IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Interrupts and exceptions invoke rcu_irq_enter() on entry and need to
invoke rcu_irq_exit() before they either return to the interrupted code or
invoke the scheduler due to preemption.
The general assumption is that RCU idle code has to have preemption
disabled so that a return from interrupt cannot schedule. So the return
from interrupt code invokes rcu_irq_exit() and preempt_schedule_irq().
If there is any imbalance in the rcu_irq/nmi* invocations or RCU idle code
had preemption enabled then this goes unnoticed until the CPU goes idle or
some other RCU check is executed.
Provide rcu_irq_exit_preempt() which can be invoked from the
interrupt/exception return code in case that preemption is enabled. It
invokes rcu_irq_exit() and contains a few sanity checks in case that
CONFIG_PROVE_RCU is enabled to catch such issues directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.364456424@linutronix.de
The rcu_nmi_enter_common() and rcu_nmi_exit_common() functions take an
"irq" parameter that indicates whether these functions have been invoked from
an irq handler (irq==true) or an NMI handler (irq==false).
However, recent changes have applied notrace to a few critical functions
such that rcu_nmi_enter_common() and rcu_nmi_exit_common() many now rely on
in_nmi(). Note that in_nmi() works no differently than before, but rather
that tracing is now prohibited in code regions where in_nmi() would
incorrectly report NMI state.
Therefore remove the "irq" parameter and inline rcu_nmi_enter_common() and
rcu_nmi_exit_common() into rcu_nmi_enter() and rcu_nmi_exit(),
respectively.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.617130349@linutronix.de
These functions are invoked from context tracking and other places in the
low level entry code. Move them into the .noinstr.text section to exclude
them from instrumentation.
Mark the places which are safe to invoke traceable functions with
instrumentation_begin/end() so objtool won't complain.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20200505134100.575356107@linutronix.de
SuperH is the last remaining user of arch_ftrace_nmi_{enter,exit}(),
remove it from the generic code and into the SuperH code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200505134101.248881738@linutronix.de
These functions are called {early,late} in nmi_{enter,exit} and should
not be traced or probed. They are also puny, so 'inline' them.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.048523500@linutronix.de
It happens early in nmi_enter(), no tracing, probing or other funnies
allowed. Specifically as nmi_enter() will be used in do_debug(), which
would cause recursive exceptions when kprobed.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.139720912@linutronix.de
There is plenty of space in the printk_context variable. Reserve one byte
there for the NMI context to be on the safe side.
It should never overflow. The BUG_ON(in_nmi() == NMI_MASK) in nmi_enter()
will trigger much earlier.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134100.681374113@linutronix.de
Force inlining and prevent instrumentation of all sorts by marking the
functions which are invoked from low level entry code with 'noinstr'.
Split the irqflags tracking into two parts. One which does the heavy
lifting while RCU is watching and the final one which can be invoked after
RCU is turned off.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134100.484532537@linutronix.de
trace_hardirqs_on/off() is only partially safe vs. RCU idle. The tracer
core itself is safe, but the resulting tracepoints can be utilized by
e.g. BPF which is unsafe.
Provide variants which do not contain the lockdep invocation so the lockdep
and tracer invocations can be split at the call site and placed
properly. This is required because lockdep needs to be aware of the state
before switching away from RCU idle and after switching to RCU idle because
these transitions can take locks.
As these code pathes are going to be non-instrumentable the tracer can be
invoked after RCU is turned on and before the switch to RCU idle. So for
these new variants there is no need to invoke the rcuidle aware tracer
functions.
Name them so they match the lockdep counterparts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.270771162@linutronix.de
syzbot found that
touch /proc/testfile
causes NULL pointer dereference at tomoyo_get_local_path()
because inode of the dentry is NULL.
Before c59f415a7cb6, Tomoyo received pid_ns from proc's s_fs_info
directly. Since proc_pid_ns() can only work with inode, using it in
the tomoyo_get_local_path() was wrong.
To avoid creating more functions for getting proc_ns, change the
argument type of the proc_pid_ns() function. Then, Tomoyo can use
the existing super_block to get pid_ns.
