink() is called with %true @deactivate only for memcg caches. Remove @deactivate from __kmem_cache_shrink() and introduce __kmemcg_cache_deactivate() instead. Each memcg-supporting allocator should implement it and it should deactivate and drain the cache. This is to allow memcg cache deactivation behavior to further deviate from simple shrinking without messing up __kmem_cache_shrink(). This is pure reorganization and doesn't introduce any observable behavior changes. v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir. Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
510ded33e0 |
slab: implement slab_root_caches list
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. slab_caches currently lists all caches including root and memcg ones. This is the only data structure which lists the root caches and iterating root caches can only be done by walking the list while skipping over memcg caches. As there can be a huge number of memcg caches, this can become very expensive. This also can make /proc/slabinfo behave very badly. seq_file processes reads in 4k chunks and seeks to the previous Nth position on slab_caches list to resume after each chunk. With a lot of memcg cache churns on the list, reading /proc/slabinfo can become very slow and its content often ends up with duplicate and/or missing entries. This patch adds a new list slab_root_caches which lists only the root caches. When memcg is not enabled, it becomes just an alias of slab_caches. memcg specific list operations are collected into memcg_[un]link_cache(). Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
bc2791f857 |
slab: link memcg kmem_caches on their associated memory cgroup
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. While a memcg kmem_cache is listed on its root cache's ->children list, there is no direct way to iterate all kmem_caches which are assocaited with a memory cgroup. The only way to iterate them is walking all caches while filtering out caches which don't match, which would be most of them. This makes memcg destruction operations O(N^2) where N is the total number of slab caches which can be huge. This combined with the synchronous RCU operations can tie up a CPU and affect the whole machine for many hours when memory reclaim triggers offlining and destruction of the stale memcgs. This patch adds mem_cgroup->kmem_caches list which goes through memcg_cache_params->kmem_caches_node of all kmem_caches which are associated with the memcg. All memcg specific iterations, including stat file access, are updated to use the new list instead. Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
9eeadc8b6e |
slab: reorganize memcg_cache_params
We're going to change how memcg caches are iterated. In preparation, clean up and reorganize memcg_cache_params. * The shared ->list is replaced by ->children in root and ->children_node in children. * ->is_root_cache is removed. Instead ->root_cache is moved out of the child union and now used by both root and children. NULL indicates root cache. Non-NULL a memcg one. This patch doesn't cause any observable behavior changes. Link: http://lkml.kernel.org/r/20170117235411.9408-5-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
657dc2f972 |
slab: remove synchronous rcu_barrier() call in memcg cache release path
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. SLAB_DESTORY_BY_RCU caches need to flush all RCU operations before destruction because slab pages are freed through RCU and they need to be able to dereference the associated kmem_cache. Currently, it's done synchronously with rcu_barrier(). As rcu_barrier() is expensive time-wise, slab implements a batching mechanism so that rcu_barrier() can be done for multiple caches at the same time. Unfortunately, the rcu_barrier() is in synchronous path which is called while holding cgroup_mutex and the batching is too limited to be actually helpful. This patch updates the cache release path so that the batching is asynchronous and global. All SLAB_DESTORY_BY_RCU caches are queued globally and a work item consumes the list. The work item calls rcu_barrier() only once for all caches that are currently queued. * release_caches() is removed and shutdown_cache() now either directly release the cache or schedules a RCU callback to do that. This makes the cache inaccessible once shutdown_cache() is called and makes it impossible for shutdown_memcg_caches() to do memcg-specific cleanups afterwards. Move memcg-specific part into a helper, unlink_memcg_cache(), and make shutdown_cache() call it directly. Link: http://lkml.kernel.org/r/20170117235411.9408-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Acked-by: Vladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
bf5eb3de38 |
slub: separate out sysfs_slab_release() from sysfs_slab_remove()
