IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
On platforms implementing CPU power management, the CPUidle subsystem
can allow CPUs to enter idle states where local timers logic is lost on power
down. To keep the software timers functional the kernel relies on an
always-on broadcast timer to be present in the platform to relay the
interrupt signalling the timer expiries.
For platforms implementing CPU core gating that do not implement an always-on
HW timer or implement it in a broken way, this patch adds code to initialize
the kernel hrtimer based clock event device upon boot (which can be chosen as
tick broadcast device by the kernel).
It relies on a dynamically chosen CPU to be always powered-up. This CPU then
relays the timer interrupt to CPUs in deep-idle states through its HW local
timer device.
Having a CPU always-on has implications on power management platform
capabilities and makes CPUidle suboptimal, since at least a CPU is kept
always in a shallow idle state by the kernel to relay timer interrupts,
but at least leaves the kernel with a functional system with some working
power management capabilities.
The hrtimer based clock event device is unconditionally registered, but
has the lowest possible rating such that any broadcast-capable HW clock
event device present will be chosen in preference as the tick broadcast
device.
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Clock providers should be initialized before clocksource_of_init.
If not, Clock source initialization can be fail to get the clock.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Chanho Min <chanho.min@lge.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Register with the generic sched_clock framework now that it
supports 64 bits. This fixes two problems with the current
sched_clock support for machines using the architected timers.
First off, we don't subtract the start value from subsequent
sched_clock calls so we can potentially start off with
sched_clock returning gigantic numbers. Second, there is no
support for suspend/resume handling so problems such as discussed
in 6a4dae5 (ARM: 7565/1: sched: stop sched_clock() during
suspend, 2012-10-23) can happen without this patch. Finally, it
allows us to move the sched_clock setup into drivers clocksource
out of the arch ports.
Cc: Christopher Covington <cov@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Under arm64, we will calibrate the delay loop statically using a known
timer frequency, so delete read_current_timer(), or it will cause
compiling issue with allmodconfig.
The related error:
ERROR: "read_current_timer" [lib/rbtree_test.ko] undefined!
ERROR: "read_current_timer" [lib/interval_tree_test.ko] undefined!
ERROR: "read_current_timer" [fs/ext4/ext4.ko] undefined!
ERROR: "read_current_timer" [crypto/tcrypt.ko] undefined!
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This converts arm and arm64 to use CLKSRC_OF DT based initialization for
the arch timer. A new function arch_timer_arch_init is added to allow for
arch specific setup.
This has a side effect of enabling sched_clock on omap5 and exynos5. There
should not be any reason not to use the arch timers for sched_clock.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Simon Horman <horms@verge.net.au>
Cc: Magnus Damm <magnus.damm@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-samsung-soc@vger.kernel.org
Cc: linux-omap@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The arch_timer driver supports a superset of the functionality of the
arm_generic driver, and is not tied to a particular arch.
This patch moves arm64 to use the arch_timer driver, gaining additional
functionality in doing so, and removes the (now unused) arm_generic
driver. Timer-related hooks specific to arm64 are moved into
arch/arm64/kernel/time.c.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
This patch adds support for the ARM generic timers with A64 instructions
for accessing the timer registers. It uses the physical counter as the
clock source and the virtual counter as sched_clock.
The timer frequency can be specified via DT or read from the CNTFRQ_EL0
register. The physical counter is also accessible from user space
allowing fast gettimeofday() implementation.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>