Link: https://lkml.kernel.org/r/0000000000002f0c7505a5b0e04c@google.com
Link: https://lkml.kernel.org/r/20200518180738.2939611-1-gladkov.alexey@gmail.com
Reported-by: syzbot+c1af344512918c61362c@syzkaller.appspotmail.com
Fixes: c59f415a7cb6 ("Use proc_pid_ns() to get pid_namespace from the proc superblock")
Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
ARM stores unwind information for .init.text in sections named
.ARM.extab.init.text and .ARM.exidx.init.text. Since those aren't
currently recognized as init sections, they're allocated along with the
core section, and relocation fails if the core and the init section are
allocated from different regions and can't reach other.
final section addresses:
...
0x7f800000 .init.text
..
0xcbb54078 .ARM.exidx.init.text
..
section 16 reloc 0 sym '': relocation 42 out of range (0xcbb54078 ->
0x7f800000)
Allow architectures to override the section name so that ARM can fix
this.
Acked-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
The break instruction in RISC-V does not have an immediate value field, so
the kernel cannot identify the purpose of each trap exception through the
opcode. This makes the existing identification schemes in other
architecture unsuitable for the RISC-V kernel. To solve this problem, this
patch adds kgdb_has_hit_break(), which can help RISC-V kernel identify
the KGDB trap exception.
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Palmer Dabbelt <palmerdabbelt@google.com>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
We want to enable kgdb to debug the early parts of the kernel.
Unfortunately kgdb normally is a client of the tty API in the kernel
and serial drivers don't register to the tty layer until fairly late
in the boot process.
Serial drivers do, however, commonly register a boot console. Let's
enable the kgdboc driver to work with boot consoles to provide early
debugging.
This change co-opts the existing read() function pointer that's part
of "struct console". It's assumed that if a boot console (with the
flag CON_BOOT) has implemented read() that both the read() and write()
function are polling functions. That means they work without
interrupts and read() will return immediately (with 0 bytes read) if
there's nothing to read. This should be a safe assumption since it
appears that no current boot consoles implement read() right now and
there seems no reason to do so unless they wanted to support
"kgdboc_earlycon".
The normal/expected way to make all this work is to use
"kgdboc_earlycon" and "kgdboc" together. You should point them both
to the same physical serial connection. At boot time, as the system
transitions from the boot console to the normal console (and registers
a tty), kgdb will switch over.
One awkward part of all this, though, is that there can be a window
where the boot console goes away and we can't quite transtion over to
the main kgdboc that uses the tty layer. There are two main problems:
1. The act of registering the tty doesn't cause any call into kgdboc
so there is a window of time when the tty is there but kgdboc's
init code hasn't been called so we can't transition to it.
2. On some serial drivers the normal console inits (and replaces the
boot console) quite early in the system. Presumably these drivers
were coded up before earlycon worked as well as it does today and
probably they don't need to do this anymore, but it causes us
problems nontheless.
Problem #1 is not too big of a deal somewhat due to the luck of probe
ordering. kgdboc is last in the tty/serial/Makefile so its probe gets
right after all other tty devices. It's not fun to rely on this, but
it does work for the most part.
Problem #2 is a big deal, but only for some serial drivers. Other
serial drivers end up registering the console (which gets rid of the
boot console) and tty at nearly the same time.
The way we'll deal with the window when the system has stopped using
the boot console and the time when we're setup using the tty is to
keep using the boot console. This may sound surprising, but it has
been found to work well in practice. If it doesn't work, it shouldn't
be too hard for a given serial driver to make it keep working.
Specifically, it's expected that the read()/write() function provided
in the boot console should be the same (or nearly the same) as the
normal kgdb polling functions. That means continuing to use them
should work just fine. To make things even more likely to work work
we'll also trap the recently added exit() function in the boot console
we're using and delay any calls to it until we're all done with the
boot console.
NOTE: there could be ways to use all this in weird / unexpected ways.
If you do something like this, it's a bit of a buyer beware situation.
Specifically:
- If you specify only "kgdboc_earlycon" but not "kgdboc" then
(depending on your serial driver) things will probably work OK, but
you'll get a warning printed the first time you use kgdb after the
boot console is gone. You'd only be able to do this, of course, if
the serial driver you're running atop provided an early boot console.