Separate out slub sysfs removal and release, and call the former earlier from __kmem_cache_shutdown(). There's no reason to defer sysfs removal through RCU and this will later allow us to remove sysfs files way earlier during memory cgroup offline instead of release. Link: http://lkml.kernel.org/r/20170117235411.9408-3-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
290b6a58b7 |
Revert "slub: move synchronize_sched out of slab_mutex on shrink"
Patch series "slab: make memcg slab destruction scalable", v3. With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. I've seen machines which end up with hundred thousands of caches and many millions of kernfs_nodes. The current code is O(N^2) on the total number of caches and has synchronous rcu_barrier() and synchronize_sched() in cgroup offline / release path which is executed while holding cgroup_mutex. Combined, this leads to very expensive and slow cache destruction operations which can easily keep running for half a day. This also messes up /proc/slabinfo along with other cache iterating operations. seq_file operates on 4k chunks and on each 4k boundary tries to seek to the last position in the list. With a huge number of caches on the list, this becomes very slow and very prone to the list content changing underneath it leading to a lot of missing and/or duplicate entries. This patchset addresses the scalability problem. * Add root and per-memcg lists. Update each user to use the appropriate list. * Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched and asynchronous. * For dying empty slub caches, remove the sysfs files after deactivation so that we don't end up with millions of sysfs files without any useful information on them. This patchset contains the following nine patches. 0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch 0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch 0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch 0004-slab-reorganize-memcg_cache_params.patch 0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch 0006-slab-implement-slab_root_caches-list.patch 0007-slab-introduce-__kmemcg_cache_deactivate.patch 0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch 0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch 0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch 0001 reverts an existing optimization to prepare for the following changes. 0002 is a prep patch. 0003 makes rcu_barrier() in release path batched and asynchronous. 0004-0006 separate out the lists. 0007-0008 replace synchronize_sched() in slub destruction path with call_rcu_sched(). 0009 removes sysfs files early for empty dying caches. 0010 makes destruction work items use a workqueue with limited concurrency. This patch (of 10): Revert 89e364db71fb5e ("slub: move synchronize_sched out of slab_mutex on shrink"). With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. Moving synchronize_sched() out of slab_mutex isn't enough as it's still inside cgroup_mutex. The whole deactivation / release path will be updated to avoid all synchronous RCU operations. Revert this insufficient optimization in preparation to ease future changes. Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jay Vana <jsvana@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
af3b5f8764 |
mm, slab: rename kmalloc-node cache to kmalloc-<size>
SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Grygorii Maistrenko
|
c6e28895a4 |
slub: do not merge cache if slub_debug contains a never-merge flag
In case CONFIG_SLUB_DEBUG_ON=n, find_mergeable() gets debug features from commandline but never checks if there are features from the SLAB_NEVER_MERGE set. As a result selected by slub_debug caches are always mergeable if they have been created without a custom constructor set or without one of the SLAB_* debug features on. This moves the SLAB_NEVER_MERGE check below the flags update from commandline to make sure it won't merge the slab cache if one of the debug features is on. Link: http://lkml.kernel.org/r/20170101124451.GA4740@lp-laptop-d Signed-off-by: Grygorii Maistrenko <grygoriimkd@gmail.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Garnier
|
e70954fd6d |
mm/slab_common.c: check kmem_create_cache flags are common
Verify that kmem_create_cache flags are not allocator specific. It is done before removing flags that are not available with the current configuration. The current kmem_cache_create removes incorrect flags but do not validate the callers are using them right. This change will ensure that callers are not trying to create caches with flags that won't be used because allocator specific. Link: http://lkml.kernel.org/r/1478553075-120242-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
89e364db71 |
slub: move synchronize_sched out of slab_mutex on shrink
