IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Early 4.3 versions of gcc apparently aggressively optimize the raw
time accumulation loop, replacing it with a divide.
On 32bit systems, this causes the following link errors:
undefined reference to `__umoddi3'
undefined reference to `__udivdi3'
The gcc issue has been fixed in 4.4 and greater.
This patch replaces the accumulation loop with a do_div, as suggested
by Linus.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
CC: Jason Wessel <jason.wessel@windriver.com>
CC: Larry Finger <Larry.Finger@lwfinger.net>
CC: Ingo Molnar <mingo@elte.hu>
CC: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tv_nsec is a long and when added to the shifted interval it can wrap
and become negative which later causes looping problems in the
getrawmonotonic(). The edge case occurs when the system has slept for
a short period of time of ~2 seconds.
A trace printk of the values in this patch illustrate the problem:
ftrace time stamp: log
43.716079: logarithmic_accumulation: raw: 3d0913 tv_nsec d687faa
43.718513: logarithmic_accumulation: raw: 3d0913 tv_nsec da588bd
43.722161: logarithmic_accumulation: raw: 3d0913 tv_nsec de291d0
46.349925: logarithmic_accumulation: raw: 7a122600 tv_nsec e1f9ae3
46.349930: logarithmic_accumulation: raw: 1e848980 tv_nsec 8831c0e3
The kernel starts looping at 46.349925 in the getrawmonotonic() due to
the negative value from adding the raw value to tv_nsec.
A simple solution is to accumulate into a u64, and then normalize it
to a timespec_t.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
[ Reworked variable names and simplified some of the code. - John ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-timekeeping-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
um: Fix read_persistent_clock fallout
kgdb: Do not access xtime directly
powerpc: Clean up obsolete code relating to decrementer and timebase
powerpc: Rework VDSO gettimeofday to prevent time going backwards
clocksource: Add __clocksource_updatefreq_hz/khz methods
x86: Convert common clocksources to use clocksource_register_hz/khz
timekeeping: Make xtime and wall_to_monotonic static
hrtimer: Cleanup direct access to wall_to_monotonic
um: Convert to use read_persistent_clock
timkeeping: Fix update_vsyscall to provide wall_to_monotonic offset
powerpc: Cleanup xtime usage
powerpc: Simplify update_vsyscall
time: Kill off CONFIG_GENERIC_TIME
time: Implement timespec_add
x86: Fix vtime/file timestamp inconsistencies
Trivial conflicts in Documentation/feature-removal-schedule.txt
Much less trivial conflicts in arch/powerpc/kernel/time.c resolved as
per Thomas' earlier merge commit 47916be4e28c ("Merge branch
'powerpc.cherry-picks' into timers/clocksource")
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
Documentation: Add timers/timers-howto.txt
timer: Added usleep_range timer
Revert "timer: Added usleep[_range] timer"
clockevents: Remove the per cpu tick skew
posix_timer: Move copy_to_user(created_timer_id) down in timer_create()
timer: Added usleep[_range] timer
timers: Document meaning of deferrable timer
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
sched: No need for bootmem special cases
sched: Revert nohz_ratelimit() for now
sched: Reduce update_group_power() calls
sched: Update rq->clock for nohz balanced cpus
sched: Fix spelling of sibling
sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
sched: thread_group_cputime: Simplify, document the "alive" check
sched: Remove the obsolete exit_state/signal hacks
sched: task_tick_rt: Remove the obsolete ->signal != NULL check
sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
sched: Fix comments to make them DocBook happy
sched: Fix fix_small_capacity
powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
powerpc: Enable asymmetric SMT scheduling on POWER7
sched: Add asymmetric group packing option for sibling domain
sched: Fix capacity calculations for SMT4
sched: Change nohz idle load balancing logic to push model
...
Historically, Linux has tried to make the regular timer tick on the
various CPUs not happen at the same time, to avoid contention on
xtime_lock.
Nowadays, with the tickless kernel, this contention no longer happens
since time keeping and updating are done differently. In addition,
this skew is actually hurting power consumption in a measurable way on
many-core systems.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <20100727210210.58d3118c@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To properly handle clocksources that change frequencies
at the clocksource->enable() point, this patch adds
a method that will update the clocksource's mult/shift and
max_idle_ns values.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-12-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch makes xtime and wall_to_monotonic static, as planned in
Documentation/feature-removal-schedule.txt. This will allow for
further cleanups to the timekeeping core.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-10-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Provides an accessor function to replace hrtimer.c's
direct access of wall_to_monotonic.