- If your "kgdboc_earlycon" and "kgdboc" devices are not the same
device things should work OK, but it'll be your job to switch over
which device you're monitoring (including figuring out how to switch
over gdb in-flight if you're using it).
When trying to enable "kgdboc_earlycon" it should be noted that the
names that are registered through the boot console layer and the tty
layer are not the same for the same port. For example when debugging
on one board I'd need to pass "kgdboc_earlycon=qcom_geni
kgdboc=ttyMSM0" to enable things properly. Since digging up the boot
console name is a pain and there will rarely be more than one boot
console enabled, you can provide the "kgdboc_earlycon" parameter
without specifying the name of the boot console. In this case we'll
just pick the first boot that implements read() that we find.
This new "kgdboc_earlycon" parameter should be contrasted to the
existing "ekgdboc" parameter. While both provide a way to debug very
early, the usage and mechanisms are quite different. Specifically
"kgdboc_earlycon" is meant to be used in tandem with "kgdboc" and
there is a transition from one to the other. The "ekgdboc" parameter,
on the other hand, replaces the "kgdboc" parameter. It runs the same
logic as the "kgdboc" parameter but just relies on your TTY driver
being present super early. The only known usage of the old "ekgdboc"
parameter is documented as "ekgdboc=kbd earlyprintk=vga". It should
be noted that "kbd" has special treatment allowing it to init early as
a tty device.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Sumit Garg <sumit.garg@linaro.org>
Link: https://lore.kernel.org/r/20200507130644.v4.8.I8fba5961bf452ab92350654aa61957f23ecf0100@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
If we detect that we recursively entered the debugger we should hack
our I/O ops to NULL so that the panic() in the next line won't
actually cause another recursion into the debugger. The first line of
kgdb_panic() will check this and return.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20200507130644.v4.6.I89de39f68736c9de610e6f241e68d8dbc44bc266@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Using kgdb requires at least some level of architecture-level
initialization. If nothing else, it relies on the architecture to
pass breakpoints / crashes onto kgdb.
On some architectures this all works super early, specifically it
starts working at some point in time before Linux parses
early_params's. On other architectures it doesn't. A survey of a few
platforms:
a) x86: Presumably it all works early since "ekgdboc" is documented to
work here.
b) arm64: Catching crashes works; with a simple patch breakpoints can
also be made to work.
c) arm: Nothing in kgdb works until
paging_init() -> devicemaps_init() -> early_trap_init()
Let's be conservative and, by default, process "kgdbwait" (which tells
the kernel to drop into the debugger ASAP at boot) a bit later at
dbg_late_init() time. If an architecture has tested it and wants to
re-enable super early debugging, they can select the
ARCH_HAS_EARLY_DEBUG KConfig option. We'll do this for x86 to start.
It should be noted that dbg_late_init() is still called quite early in
the system.
Note that this patch doesn't affect when kgdb runs its init. If kgdb
is set to initialize early it will still initialize when parsing
early_param's. This patch _only_ inhibits the initial breakpoint from
"kgdbwait". This means:
* Without any extra patches arm64 platforms will at least catch
crashes after kgdb inits.
* arm platforms will catch crashes (and could handle a hardcoded
kgdb_breakpoint()) any time after early_trap_init() runs, even
before dbg_late_init().
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20200507130644.v4.4.I3113aea1b08d8ce36dc3720209392ae8b815201b@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
asm/scs.h is no longer needed by the core code, so remove a redundant
header inclusion and update the stale Kconfig text.
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
There is nothing architecture-specific about scs_overflow_check() as
it's just a trivial wrapper around scs_corrupted().
For parity with task_stack_end_corrupted(), rename scs_corrupted() to
task_scs_end_corrupted() and call it from schedule_debug() when
CONFIG_SCHED_STACK_END_CHECK_is enabled, which better reflects its
purpose as a debug feature to catch inadvertent overflow of the SCS.
Finally, remove the unused scs_overflow_check() function entirely.
This has absolutely no impact on architectures that do not support SCS
(currently arm64 only).
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
There's no need to perform the shadow stack page accounting independently
of the lifetime of the underlying allocation, so call the accounting code
from the {alloc,free}() functions and simplify the code in the process.
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Storing the SCS information in thread_info as a {base,offset} pair
introduces an additional load instruction on the ret-to-user path,
since the SCS stack pointer in x18 has to be converted back to an offset
by subtracting the base.
Replace the offset with the absolute SCS stack pointer value instead
and avoid the redundant load.
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In commit 81eaadcae81b ("kgdboc: disable the console lock when in
kgdb") we avoided the WARN_CONSOLE_UNLOCKED() yell when we were in
kgdboc. That still works fine, but it turns out that we get a similar
yell when using other I/O drivers. One example is the "I/O driver"
for the kgdb test suite (kgdbts). When I enabled that I again got the
same yells.
Even though "kgdbts" doesn't actually interact with the user over the
console, using it still causes kgdb to print to the consoles. That
trips the same warning:
con_is_visible+0x60/0x68
con_scroll+0x110/0x1b8
lf+0x4c/0xc8
vt_console_print+0x1b8/0x348
vkdb_printf+0x320/0x89c
kdb_printf+0x68/0x90
kdb_main_loop+0x190/0x860
kdb_stub+0x2cc/0x3ec
kgdb_cpu_enter+0x268/0x744
kgdb_handle_exception+0x1a4/0x200
kgdb_compiled_brk_fn+0x34/0x44
brk_handler+0x7c/0xb8
do_debug_exception+0x1b4/0x228
Let's increment/decrement the "ignore_console_lock_warning" variable
all the time when we enter the debugger.
This will allow us to later revert commit 81eaadcae81b ("kgdboc:
disable the console lock when in kgdb").
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20200507130644.v4.1.Ied2b058357152ebcc8bf68edd6f20a11d98d7d4e@changeid
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
With Book3s DAWR, ptrace and perf watchpoints on powerpc behaves
differently. Ptrace watchpoint works in one-shot mode and generates
signal before executing instruction. It's ptrace user's job to
single-step the instruction and re-enable the watchpoint. OTOH, in
case of perf watchpoint, kernel emulates/single-steps the instruction
and then generates event. If perf and ptrace creates two events with
same or overlapping address ranges, it's ambiguous to decide who
should single-step the instruction. Because of this issue, don't
allow perf and ptrace watchpoint at the same time if their address
range overlaps.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Michael Neuling <mikey@neuling.org>
Link: https://lore.kernel.org/r/20200514111741.97993-15-ravi.bangoria@linux.ibm.com
This reverts commit 2f4c33063ad713e3a5b63002cf8362846e78bd71.
The changes here were fine, but there's a non-documentation change to
sysctl.c that makes messes elsewhere; those changes should have been done
independently.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
The interrupt simulator API exposes a lot of custom data structures and
functions and doesn't reuse the interfaces already exposed by the irq
subsystem. This patch tries to address it.
We hide all the simulator-related data structures from users and instead
rely on the well-known irq domain. When creating the interrupt simulator
the user receives a pointer to a newly created irq_domain and can use it
to create mappings for simulated interrupts.
It is also possible to pass a handle to fwnode when creating the simulator
domain and retrieve it using irq_find_matching_fwnode().
The irq_sim_fire() function is dropped as well. Instead we implement the
irq_get/set_irqchip_state interface.
We modify the two modules that use the simulator at the same time as
adding these changes in order to reduce the intermediate bloat that would
result when trying to migrate the drivers in separate patches.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> #for IIO
Link: https://lore.kernel.org/r/20200514083901.23445-3-brgl@bgdev.pl
irq_domain_reset_irq_data() doesn't modify the parent data, so it can be
made available even if irq domain hierarchy is not being built. We'll
subsequently use it in irq_sim code.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20200514083901.23445-2-brgl@bgdev.pl
Currently informational messages within block trace do not have PID
information of the process reporting the message included. With BFQ it
is sometimes useful to have the information and there's no good reason
to omit the information from the trace. So just fill in pid information
when generating note message.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Acked-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As per 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") we only
allow a range of [0,1] for return codes. Therefore BPF_TRACE_ITER relies
on the default tnum_range(0, 1) which is set in range var. On recent merge
of net into net-next commit e92888c72fbd ("bpf: Enforce returning 0 for
fentry/fexit progs") got pulled in and caused a merge conflict with the
changes from 15d83c4d7cef. The resolution had a snall hiccup in that it
removed the [0,1] range restriction again so that BPF_TRACE_ITER would
have no enforcement. Fix it by adding it back.
Fixes: da07f52d3caf ("Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Move the bpf verifier trace check into the new switch statement in
HEAD.
Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller:
1) Fix sk_psock reference count leak on receive, from Xiyu Yang.
2) CONFIG_HNS should be invisible, from Geert Uytterhoeven.
3) Don't allow locking route MTUs in ipv6, RFCs actually forbid this,
from Maciej Żenczykowski.
4) ipv4 route redirect backoff wasn't actually enforced, from Paolo
Abeni.
5) Fix netprio cgroup v2 leak, from Zefan Li.
6) Fix infinite loop on rmmod in conntrack, from Florian Westphal.
7) Fix tcp SO_RCVLOWAT hangs, from Eric Dumazet.
8) Various bpf probe handling fixes, from Daniel Borkmann.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (68 commits)
selftests: mptcp: pm: rm the right tmp file
dpaa2-eth: properly handle buffer size restrictions
bpf: Restrict bpf_trace_printk()'s %s usage and add %pks, %pus specifier
bpf: Add bpf_probe_read_{user, kernel}_str() to do_refine_retval_range
bpf: Restrict bpf_probe_read{, str}() only to archs where they work
MAINTAINERS: Mark networking drivers as Maintained.
ipmr: Add lockdep expression to ipmr_for_each_table macro
ipmr: Fix RCU list debugging warning
drivers: net: hamradio: Fix suspicious RCU usage warning in bpqether.c
net: phy: broadcom: fix BCM54XX_SHD_SCR3_TRDDAPD value for BCM54810
tcp: fix error recovery in tcp_zerocopy_receive()
MAINTAINERS: Add Jakub to networking drivers.
MAINTAINERS: another add of Karsten Graul for S390 networking
drivers: ipa: fix typos for ipa_smp2p structure doc
pppoe: only process PADT targeted at local interfaces
selftests/bpf: Enforce returning 0 for fentry/fexit programs
bpf: Enforce returning 0 for fentry/fexit progs
net: stmmac: fix num_por initialization
security: Fix the default value of secid_to_secctx hook
libbpf: Fix register naming in PT_REGS s390 macros
...
cpu_pm_notify() is basically a wrapper of notifier_call_chain().
notifier_call_chain() doesn't initialize *nr_calls to 0 before it
starts incrementing it--presumably it's up to the callers to do this.
Unfortunately the callers of cpu_pm_notify() don't init *nr_calls.
This potentially means you could get too many or two few calls to
CPU_PM_ENTER_FAILED or CPU_CLUSTER_PM_ENTER_FAILED depending on the
luck of the stack.
Let's fix this.
Fixes: ab10023e0088 ("cpu_pm: Add cpu power management notifiers")
Cc: stable@vger.kernel.org
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200504104917.v6.3.I2d44fc0053d019f239527a4e5829416714b7e299@changeid
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
This is a read-only export of NGROUPS_MAX, so this patch also changes
the declarations in kernel/sysctl.c to const.
Signed-off-by: Stephen Kitt <steve@sk2.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200515160222.7994-1-steve@sk2.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Implements CONFIG_DEBUG_STACK_USAGE for shadow stacks. When enabled,
also prints out the highest shadow stack usage per process.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
[will: rewrote most of scs_check_usage()]
Signed-off-by: Will Deacon <will@kernel.org>
This change adds accounting for the memory allocated for shadow stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
This change adds generic support for Clang's Shadow Call Stack,
which uses a shadow stack to protect return addresses from being
overwritten by an attacker. Details are available here:
https://clang.llvm.org/docs/ShadowCallStack.html
Note that security guarantees in the kernel differ from the ones
documented for user space. The kernel must store addresses of
shadow stacks in memory, which means an attacker capable reading
and writing arbitrary memory may be able to locate them and hijack
control flow by modifying the stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
[will: Numerous cosmetic changes]
Signed-off-by: Will Deacon <will@kernel.org>
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();
The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.
'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.
That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
Usage of plain %s conversion specifier in bpf_trace_printk() suffers from the
very same issue as bpf_probe_read{,str}() helpers, that is, it is broken on
archs with overlapping address ranges.
While the helpers have been addressed through work in 6ae08ae3dea2 ("bpf: Add
probe_read_{user, kernel} and probe_read_{user, kernel}_str helpers"), we need
an option for bpf_trace_printk() as well to fix it.
Similarly as with the helpers, force users to make an explicit choice by adding
%pks and %pus specifier to bpf_trace_printk() which will then pick the corresponding
strncpy_from_unsafe*() variant to perform the access under KERNEL_DS or USER_DS.
The %pk* (kernel specifier) and %pu* (user specifier) can later also be extended
for other objects aside strings that are probed and printed under tracing, and
reused out of other facilities like bpf_seq_printf() or BTF based type printing.
Existing behavior of %s for current users is still kept working for archs where it
is not broken and therefore gated through CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE.
For archs not having this property we fall-back to pick probing under KERNEL_DS as
a sensible default.
Fixes: 8d3b7dce8622 ("bpf: add support for %s specifier to bpf_trace_printk()")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Link: https://lore.kernel.org/bpf/20200515101118.6508-4-daniel@iogearbox.net
Given bpf_probe_read{,str}() BPF helpers are now only available under
CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE, we need to add the drop-in
replacements of bpf_probe_read_{kernel,user}_str() to do_refine_retval_range()
as well to avoid hitting the same issue as in 849fa50662fbc ("bpf/verifier:
refine retval R0 state for bpf_get_stack helper").
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200515101118.6508-3-daniel@iogearbox.net
Given the legacy bpf_probe_read{,str}() BPF helpers are broken on archs
with overlapping address ranges, we should really take the next step to
disable them from BPF use there.
To generally fix the situation, we've recently added new helper variants
bpf_probe_read_{user,kernel}() and bpf_probe_read_{user,kernel}_str().
For details on them, see 6ae08ae3dea2 ("bpf: Add probe_read_{user, kernel}
and probe_read_{user,kernel}_str helpers").
Given bpf_probe_read{,str}() have been around for ~5 years by now, there
are plenty of users at least on x86 still relying on them today, so we
cannot remove them entirely w/o breaking the BPF tracing ecosystem.
However, their use should be restricted to archs with non-overlapping
address ranges where they are working in their current form. Therefore,
move this behind a CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE and
have x86, arm64, arm select it (other archs supporting it can follow-up
on it as well).
For the remaining archs, they can workaround easily by relying on the
feature probe from bpftool which spills out defines that can be used out
of BPF C code to implement the drop-in replacement for old/new kernels
via: bpftool feature probe macro
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/bpf/20200515101118.6508-2-daniel@iogearbox.net
With earlier commits, the API no longer discards the const-ness of the
sysrq_key_op. As such we can add the notation.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-kernel@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: rcu@vger.kernel.org
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Link: https://lore.kernel.org/r/20200513214351.2138580-11-emil.l.velikov@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With earlier commits, the API no longer discards the const-ness of the
sysrq_key_op. As such we can add the notation.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-kernel@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-pm@vger.kernel.org
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Link: https://lore.kernel.org/r/20200513214351.2138580-10-emil.l.velikov@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With earlier commits, the API no longer discards the const-ness of the
sysrq_key_op. As such we can add the notation.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-kernel@vger.kernel.org
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: kgdb-bugreport@lists.sourceforge.net
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Emil Velikov <emil.l.velikov@gmail.com>
Link: https://lore.kernel.org/r/20200513214351.2138580-9-emil.l.velikov@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Knowing the memory size backing the packet/xdp_frame data area, and
knowing it already have reserved room for skb_shared_info, simplifies
using build_skb significantly.
With this change we no-longer lie about the SKB truesize, but more
importantly a significant larger skb_tailroom is now provided, e.g. when
drivers uses a full PAGE_SIZE. This extra tailroom (in linear area) can be
used by the network stack when coalescing SKBs (e.g. in skb_try_coalesce,
see TCP cases where tcp_queue_rcv() can 'eat' skb).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/158945337822.97035.13557959180460986059.stgit@firesoul
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-05-14
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Merged tag 'perf-for-bpf-2020-05-06' from tip tree that includes CAP_PERFMON.