synchronize_sched() is a heavy operation and calling it per each cache owned by a memory cgroup being destroyed may take quite some time. What is worse, it's currently called under the slab_mutex, stalling all works doing cache creation/destruction. Actually, there isn't much point in calling synchronize_sched() for each cache - it's enough to call it just once - after setting cpu_partial for all caches and before shrinking them. This way, we can also move it out of the slab_mutex, which we have to hold for iterating over the slab cache list. Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991 Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reported-by: Doug Smythies <dsmythies@telus.net> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
f773e36de3 |
memcg: prevent memcg caches to be both OFF_SLAB & OBJFREELIST_SLAB
While testing OBJFREELIST_SLAB integration with pagealloc, we found a bug where kmem_cache(sys) would be created with both CFLGS_OFF_SLAB & CFLGS_OBJFREELIST_SLAB. When it happened, critical allocations needed for loading drivers or creating new caches will fail. The original kmem_cache is created early making OFF_SLAB not possible. When kmem_cache(sys) is created, OFF_SLAB is possible and if pagealloc is enabled it will try to enable it first under certain conditions. Given kmem_cache(sys) reuses the original flag, you can have both flags at the same time resulting in allocation failures and odd behaviors. This fix discards allocator specific flags from memcg before calling create_cache. The bug exists since 4.6-rc1 and affects testing debug pagealloc configurations. Fixes: b03a017bebc4 ("mm/slab: introduce new slab management type, OBJFREELIST_SLAB") Link: http://lkml.kernel.org/r/1478553075-120242-1-git-send-email-thgarnie@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Signed-off-by: Thomas Garnier <thgarnie@google.com> Tested-by: Thomas Garnier <thgarnie@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
4949148ad4 |
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Garnier
|
7c00fce98c |
mm: reorganize SLAB freelist randomization
The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
73f576c04b |
mm: memcontrol: fix cgroup creation failure after many small jobs
The memory controller has quite a bit of state that usually outlives the cgroup and pins its CSS until said state disappears. At the same time it imposes a 16-bit limit on the CSS ID space to economically store IDs in the wild. Consequently, when we use cgroups to contain frequent but small and short-lived jobs that leave behind some page cache, we quickly run into the 64k limitations of outstanding CSSs. Creating a new cgroup fails with -ENOSPC while there are only a few, or even no user-visible cgroups in existence. Although pinning CSSs past cgroup removal is common, there are only two instances that actually need an ID after a cgroup is deleted: cache shadow entries and swapout records. Cache shadow entries reference the ID weakly and can deal with the CSS having disappeared when it's looked up later. They pose no hurdle. Swap-out records do need to pin the css to hierarchically attribute swapins after the cgroup has been deleted; though the only pages that remain swapped out after offlining are tmpfs/shmem pages. And those references are under the user's control, so they are manageable. This patch introduces a private 16-bit memcg ID and switches swap and cache shadow entries over to using that. This ID can then be recycled after offlining when the CSS remains pinned only by objects that don't specifically need it. This script demonstrates the problem by faulting one cache page in a new cgroup and deleting it again: set -e mkdir -p pages for x in `seq 128000`; do [ $((x % 1000)) -eq 0 ] && echo $x mkdir /cgroup/foo echo $$ >/cgroup/foo/cgroup.procs echo trex >pages/$x echo $$ >/cgroup/cgroup.procs rmdir /cgroup/foo done When run on an unpatched kernel, we eventually run out of possible IDs even though there are no visible cgroups: [root@ham ~]# ./cssidstress.sh [...] 65000 mkdir: cannot create directory '/cgroup/foo': No space left on device After this patch, the IDs get released upon cgroup destruction and the cache and css objects get released once memory reclaim kicks in. [hannes@cmpxchg.org: init the IDR] Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org Fixes: b2052564e66d ("mm: memcontrol: continue cache reclaim from offlined groups") Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: John Garcia <john.garcia@mesosphere.io> Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Nikolay Borisov <kernel@kyup.com> Cc: <stable@vger.kernel.org> [3.19+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
55834c5909 |
mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
505f5dcb1c |
mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Potapenko
|
7ed2f9e663 |
mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joe Perches
|
1170532bb4 |
mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent. Miscellanea: - Realign arguments - Add missing newline to format - kmemleak-test.c has a "kmemleak: " prefix added to the "Kmemleak testing" logging message via pr_fmt Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Tejun Heo <tj@kernel.org> [percpu] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |