4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Jiri Olsa
|
abe0884011 |
bpf: Remove struct bpf_verifier_env argument from print_bpf_insn
We use print_bpf_insn in user space (bpftool and soon perf), so it'd be nice to keep it generic and strip it off the kernel struct bpf_verifier_env argument. This argument can be safely removed, because its users can use the struct bpf_insn_cbs::private_data to pass it. By changing the argument type we can no longer have clean 'verbose' alias to 'bpf_verifier_log_write' in verifier.c. Instead we're adding the 'verbose' cb_print callback and removing the alias. This way we have new cb_print callback in place, and all the 'verbose(env, ...) calls in verifier.c will cleanly cast to 'verbose(void *, ...)' so no other change is needed. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Daniel Borkmann
|
7105e828c0 |
bpf: allow for correlation of maps and helpers in dump
Currently a dump of an xlated prog (post verifier stage) doesn't correlate used helpers as well as maps. The prog info lists involved map ids, however there's no correlation of where in the program they are used as of today. Likewise, bpftool does not correlate helper calls with the target functions. The latter can be done w/o any kernel changes through kallsyms, and also has the advantage that this works with inlined helpers and BPF calls. Example, via interpreter: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1 * Output before patch (calls/maps remain unclear): # bpftool prog dump xlated id 1 <-- dump prog id:1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = 0xffff95c47a8d4800 6: (85) call unknown#73040 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call unknown#73040 12: (15) if r0 == 0x0 goto pc+23 [...] * Output after patch: # bpftool prog dump xlated id 1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call bpf_map_lookup_elem#73424 <-- helper call 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call bpf_map_lookup_elem#73424 12: (15) if r0 == 0x0 goto pc+23 [...] # bpftool map show id 2 <-- show/dump/etc map id:2 2: hash_of_maps flags 0x0 key 4B value 4B max_entries 3 memlock 4096B Example, JITed, same prog: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 3 tag c74773051b364165 jited # bpftool prog show id 3 3: sched_cls tag c74773051b364165 loaded_at Dec 19/13:48 uid 0 xlated 384B jited 257B memlock 4096B map_ids 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite 7: (15) if r0 == 0x0 goto pc+2 | 8: (07) r0 += 56 | 9: (79) r0 = *(u64 *)(r0 +0) <-+ 10: (15) if r0 == 0x0 goto pc+24 11: (bf) r2 = r10 12: (07) r2 += -4 [...] Example, same prog, but kallsyms disabled (in that case we are also not allowed to pass any relative offsets, etc, so prog becomes pointer sanitized on dump): # sysctl kernel.kptr_restrict=2 kernel.kptr_restrict = 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] 6: (85) call bpf_unspec#0 7: (15) if r0 == 0x0 goto pc+2 [...] Example, BPF calls via interpreter: # bpftool prog dump xlated id 1 0: (85) call pc+2#__bpf_prog_run_args32 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit Example, BPF calls via JIT: # sysctl net.core.bpf_jit_enable=1 net.core.bpf_jit_enable = 1 # sysctl net.core.bpf_jit_kallsyms=1 net.core.bpf_jit_kallsyms = 1 # bpftool prog dump xlated id 1 0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit And finally, an example for tail calls that is now working as well wrt correlation: # bpftool prog dump xlated id 2 [...] 10: (b7) r2 = 8 11: (85) call bpf_trace_printk#-41312 12: (bf) r1 = r6 13: (18) r2 = map[id:1] 15: (b7) r3 = 0 16: (85) call bpf_tail_call#12 17: (b7) r1 = 42 18: (6b) *(u16 *)(r6 +46) = r1 19: (b7) r0 = 0 20: (95) exit # bpftool map show id 1 1: prog_array flags 0x0 key 4B value 4B max_entries 1 memlock 4096B Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Alexei Starovoitov
|
cc8b0b92a1 |
bpf: introduce function calls (function boundaries)
Allow arbitrary function calls from bpf function to another bpf function. Since the beginning of bpf all bpf programs were represented as a single function and program authors were forced to use always_inline for all functions in their C code. That was causing llvm to unnecessary inflate the code size and forcing developers to move code to header files with little code reuse. With a bit of additional complexity teach verifier to recognize arbitrary function calls from one bpf function to another as long as all of functions are presented to the verifier as a single bpf program. New program layout: r6 = r1 // some code .. r1 = .. // arg1 r2 = .. // arg2 call pc+1 // function call pc-relative exit .. = r1 // access arg1 .. = r2 // access arg2 .. call pc+20 // second level of function call ... It allows for better optimized code and finally allows to introduce the core bpf libraries that can be reused in different projects, since programs are no longer limited by single elf file. With function calls bpf can be compiled into multiple .o files. This patch is the first step. It detects programs that contain multiple functions and checks that calls between them are valid. It splits the sequence of bpf instructions (one program) into a set of bpf functions that call each other. Calls to only known functions are allowed. In the future the verifier may allow calls to unresolved functions and will do dynamic linking. This logic supports statically linked bpf functions only. Such function boundary detection could have been done as part of control flow graph building in check_cfg(), but it's cleaner to separate function boundary detection vs control flow checks within a subprogram (function) into logically indepedent steps. Follow up patches may split check_cfg() further, but not check_subprogs(). Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs. These restrictions can be relaxed in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
Jakub Kicinski
|
f4ac7e0b5c |
bpf: move instruction printing into a separate file
Separate the instruction printing into a standalone source file. This way sneaky code from tools/ can compile it in directly. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> |