2) support for narrow loads in bpf_sock_addr progs and additional
helpers in cg-skb progs, from Andrey.
3) bpf benchmark runner, from Andrii.
4) arm and riscv JIT optimizations, from Luke.
5) bpf iterator infrastructure, from Yonghong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
task_seq_get_next might stop prematurely if get_pid_task() fails to get
task_struct. Failure to do so doesn't mean that there are no more tasks with
higher pids. Procfs's iteration algorithm (see next_tgid in fs/proc/base.c)
does a retry in such case. After this fix, instead of stopping prematurely
after about 300 tasks on my server, bpf_iter program now returns >4000, which
sounds much closer to reality.
Fixes: eaaacd23910f ("bpf: Add task and task/file iterator targets")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200514055137.1564581-1-andriin@fb.com
Currently, tracing/fentry and tracing/fexit prog
return values are not enforced. In trampoline codes,
the fentry/fexit prog return values are ignored.
Let us enforce it to be 0 to avoid confusion and
allows potential future extension.
This patch also explicitly added return value
checking for tracing/raw_tp, tracing/fmod_ret,
and freplace programs such that these program
return values can be anything. The purpose are
two folds:
1. to make it explicit about return value expectations
for these programs in verifier.
2. for tracing prog_type, if a future attach type
is added, the default is -ENOTSUPP which will
enforce to specify return value ranges explicitly.
Fixes: fec56f5890d9 ("bpf: Introduce BPF trampoline")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200514053206.1298415-1-yhs@fb.com
mmap() subsystem allows user-space application to memory-map region with
initial page offset. This wasn't taken into account in initial implementation
of BPF array memory-mapping. This would result in wrong pages, not taking into
account requested page shift, being memory-mmaped into user-space. This patch
fixes this gap and adds a test for such scenario.
Fixes: fc9702273e2e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512235925.3817805-1-andriin@fb.com
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXrvi4AAKCRCRxhvAZXjc
otubAPsFV2XnZykq94GRZMBqxP3CQepTykXDV4aryfrUDoV04wD/fFisS/i+R4Uq
XvtMZzsFcm30QVT6IRfg1RY2OlOiMwc=
=t8HD
-----END PGP SIGNATURE-----
Merge tag 'for-linus-2020-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread fix from Christian Brauner:
"This contains a single fix for all exported legacy fork helpers to
block accidental access to clone3() features in the upper 32 bits of
their respective flags arguments.
I got Cced on a glibc issue where someone reported consistent failures
for the legacy clone() syscall on ppc64le when sign extension was
performed (since the clone() syscall in glibc exposes the flags
argument as an int whereas the kernel uses unsigned long).
The legacy clone() syscall is odd in a bunch of ways and here two
things interact:
- First, legacy clone's flag argument is word-size dependent, i.e.
it's an unsigned long whereas most system calls with flag arguments
use int or unsigned int.
- Second, legacy clone() ignores unknown and deprecated flags.
The two of them taken together means that users on 64bit systems can
pass garbage for the upper 32bit of the clone() syscall since forever
and things would just work fine.
The following program compiled on a 64bit kernel prior to v5.7-rc1
will succeed and will fail post v5.7-rc1 with EBADF:
int main(int argc, char *argv[])
{
pid_t pid;
/* Note that legacy clone() has different argument ordering on
* different architectures so this won't work everywhere.
*
* Only set the upper 32 bits.
*/
pid = syscall(__NR_clone, 0xffffffff00000000 | SIGCHLD,
NULL, NULL, NULL, NULL);
if (pid < 0)
exit(EXIT_FAILURE);
if (pid == 0)
exit(EXIT_SUCCESS);
if (wait(NULL) != pid)
exit(EXIT_FAILURE);
exit(EXIT_SUCCESS);
}
Since legacy clone() couldn't be extended this was not a problem so
far and nobody really noticed or cared since nothing in the kernel
ever bothered to look at the upper 32 bits.
