7765 Commits

Author SHA1 Message Date
Linus Torvalds
c0927a7a53 New code for 6.3-rc1, part 2:
* Fix a deadlock in the free space allocator due to the AG-walking
    algorithm forgetting to follow AG-order locking rules.
  * Make the inode allocator prefer existing free inodes instead of
    failing to allocate new inode chunks when free space is low.
  * Set minleft correctly when setting allocator parameters for bmap
    changes.
  * Fix uninitialized variable access in the getfsmap code.
  * Make a distinction between active and passive per-AG structure
    references.  For now, active references are taken to perform some
    work in an AG on behalf of a high level operation; passive references
    are used by lower level code to finish operations started by other
    threads.  Eventually this will become part of online shrink.
  * Split out all the different allocator strategies into separate
    functions to move us away from design antipattern of filling out a
    huge structure for various differentish things and issuing a single
    function multiplexing call.
  * Various cleanups in the filestreams allocator code, which we might
    very well want to deprecate instead of continuing.
  * Fix a bug with the agi rotor code that was introduced earlier in this
    series.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCY/zgqgAKCRBKO3ySh0YR
 plIkAQDIscqdqXGH01gF19/ncqG2GUaXY+/zeOReuk1Iv3VEVgD+MVXf+QvHk7LD
 /LTWNl2K6NQmE/9RtaBt0aFNDzvIAgU=
 =k7r8
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull moar xfs updates from Darrick Wong:
 "This contains a fix for a deadlock in the allocator. It continues the
  slow march towards being able to offline AGs, and it refactors the
  interface to the xfs allocator to be less indirection happy.

  Summary:

   - Fix a deadlock in the free space allocator due to the AG-walking
     algorithm forgetting to follow AG-order locking rules

   - Make the inode allocator prefer existing free inodes instead of
     failing to allocate new inode chunks when free space is low

   - Set minleft correctly when setting allocator parameters for bmap
     changes

   - Fix uninitialized variable access in the getfsmap code

   - Make a distinction between active and passive per-AG structure
     references. For now, active references are taken to perform some
     work in an AG on behalf of a high level operation; passive
     references are used by lower level code to finish operations
     started by other threads. Eventually this will become part of
     online shrink

   - Split out all the different allocator strategies into separate
     functions to move us away from design antipattern of filling out a
     huge structure for various differentish things and issuing a single
     function multiplexing call

   - Various cleanups in the filestreams allocator code, which we might
     very well want to deprecate instead of continuing

   - Fix a bug with the agi rotor code that was introduced earlier in
     this series"

* tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (44 commits)
  xfs: restore old agirotor behavior
  xfs: fix uninitialized variable access
  xfs: refactor the filestreams allocator pick functions
  xfs: return a referenced perag from filestreams allocator
  xfs: pass perag to filestreams tracing
  xfs: use for_each_perag_wrap in xfs_filestream_pick_ag
  xfs: track an active perag reference in filestreams
  xfs: factor out MRU hit case in xfs_filestream_select_ag
  xfs: remove xfs_filestream_select_ag() longest extent check
  xfs: merge new filestream AG selection into xfs_filestream_select_ag()
  xfs: merge filestream AG lookup into xfs_filestream_select_ag()
  xfs: move xfs_bmap_btalloc_filestreams() to xfs_filestreams.c
  xfs: use xfs_bmap_longest_free_extent() in filestreams
  xfs: get rid of notinit from xfs_bmap_longest_free_extent
  xfs: factor out filestreams from xfs_bmap_btalloc_nullfb
  xfs: convert trim to use for_each_perag_range
  xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker
  xfs: move the minimum agno checks into xfs_alloc_vextent_check_args
  xfs: fold xfs_alloc_ag_vextent() into callers
  xfs: move allocation accounting to xfs_alloc_vextent_set_fsbno()
  ...
2023-02-28 16:08:30 -08:00
Darrick J. Wong
6e2985c938 xfs: restore old agirotor behavior
Prior to the removal of xfs_ialloc_next_ag, we would increment the agi
rotor and return the *old* value.  atomic_inc_return returns the new
value, which causes mkfs to allocate the root directory in AG 1.  Put
back the old behavior (at least for mkfs) by subtracting 1 here.

Fixes: 20a5eab49d35 ("xfs: convert xfs_ialloc_next_ag() to an atomic")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-02-27 08:53:45 -08:00
Linus Torvalds
3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00
Linus Torvalds
28e335208c New code for 6.3-rc1:
* Eliminate repeated boxing and unboxing of log item parameters.
  * Clean up some confusing variable names in the log item code.
  * Fix a deadlock when doing unwritten extent conversion that causes a
    bmbt split when there are sustained memory shortages and the worker
    pool runs out of worker threads.
  * Fix the panic_mask debug knob not being able to trigger on verifier
    errors.
  * Constify kobj_type objects.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCY+Z6BwAKCRBKO3ySh0YR
 pkQJAQCjkzXqZuj8WH/g22S01smT51QhmX+1ubLdzMYSvRvrKQD+MlH74EcgurQD
 GhgCWJh6dBTx1nICKpCXYgVD9Glvowc=
 =J2Xw
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.3-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "There's a couple of bug fixes, some cleanups for inconsistent variable
  names and reduction of struct boxing and unboxing in the logging code.

  More work is pending, which will begin reworking allocation group
  lifetimes and finally replace confusing indirect calls to the
  allocator with actual ... function calls. But I want to let that
  experience another week of testing.

  Summary:

   - Eliminate repeated boxing and unboxing of log item parameters

   - Clean up some confusing variable names in the log item code

   - Fix a deadlock when doing unwritten extent conversion that causes a
     bmbt split when there are sustained memory shortages and the worker
     pool runs out of worker threads

   - Fix the panic_mask debug knob not being able to trigger on verifier
     errors

   - Constify kobj_type objects"

* tag 'xfs-6.3-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: revert commit 8954c44ff477
  xfs: make kobj_type structures constant
  xfs: allow setting full range of panic tags
  xfs: don't use BMBT btree split workers for IO completion
  xfs: fix confusing variable names in xfs_refcount_item.c
  xfs: pass refcount intent directly through the log intent code
  xfs: fix confusing variable names in xfs_rmap_item.c
  xfs: pass rmap space mapping directly through the log intent code
  xfs: fix confusing xfs_extent_item variable names
  xfs: pass xfs_extent_free_item directly through the log intent code
  xfs: fix confusing variable names in xfs_bmap_item.c
  xfs: pass the xfs_bmbt_irec directly through the log intent code
  xfs: use strscpy() to instead of strncpy()
2023-02-22 13:55:51 -08:00
Linus Torvalds
d151e8bea1 New code for 6.3:
- Change when the iomap page_done function is called so that we still
    have a locked folio in the success case.  This fixes a writeback race
    in gfs2.
  - Change when the iomap page_prepare function is called so that gfs2
    can recover from OOM scenarios more gracefully.
  - Rename the iomap page_ops to folio_ops, since they operate on folios
    now.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCY8g/FwAKCRBKO3ySh0YR
 pi19AQDCatxkzguJGV9BY52Bf8iDxCgdL34RatKXAzkZC3Y6UQEAsNdb88rkWkNK
 qPlXgsZm9cNlFb8c7mFvA9JAL9IPxgE=
 =ubh6
 -----END PGP SIGNATURE-----

Merge tag 'iomap-6.3-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull iomap updates from Darrick Wong:
 "This is mostly rearranging things to make life easier for gfs2,
  nothing all that mindblowing for this release.

   - Change when the iomap page_done function is called so that we still
     have a locked folio in the success case. This fixes a writeback
     race in gfs2

   - Change when the iomap page_prepare function is called so that gfs2
     can recover from OOM scenarios more gracefully

   - Rename the iomap page_ops to folio_ops, since they operate on
     folios now"

* tag 'iomap-6.3-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  iomap: Rename page_ops to folio_ops
  iomap: Rename page_prepare handler to get_folio
  iomap: Add __iomap_get_folio helper
  iomap/gfs2: Get page in page_prepare handler
  iomap: Add iomap_get_folio helper
  iomap: Rename page_done handler to put_folio
  iomap/gfs2: Unlock and put folio in page_done handler
  iomap: Add __iomap_put_folio helper
2023-02-22 13:50:13 -08:00
Linus Torvalds
05e6295f7b fs.idmapped.v6.3
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCY+5NlQAKCRCRxhvAZXjc
 orOaAP9i2h3OJy95nO2Fpde0Bt2UT+oulKCCcGlvXJ8/+TQpyQD/ZQq47gFQ0EAz
 Br5NxeyGeecAb0lHpFz+CpLGsxMrMwQ=
 =+BG5
 -----END PGP SIGNATURE-----

Merge tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping

Pull vfs idmapping updates from Christian Brauner:

 - Last cycle we introduced the dedicated struct mnt_idmap type for
   mount idmapping and the required infrastucture in 256c8aed2b42 ("fs:
   introduce dedicated idmap type for mounts"). As promised in last
   cycle's pull request message this converts everything to rely on
   struct mnt_idmap.

