IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add support for hibernate/suspend-to-disk.
Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.
Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.
To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can
be accessed by VA, which avoids the need to convert-addresses and clean to
PoC on the suspend path.
MMU setup is shared with the boot path, meaning the swapper_pg_dir is
restored directly: ttbr1_el1 is no longer saved/restored.
struct sleep_save_sp is removed, replacing it with a single array of
pointers.
cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1,
mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by
__cpu_setup(). However these values all contain res0 bits that may be used
to enable future features.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Hibernate could make use of the cpu_suspend() code to save/restore cpu
state, however it needs to be able to return '0' from the 'finisher'.
Rework cpu_suspend() so that the finisher is called from C code,
independently from the save/restore of cpu state. Space to save the context
in is allocated in the caller's stack frame, and passed into
__cpu_suspend_enter().
Hibernate's use of this API will look like a copy of the cpu_suspend()
function.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
The fault decoding process (including computing the IPA in the case
of a permission fault) would be much better done in C code, as we
have a reasonable infrastructure to deal with the VHE/non-VHE
differences.
Let's move the whole thing to C, including the workaround for
erratum 834220, and just patch the odd ESR_EL2 access remaining
in hyp-entry.S.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A secondary CPU could fail to come online due to insufficient
capabilities and could simply die or loop in the kernel.
e.g, a CPU with no support for the selected kernel PAGE_SIZE
loops in kernel with MMU turned off.
or a hotplugged CPU which doesn't have one of the advertised
system capability will die during the activation.
There is no way to synchronise the status of the failing CPU
back to the master. This patch solves the issue by adding a
field to the secondary_data which can be updated by the failing
CPU. If the secondary CPU fails even before turning the MMU on,
it updates the status in a special variable reserved in the head.txt
section to make sure that the update can be cache invalidated safely
without possible sharing of cache write back granule.
Here are the possible states :
-1. CPU_MMU_OFF - Initial value set by the master CPU, this value
indicates that the CPU could not turn the MMU on, hence the status
could not be reliably updated in the secondary_data. Instead, the
CPU has updated the status @ __early_cpu_boot_status.
0. CPU_BOOT_SUCCESS - CPU has booted successfully.
1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the
master CPU to synchronise by issuing a cpu_ops->cpu_kill.
2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is
looping in the kernel. This information could be used by say,
kexec to check if it is really safe to do a kexec reboot.
3. CPU_PANIC_KERNEL - CPU detected some serious issues which
requires kernel to crash immediately. The secondary CPU cannot
call panic() until it has initialised the GIC. This flag can
be used to instruct the master to do so.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[catalin.marinas@arm.com: conflict resolution]
[catalin.marinas@arm.com: converted "status" from int to long]
[catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
support of 248 VCPUs.
* ARM: rewrite of the arm64 world switch in C, support for
16-bit VM identifiers. Performance counter virtualization
missed the boat.
* x86: Support for more Hyper-V features (synthetic interrupt
controller), MMU cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWlSKwAAoJEL/70l94x66DY0UIAK5vp4zfQoQOJC4KP4Xgxwdu
kpnK2Boz3/74o1b0y5+eJZoUZCsXCVLtmP5uhmMxUYWDgByFG2X8ZDhPFwB5FYLT
2dN+Lr4tsolgIfRdHZtrT6Svp9SDL039bWTdscnbR6l37/j9FRWvpKdhI3orloFD
/i4CSW2dVIq1/9Xctwu/rtcOEesEx4Cad+6YV3/530eVAXFzE908nXfmqJNZTocY
YCGcmrMVCOu0ng5QM4xSzmmYjKMLUcRs+QzZWkVBzdJtTgwZUr09yj7I2dZ1yj/i
cxYrJy6shSwE74XkXsmvG+au3C5u3vX4tnXjBFErnPJ99oqzHatVnFWNRhj4dLQ=
=PIj1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC changes will come next week.
- s390: Support for runtime instrumentation within guests, support of
248 VCPUs.
- ARM: rewrite of the arm64 world switch in C, support for 16-bit VM
identifiers. Performance counter virtualization missed the boat.
- x86: Support for more Hyper-V features (synthetic interrupt
controller), MMU cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (115 commits)
kvm: x86: Fix vmwrite to SECONDARY_VM_EXEC_CONTROL
kvm/x86: Hyper-V SynIC timers tracepoints
kvm/x86: Hyper-V SynIC tracepoints
kvm/x86: Update SynIC timers on guest entry only
kvm/x86: Skip SynIC vector check for QEMU side
kvm/x86: Hyper-V fix SynIC timer disabling condition
kvm/x86: Reorg stimer_expiration() to better control timer restart
kvm/x86: Hyper-V unify stimer_start() and stimer_restart()
kvm/x86: Drop stimer_stop() function
kvm/x86: Hyper-V timers fix incorrect logical operation
KVM: move architecture-dependent requests to arch/
KVM: renumber vcpu->request bits
KVM: document which architecture uses each request bit
KVM: Remove unused KVM_REQ_KICK to save a bit in vcpu->requests
kvm: x86: Check kvm_write_guest return value in kvm_write_wall_clock
KVM: s390: implement the RI support of guest
kvm/s390: drop unpaired smp_mb
kvm: x86: fix comment about {mmu,nested_mmu}.gva_to_gpa
KVM: x86: MMU: Use clear_page() instead of init_shadow_page_table()
arm/arm64: KVM: Detect vGIC presence at runtime
...
Adds implementation for arm-smccc and enables CONFIG_HAVE_SMCCC.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As we've now rewritten most of our code-base in C, most of the
KVM-specific code in asm-offset.c is useless. Delete-time again!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.
Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Our current switch_mm implementation suffers from a number of problems:
(1) The ASID allocator relies on IPIs to synchronise the CPUs on a
rollover event
(2) Because of (1), we cannot allocate ASIDs with interrupts disabled
and therefore make use of a TIF_SWITCH_MM flag to postpone the
actual switch to finish_arch_post_lock_switch
(3) We run context switch with a reserved (invalid) TTBR0 value, even
though the ASID and pgd are updated atomically
(4) We take a global spinlock (cpu_asid_lock) during context-switch
(5) We use h/w broadcast TLB operations when they are not required
(e.g. in flush_context)
This patch addresses these problems by rewriting the ASID algorithm to
match the bitmap-based arch/arm/ implementation more closely. This in
turn allows us to remove much of the complications surrounding switch_mm,
including the ugly thread flag.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since commit 8a14849 (arm64: KVM: Switch vgic save/restore to
alternative_insn) vgic_sr_vectors is not used anymore, so remove
remaining leftovers and kill the structure.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This introduces a level of indirection for the debug registers. Instead
of using the sys_regs[] directly we store registers in a structure in
the vcpu. The new kvm_arm_reset_debug_ptr() sets the debug ptr to the
guest context.
Because we no longer give the sys_regs offset for the sys_reg_desc->reg
field, but instead the index into a debug-specific struct we need to
add a number of additional trap functions for each register. Also as the
generic generic user-space access code no longer works we have
introduced a new pair of function pointers to the sys_reg_desc structure
to override the generic code when needed.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This is a precursor for later patches which will need to do more to
setup debug state before entering the hyp.S switch code. The existing
functionality for setting mdcr_el2 has been moved out of hyp.S and now
uses the value kept in vcpu->arch.mdcr_el2.
As the assembler used to previously mask and preserve MDCR_EL2.HPMN I've
had to add a mechanism to save the value of mdcr_el2 as a per-cpu
variable during the initialisation code. The kernel never sets this
number so we are assuming the bootcode has set up the correct value
here.
This also moves the conditional setting of the TDA bit from the hyp code
into the C code which is currently used for the lazy debug register
context switch code.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, we configured the world-switch by having a small array
of pointers to the save and restore functions, depending on the
GIC used on the platform.
Loading these values each time is a bit silly (they never change),
and it makes sense to rely on the instruction patching instead.
This leads to a nice cleanup of the code.
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The main change here is a significant head.S rework that allows us to
boot on machines with physical memory at a really high address without
having to increase our mapped VA range. Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJVLnQpAAoJELescNyEwWM03RIH/iwcDc0MBZgkwfD5cnY+29p4
m89lMDo3SyGQT4NynHSw7P3R7c3zULmI+9hmJMw/yfjjjL6m7X+vVAF3xj1Am4Al
OzCqYLHyFnlRktzJ6dWeF1Ese7tWqPpxn+OCXgYNpz/r5MfF/HhlyX/qNzAQPKrw
ZpDvnt44DgUfweqjTbwQUg2wkyCRjmz57MQYxDcmJStdpHIu24jWOvDIo3OJGjyS
L49I9DU6DGUhkISZmmBE0T7vmKMD1BcgI7OIzX2WIqn521QT+GSLMhRxaHmK1s1V
A8gaMTwpo0xFhTAt7sbw/5+2663WmfRdZI+FtduvORsoxX6KdDn7DH1NQixIm8s=
=+F0I
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here are the core arm64 updates for 4.1.
Highlights include a significant rework to head.S (allowing us to boot
on machines with physical memory at a really high address), an AES
performance boost on Cortex-A57 and the ability to run a 32-bit
userspace with 64k pages (although this requires said userspace to be
built with a recent binutils).