This will allow wall_to_monotonic to be made static as
planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-9-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
update_vsyscall() did not provide the wall_to_monotoinc offset,
so arch specific implementations tend to reference wall_to_monotonic
directly. This limits future cleanups in the timekeeping core, so
this patch fixes the update_vsyscall interface to provide
wall_to_monotonic, allowing wall_to_monotonic to be made static
as planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1279068988-21864-7-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that all arches have been converted over to use generic time via
clocksources or arch_gettimeoffset(), we can remove the GENERIC_TIME
config option and simplify the generic code.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-4-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
After accidentally misusing timespec_add_safe, I wanted to make sure
we don't accidently trip over that issue again, so I created a simple
timespec_add() function which we can use to replace the instances
of timespec_add_safe() that don't want the overflow detection.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-3-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Norbert reported that nohz_ratelimit() causes his laptop to burn about
4W (40%) extra. For now back out the change and see if we can adjust
the power management code to make better decisions.
Reported-by: Norbert Preining <preining@logic.at>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 0224cf4c5e (sched: Intoduce get_cpu_iowait_time_us())
broke things by not making sure preemption was indeed disabled
by the callers of nr_iowait_cpu() which took the iowait value of
the current cpu.
This resulted in a heap of preempt warnings. Cure this by making
nr_iowait_cpu() take a cpu number and fix up the callers to pass
in the right number.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: linux-pm@lists.linux-foundation.org
LKML-Reference: <1277968037.1868.120.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Chris Wedgwood reports that 39c0cbe (sched: Rate-limit nohz) causes a
serial console regression, unresponsiveness, and indeed it does. The
reason is that the nohz code is skipped even when the tick was already
stopped before the nohz_ratelimit(cpu) condition changed.
Move the nohz_ratelimit() check to the other conditions which prevent
long idle sleeps.
Reported-by: Chris Wedgwood <cw@f00f.org>
Tested-by: Brian Bloniarz <bmb@athenacr.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg KH <gregkh@suse.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Jef Driesen <jefdriesen@telenet.be>
LKML-Reference: <1276790557.27822.516.camel@twins>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the new push model, all idle CPUs indeed go into nohz mode. There is
still the concept of idle load balancer (performing the load balancing
on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz
balancer when any of the nohz CPUs need idle load balancing.
The kickee CPU does the idle load balancing on behalf of all idle CPUs
instead of the normal idle balance.
This addresses the below two problems with the current nohz ilb logic:
* the idle load balancer continued to have periodic ticks during idle and
wokeup frequently, even though it did not have any rebalancing to do on
behalf of any of the idle CPUs.
* On x86 and CPUs that have APIC timer stoppage on idle CPUs, this
periodic wakeup can result in a periodic additional interrupt on a CPU
doing the timer broadcast.
Also currently we are migrating the unpinned timers from an idle to the cpu
doing idle load balancing (when all the cpus in the system are idle,
there is no idle load balancing cpu and timers get added to the same idle cpu
where the request was made. So the existing optimization works only on semi idle
system).
And In semi idle system, we no longer have periodic ticks on the idle load
balancer CPU. Using that cpu will add more delays to the timers than intended
(as that cpu's timer base may not be uptodate wrt jiffies etc). This was
causing mysterious slowdowns during boot etc.
For now, in the semi idle case, use the nearest busy cpu for migrating timers
from an idle cpu. This is good for power-savings anyway.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: Add clocksource_register_hz/khz interface
posix-cpu-timers: Optimize run_posix_cpu_timers()
time: Remove xtime_cache
mqueue: Convert message queue timeout to use hrtimers
hrtimers: Provide schedule_hrtimeout for CLOCK_REALTIME
timers: Introduce the concept of timer slack for legacy timers
ntp: Remove tickadj
ntp: Make time_adjust static
time: Add xtime, wall_to_monotonic to feature-removal-schedule
timer: Try to survive timer callback preempt_count leak
timer: Split out timer function call
timer: Print function name for timer callbacks modifying preemption count
time: Clean up warp_clock()
cpu-timers: Avoid iterating over all threads in fastpath_timer_check()
cpu-timers: Change SIGEV_NONE timer implementation
cpu-timers: Return correct previous timer reload value
cpu-timers: Cleanup arm_timer()
cpu-timers: Simplify RLIMIT_CPU handling
How to pick good mult/shift pairs has always been difficult to
describe to folks writing clocksource drivers, since it requires
careful tradeoffs in adjustment accuracy vs overflow limits.
Now, with the clocks_calc_mult_shift function, its much
easier. However, not many clocksources have converted to using that
function, and there is still the issue of the max interval length
assumption being made by each clocksource driver independently.
So this patch simplifies the registration process by having
clocksources be registered with a hz/khz value and the registration
function taking care of setting mult/shift.
This should take most of the confusion out of writing a clocksource
driver.
Additionally it also keeps the shift size tradeoff (more accuracy vs
longer possible nohz times) centralized so the timekeeping core can
keep track of the assumptions being made.
[ tglx: Coding style and comments fixed ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1273280858-30143-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For the ondemand cpufreq governor, it is desired that the iowait
time is microaccounted in a similar way as idle time is.
This patch introduces the infrastructure to account and expose
this information via the get_cpu_iowait_time_us() function.
[akpm@linux-foundation.org: fix CONFIG_NO_HZ=n build]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082523.284feab6@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that the only user of ts->idle_lastupdate is
update_ts_time_stats(), the entire field can be eliminated.
In update_ts_time_stats(), idle_lastupdate is first set to
"now", and a few lines later, the only user is an if() statement
that assigns a variable either to "now" or to
ts->idle_lastupdate, which has the value of "now" at that point.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082439.2fab0b4f@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch folds the updating of the last_update_time into the
update_ts_time_stats() function, and updates the callers.
This allows for further cleanups that are done in the next
patch.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082403.60072967@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Right now, get_cpu_idle_time_us() only reports the idle
statistics upto the point the CPU entered last idle; not what is
valid right now.
This patch adds an update of the idle statistics to
get_cpu_idle_time_us(), so that calling this function always
returns statistics that are accurate at the point of the call.
This includes resetting the start of the idle time for
accounting purposes to avoid double accounting.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082323.2d2f1945@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, two places update the idle statistics (and more to
come later in this series).
This patch creates a helper function for updating these
statistics.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082245.163e67ed@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The exported function get_cpu_idle_time_us() has no comment
describing it; add a kerneldoc comment
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082208.7cb721f0@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the earlier logarithmic time accumulation patch, xtime will now
always be within one "tick" of the current time, instead of possibly
half a second off.
This removes the need for the xtime_cache value, which always stored the
time at the last interrupt, so this patch cleans that up removing the
xtime_cache related code.
This patch also addresses an issue with an earlier version of this change,
where xtime_cache was normalizing xtime, which could in some cases be
not valid (ie: tv_nsec == NSEC_PER_SEC). This is fixed by handling
the edge case in update_wall_time().
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Petr Titěra <P.Titera@century.cz>
LKML-Reference: <1270589451-30773-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Now that no arches are accessing time_adjust directly,
make it static.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1268968769-19209-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The logarithmic accumulation done in the timekeeping has some overflow
protection that limits the max shift value. That means it will take
more then shift loops to accumulate all of the cycles. This causes
the shift decrement to underflow, which causes the loop to never exit.
The simplest fix would be simply to do a:
if (shift)
shift--;
However that is not optimal, as we know the cycle offset is larger
then the interval << shift, the above would make shift drop to zero,
then we would be spinning for quite awhile accumulating at interval
chunks at a time.
Instead, this patch only decreases shift if the offset is smaller
then cycle_interval << shift. This makes sure we accumulate using
the largest chunks possible without overflowing tick_length, and limits
the number of iterations through the loop.
This issue was found and reported by Sonic Zhang, who also tested the fix.
Many thanks your explanation and testing!
Reported-by: Sonic Zhang <sonic.adi@gmail.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Sonic Zhang <sonic.adi@gmail.com>
LKML-Reference: <1268948850-5225-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current logic which handles clock events programming failures can
increase min_delta_ns unlimited and even can cause overflows.
Sanitize it by:
- prevent zero increase when min_delta_ns == 1
- limiting min_delta_ns to a jiffie
- bail out if the jiffie limit is hit
- add retries stats for /proc/timer_list so we can gather data
Reported-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Entering nohz code on every micro-idle is costing ~10% throughput for netperf
TCP_RR when scheduling cross-cpu. Rate limiting entry fixes this, but raises
ticks a bit. On my Q6600, an idle box goes from ~85 interrupts/sec to 128.
The higher the context switch rate, the more nohz entry costs. With this patch
and some cycle recovery patches in my tree, max cross cpu context switch rate is
improved by ~16%, a large portion of which of which is this ratelimiting.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301003.6785.28.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Aaro Koskinen reported an issue in kernel.org bugzilla #15366, where
on non-GENERIC_TIME systems, accessing
/sys/devices/system/clocksource/clocksource0/current_clocksource
results in an oops.
It seems the timekeeper/clocksource rework missed initializing the
curr_clocksource value in the !GENERIC_TIME case.
Thanks to Aaro for reporting and diagnosing the issue as well as
testing the fix!
Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: stable@kernel.org
LKML-Reference: <1267475683.4216.61.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Export getboottime and monotonic_to_bootbased in order to let them
could be used by following patch.
Cc: stable@kernel.org
Signed-off-by: Jason Wang <jasowang@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add a clocksource suspend callback. This callback can be used by the
clocksource driver to shutdown and perform any kind of late suspend
activities even though the clocksource driver itself is a non-sysdev
driver.