   Currently we still pass around the plain namespace that was attached
   to a mount. This is in general pretty convenient but it makes it easy
   to conflate namespaces that are relevant on the filesystem with
   namespaces that are relevant on the mount level. Especially for
   non-vfs developers without detailed knowledge in this area this was a
   potential source for bugs.

   This finishes the conversion. Instead of passing the plain namespace
   around this updates all places that currently take a pointer to a
   mnt_userns with a pointer to struct mnt_idmap.

   Now that the conversion is done all helpers down to the really
   low-level helpers only accept a struct mnt_idmap argument instead of
   two namespace arguments.

   Conflating mount and other idmappings will now cause the compiler to
   complain loudly thus eliminating the possibility of any bugs. This
   makes it impossible for filesystem developers to mix up mount and
   filesystem idmappings as they are two distinct types and require
   distinct helpers that cannot be used interchangeably.

   Everything associated with struct mnt_idmap is moved into a single
   separate file. With that change no code can poke around in struct
   mnt_idmap. It can only be interacted with through dedicated helpers.
   That means all filesystems are and all of the vfs is completely
   oblivious to the actual implementation of idmappings.

   We are now also able to extend struct mnt_idmap as we see fit. For
   example, we can decouple it completely from namespaces for users that
   don't require or don't want to use them at all. We can also extend
   the concept of idmappings so we can cover filesystem specific
   requirements.

   In combination with the vfs{g,u}id_t work we finished in v6.2 this
   makes this feature substantially more robust and thus difficult to
   implement wrong by a given filesystem and also protects the vfs.

 - Enable idmapped mounts for tmpfs and fulfill a longstanding request.

   A long-standing request from users had been to make it possible to
   create idmapped mounts for tmpfs. For example, to share the host's
   tmpfs mount between multiple sandboxes. This is a prerequisite for
   some advanced Kubernetes cases. Systemd also has a range of use-cases
   to increase service isolation. And there are more users of this.

   However, with all of the other work going on this was way down on the
   priority list but luckily someone other than ourselves picked this
   up.

   As usual the patch is tiny as all the infrastructure work had been
   done multiple kernel releases ago. In addition to all the tests that
   we already have I requested that Rodrigo add a dedicated tmpfs
   testsuite for idmapped mounts to xfstests. It is to be included into
   xfstests during the v6.3 development cycle. This should add a slew of
   additional tests.

* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
  shmem: support idmapped mounts for tmpfs
  fs: move mnt_idmap
  fs: port vfs{g,u}id helpers to mnt_idmap
  fs: port fs{g,u}id helpers to mnt_idmap
  fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
  fs: port i_{g,u}id_{needs_}update() to mnt_idmap
  quota: port to mnt_idmap
  fs: port privilege checking helpers to mnt_idmap
  fs: port inode_owner_or_capable() to mnt_idmap
  fs: port inode_init_owner() to mnt_idmap
  fs: port acl to mnt_idmap
  fs: port xattr to mnt_idmap
  fs: port ->permission() to pass mnt_idmap
  fs: port ->fileattr_set() to pass mnt_idmap
  fs: port ->set_acl() to pass mnt_idmap
  fs: port ->get_acl() to pass mnt_idmap
  fs: port ->tmpfile() to pass mnt_idmap
  fs: port ->rename() to pass mnt_idmap
  fs: port ->mknod() to pass mnt_idmap
  fs: port ->mkdir() to pass mnt_idmap
  ...
2023-02-20 11:53:11 -08:00
Darrick J. Wong
60b730a40c xfs: fix uninitialized variable access
If the end position of a GETFSMAP query overlaps an allocated space and
we're using the free space info to generate fsmap info, the akeys
information gets fed into the fsmap formatter with bad results.
Zero-init the space.

Reported-by: syzbot+090ae72d552e6bd93cfe@syzkaller.appspotmail.com
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-14 17:51:35 -08:00
Dave Chinner
bd4f5d09cc xfs: refactor the filestreams allocator pick functions
Now that the filestreams allocator is largely rewritten,
restructure the main entry point and pick function to seperate out
the different operations cleanly. The MRU lookup function should not
handle the start AG selection on MRU lookup failure, and nor should
the pick function handle building the association that is inserted
into the MRU.