The head.S rework spilt over into KVM, so there are some changes under
arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
In particular, the linker script changes caused us some issues in
-next, so there are a few merge commits where we had to apply fixes on
top of a stable branch.
Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
arm64: fix midr range for Cortex-A57 erratum 832075
arm64: errata: add workaround for cortex-a53 erratum #845719
arm64: Use bool function return values of true/false not 1/0
arm64: defconfig: updates for 4.1
arm64: Extract feature parsing code from cpu_errata.c
arm64: alternative: Allow immediate branch as alternative instruction
arm64: insn: Add aarch64_insn_decode_immediate
ARM: kvm: round HYP section to page size instead of log2 upper bound
ARM: kvm: assert on HYP section boundaries not actual code size
arm64: head.S: ensure idmap_t0sz is visible
arm64: pmu: add support for interrupt-affinity property
dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
arm64: head.S: ensure visibility of page tables
arm64: KVM: use ID map with increased VA range if required
arm64: mm: increase VA range of identity map
ARM: kvm: implement replacement for ld's LOG2CEIL()
arm64: proc: remove unused cpu_get_pgd macro
arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
arm64: remove __calc_phys_offset
arm64: merge __enable_mmu and __turn_mmu_on
...
As execution domain support is gone we can remove
signal translation from the signal code and remove
exec_domain from thread_info.
Signed-off-by: Richard Weinberger <richard@nod.at>
struct cpu_table is an artifact left from the (very) early days of
the arm64 port, and its only real use is to allow the most beautiful
"AArch64 Processor" string to be displayed at boot time.
Really? Yes, really.
Let's get rid of it. In order to avoid another BogoMips-gate, the
aforementioned string is preserved.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Common: Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other architectures).
This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
or TCP_RR netperf tests). This also has to be enabled manually for now,
but the plan is to auto-tune this in the future.
ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
tracking
s390: several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS: Bugfixes.
x86: Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested virtualization
improvements (nested APICv---a nice optimization), usual round of emulation
fixes. There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
ARM has other conflicts where functions are added in the same place
by 3.19-rc and 3.20 patches. These are not large though, and entirely
within KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
=7gdx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
ARM64_CPU_SUSPEND config option was introduced to make code providing
context save/restore selectable only on platforms requiring power
management capabilities.
Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which
in turn is set by the SUSPEND config option.
The introduction of CPU_IDLE for arm64 requires that code configured
by ARM64_CPU_SUSPEND (context save/restore) should be compiled in
in order to enable the CPU idle driver to rely on CPU operations
carrying out context save/restore.
The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore
forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP)
failed dependencies, which is not a clean way of handling the kernel
configuration option.
For these reasons, this patch removes the ARM64_CPU_SUSPEND config option
and makes the context save/restore dependent on CPU_PM, which is selected
whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies
in the process.
This way, code previously configured through ARM64_CPU_SUSPEND is
compiled in whenever a power management subsystem requires it to be
present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour
expected on ARM64 kernels.
The cpu_suspend and cpu_init_idle CPU operations are added only if
CPU_IDLE is selected, since they are CPU_IDLE specific methods and
should be grouped and defined accordingly.
PSCI CPU operations are updated to reflect the introduced changes.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ICC_SRE_EL1 is a system register allowing msr/mrs accesses to the
GIC CPU interface for EL1 (guests). Currently we force it to 0, but
for proper GICv3 support we have to allow guests to use it (depending
on their selected virtual GIC model).
So add ICC_SRE_EL1 to the list of saved/restored registers on a
world switch, but actually disallow a guest to change it by only
restoring a fixed, once-initialized value.
This value depends on the GIC model userland has chosen for a guest.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Implement switching of the debug registers. While the number
of registers is massive, CPUs usually don't implement them all
(A57 has 6 breakpoints and 4 watchpoints, which gives us a total
of 22 registers "only").
Also, we only save/restore them when MDSCR_EL1 has debug enabled,
or when we've flagged the debug registers as dirty. It means that
most of the time, we only save/restore MDSCR_EL1.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Introduce the GICv3 world switch code used to save/restore the
GICv3 context.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move the GICv2 world switch code into its own file, and add the
necessary indirection to the arm64 switch code.
Also introduce a new type field to the vgic_params structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to make way for the GICv3 registers, move the v2-specific
registers to their own structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Finally plug KVM/arm64 into the config system, making it possible
to enable KVM support on AArch64 CPUs.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The HYP mode world switch in all its glory.
Implements save/restore of host/guest registers, EL2 trapping,
IPA resolution, and additional services (tlb invalidation).
Reviewed-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch introduces several assembly macros and definitions used in
the .S files across arch/arm64/ like IRQ disabling/enabling, together
with asm-offsets.c.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>