One example where this is useful is to fix the sh_cmt.c platform driver
that today suspends using the platform bus and shuts down the clocksource
too early.
With this callback in place the sh_cmt driver will suspend using the
clocksource and clockevent hooks and leave the platform device pm
callbacks unused.
Signed-off-by: Magnus Damm <damm@opensource.se>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pass the clocksource as an argument to the clocksource resume callback.
Needed so we can point out which CMT channel the sh_cmt.c driver shall
resume.
Signed-off-by: Magnus Damm <damm@opensource.se>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ntp.c doesn't need to access timekeeping internals directly, so change
xtime references to use the get_seconds() timekeeping interface.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: richard@rsk.demon.co.uk
LKML-Reference: <1264738844-21935-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make time_esterror and time_maxerror static as no one uses them
outside of ntp.c
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: richard@rsk.demon.co.uk
LKML-Reference: <1264719761.3437.47.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 0f8e8ef7 (clocksource: Simplify clocksource watchdog resume
logic) introduced a potential kgdb dead lock. When the kernel is
stopped by kgdb inside code which holds watchdog_lock then kgdb dead
locks in clocksource_resume_watchdog().
clocksource_resume_watchdog() is called from kbdg via
clocksource_touch_watchdog() to avoid that the clock source watchdog
marks TSC unstable after the kernel has been stopped.
Solve this by replacing spin_lock with a spin_trylock and just return
in case the lock is held. Not resetting the watchdog might result in
TSC becoming marked unstable, but that's an acceptable penalty for
using kgdb.
The timekeeping is anyway easily screwed up by kgdb when the system
uses either jiffies or a clock source which wraps in short intervals
(e.g. pm_timer wraps about every 4.6s), so we really do not have to
worry about that occasional TSC marked unstable side effect.
The second caller of clocksource_resume_watchdog() is
clocksource_resume(). The trylock is safe here as well because the
system is UP at this point, interrupts are disabled and nothing else
can hold watchdog_lock().
Reported-by: Jason Wessel <jason.wessel@windriver.com>
LKML-Reference: <1264480000-6997-4-git-send-email-jason.wessel@windriver.com>
Cc: kgdb-bugreport@lists.sourceforge.net
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Marc reported that the BUG_ON in clockevents_notify() triggers on his
system. This happens because the kernel tries to remove an active
clock event device (used for broadcasting) from the device list.
The handling of devices which can be used as per cpu device and as a
global broadcast device is suboptimal.
The simplest solution for now (and for stable) is to check whether the
device is used as global broadcast device, but this needs to be
revisited.
[ tglx: restored the cpuweight check and massaged the changelog ]
Reported-by: Marc Dionne <marc.c.dionne@gmail.com>
Tested-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
LKML-Reference: <1262834564-13033-1-git-send-email-dfeng@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
This reverts commit 7bc7d637452383d56ba4368d4336b0dde1bb476d, as
requested by John Stultz. Quoting John:
"Petr Titěra reported an issue where he saw odd atime regressions with
2.6.33 where there were a full second worth of nanoseconds in the
nanoseconds field.
He also reviewed the time code and narrowed down the problem: unhandled
overflow of the nanosecond field caused by rounding up the
sub-nanosecond accumulated time.
Details:
* At the end of update_wall_time(), we currently round up the
sub-nanosecond portion of accumulated time when storing it into xtime.
This was added to avoid time inconsistencies caused when the
sub-nanosecond portion was truncated when storing into xtime.
Unfortunately we don't handle the possible second overflow caused by
that rounding.
* Previously the xtime_cache code hid this overflow by normalizing the
xtime value when storing into the xtime_cache.
* We could try to handle the second overflow after the rounding up, but
since this affects the timekeeping's internal state, this would further
complicate the next accumulation cycle, causing small errors in ntp
steering. As much as I'd like to get rid of it, the xtime_cache code is
known to work.
* The correct fix is really to include the sub-nanosecond portion in the
timekeeping accessor function, so we don't need to round up at during
accumulation. This would greatly simplify the accumulation code.
Unfortunately, we can't do this safely until the last three
non-GENERIC_TIME arches (sparc32, arm, cris) are converted (those
patches are in -mm) and we kill off the spots where arches set xtime
directly. This is all 2.6.34 material, so I think reverting the
xtime_cache change is the best approach for now.
Many thanks to Petr for both reporting and finding the issue!"
Reported-by: Petr Titěra <P.Titera@century.cz>
Requested-by: john stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: Remove duplicate setting of new_base in __mod_timer()
clockevents: Prevent clockevent_devices list corruption on cpu hotplug
struct cpumask will be undefined soon with CONFIG_CPUMASK_OFFSTACK=y,
to avoid them being declared on the stack.
cpumask_bits() does what we want here (of course, this code is crap).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To: Thomas Gleixner <tglx@linutronix.de>