But once we introduced clone3() and expanded the flag argument in
struct clone_args to 64 bit we opened this can of worms. With the
first flag-based extension to clone3() making use of the upper 32 bits
of the flag argument we've effectively made it possible for the legacy
clone() syscall to reach clone3() only flags on accident. The sign
extension scenario is just the odd corner-case that we needed to
figure this out.
The reason we just realized this now and not already when we
introduced CLONE_CLEAR_SIGHAND was that CLONE_INTO_CGROUP assumes that
a valid cgroup file descriptor has been given - whereas
CLONE_CLEAR_SIGHAND doesn't need to verify anything. It just silently
resets the signal handlers to SIG_DFL.
So the sign extension (or the user accidently passing garbage for the
upper 32 bits) caused the CLONE_INTO_CGROUP bit to be raised and the
kernel to error out when it didn't find a valid cgroup file
descriptor.
Note, I'm also capping kernel_thread()'s flag argument mainly because
none of the new features make sense for kernel_thread() and we
shouldn't risk them being accidently activated however unlikely. If we
wanted to, we could even make kernel_thread() yell when an unknown
flag has been set which it doesn't do right now. But it's not worth
risking this in a bugfix imho"
* tag 'for-linus-2020-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
fork: prevent accidental access to clone3 features
- Fix a crash when having function tracing and function stack tracing on
the command line. The ftrace trampolines are created as executable and
read only. But the stack tracer tries to modify them with text_poke()
which expects all kernel text to still be writable at boot.
Keep the trampolines writable at boot, and convert them to read-only
with the rest of the kernel.
- A selftest was triggering in the ring buffer iterator code, that
is no longer valid with the update of keeping the ring buffer
writable while a iterator is reading. Just bail after three failed
attempts to get an event and remove the warning and disabling of the
ring buffer.
- While modifying the ring buffer code, decided to remove all the
unnecessary BUG() calls.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXr1CDhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsXcAQCoL229SBrtHsn4DUO7eAQRppUT3hNw
RuKzvQ56+1GccQEAh8VGCeg89uMSK6imrTujEl6VmOUdbgrD5R96yiKoGQw=
=vi+k
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull more tracing fixes from Steven Rostedt:
"Various tracing fixes:
- Fix a crash when having function tracing and function stack tracing
on the command line.
The ftrace trampolines are created as executable and read only. But
the stack tracer tries to modify them with text_poke() which
expects all kernel text to still be writable at boot. Keep the
trampolines writable at boot, and convert them to read-only with
the rest of the kernel.
- A selftest was triggering in the ring buffer iterator code, that is
no longer valid with the update of keeping the ring buffer writable
while a iterator is reading.
Just bail after three failed attempts to get an event and remove
the warning and disabling of the ring buffer.
- While modifying the ring buffer code, decided to remove all the
unnecessary BUG() calls"
* tag 'trace-v5.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ring-buffer: Remove all BUG() calls
ring-buffer: Don't deactivate the ring buffer on failed iterator reads
x86/ftrace: Have ftrace trampolines turn read-only at the end of system boot up
There's a lot of checks to make sure the ring buffer is working, and if an
anomaly is detected, it safely shuts itself down. But there's a few cases
that it will call BUG(), which defeats the point of being safe (it crashes
the kernel when an anomaly is found!). There's no reason for them. Switch
them all to either WARN_ON_ONCE() (when no ring buffer descriptor is present),
or to RB_WARN_ON() (when a ring buffer descriptor is present).
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If the function tracer is running and the trace file is read (which uses the
ring buffer iterator), the iterator can get in sync with the writes, and
caues it to fail to find a page with content it can read three times. This
causes a warning and deactivation of the ring buffer code.
Looking at the other cases of failure to get an event, it appears that
there's a chance that the writer could cause them too. Since the iterator is
a "best effort" to read the ring buffer if there's an active writer (the
consumer reader is made for this case "see trace_pipe"), if it fails to get
an event after three tries, simply give up and return NULL. Don't warn, nor
disable the ring buffer on this failure.
Link: https://lore.kernel.org/r/20200429090508.GG5770@shao2-debian
Reported-by: kernel test robot <lkp@intel.com>
Fixes: ff84c50cfb4b ("ring-buffer: Do not die if rb_iter_peek() fails more than thrice")
Tested-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>