This leaves the filestreams allocator fairly clean and easy to
understand, returning to the caller with an active perag reference
and a target block to allocate at.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:56 +11:00
Dave Chinner
f8f1ed1ab3 xfs: return a referenced perag from filestreams allocator
Now that the filestreams AG selection tracks active perags, we need
to return an active perag to the core allocator code. This is
because the file allocation the filestreams code will run are AG
specific allocations and so need to pin the AG until the allocations
complete.

We cannot rely on the filestreams item reference to do this - the
filestreams association can be torn down at any time, hence we
need to have a separate reference for the allocation process to pin
the AG after it has been selected.

This means there is some perag juggling in allocation failure
fallback paths as they will do all AG scans in the case the AG
specific allocation fails. Hence we need to track the perag
reference that the filestream allocator returned to make sure we
don't leak it on repeated allocation failure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:56 +11:00
Dave Chinner
571e259282 xfs: pass perag to filestreams tracing
Pass perags instead of raw ag numbers, avoiding the need for the
special peek function for the tracing code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:56 +11:00
Dave Chinner
eb70aa2d8e xfs: use for_each_perag_wrap in xfs_filestream_pick_ag
xfs_filestream_pick_ag() is now ready to rework to use
for_each_perag_wrap() for iterating the perags during the AG
selection scan.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
3054face13 xfs: track an active perag reference in filestreams
Rather than just track the agno of the reference, track a referenced
perag pointer instead. This will allow active filestreams to prevent
AGs from going away until the filestreams have been torn down.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
f38b46bbfa xfs: factor out MRU hit case in xfs_filestream_select_ag
Because it now stands out like a sore thumb. Factoring out this case
starts the process of simplifying xfs_filestream_select_ag() again.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
3e43877a9d xfs: remove xfs_filestream_select_ag() longest extent check
Picking a new AG checks the longest free extent in the AG is valid,
so there's no need to repeat the check in
xfs_filestream_select_ag(). Remove it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
ba34de8def xfs: merge new filestream AG selection into xfs_filestream_select_ag()
This is largely a wrapper around xfs_filestream_pick_ag() that
repeats a lot of the lookups that we just merged back into
xfs_filestream_select_ag() from the lookup code. Merge the
xfs_filestream_new_ag() code back into _select_ag() to get rid
of all the unnecessary logic.

Indeed, this makes it obvious that if we have no parent inode,
the filestreams allocator always selects AG 0 regardless of whether
it is fit for purpose or not.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
a52dc2ad36 xfs: merge filestream AG lookup into xfs_filestream_select_ag()
The lookup currently either returns the cached filestream AG or it
calls xfs_filestreams_select_lengths() to looks up a new AG. This
has verify the AG that is selected, so we end up doing "select a new
AG loop in a couple of places when only one really is needed.  Merge
the initial lookup functionality with the length selection so that
we only need to do a single pick loop on lookup or verification
failure.

This undoes a lot of the factoring that enabled the selection to be
moved over to the filestreams code. It makes
xfs_filestream_select_ag() an awful messier, but it has to be made
worse before it can get better in future patches...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
8f7747ad8c xfs: move xfs_bmap_btalloc_filestreams() to xfs_filestreams.c
xfs_bmap_btalloc_filestreams() calls two filestreams functions to
select the AG to allocate from. Both those functions end up in
the same selection function that iterates all AGs multiple times.
Worst case, xfs_bmap_btalloc_filestreams() can iterate all AGs 4
times just to select the initial AG to allocate in.

Move the AG selection to fs/xfs/xfs_filestreams.c as a single
interface so that the inefficient AG interation is contained
entirely within the filestreams code. This will allow the
implementation to be simplified and made more efficient in future
patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
05cf492a8d xfs: use xfs_bmap_longest_free_extent() in filestreams
The code in xfs_bmap_longest_free_extent() is open coded in
xfs_filestream_pick_ag(). Export xfs_bmap_longest_free_extent and
call it from the filestreams code instead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
6b637ad0c7 xfs: get rid of notinit from xfs_bmap_longest_free_extent
It is only set if reading the AGF gets a EAGAIN error. Just return
the EAGAIN error and handle that error in the callers.

This means we can remove the not_init parameter from
xfs_bmap_select_minlen(), too, because the use of not_init there is
pessimistic. If we can't read the agf, it won't increase blen.

The only time we actually care whether we checked all the AGFs for
contiguous free space is when the best length is less than the
minimum allocation length. If not_init is set, then we ignore blen
and set the minimum alloc length to the absolute minimum, not the
best length we know already is present.

However, if blen is less than the minimum we're going to ignore it
anyway, regardless of whether we scanned all the AGFs or not.  Hence
not_init can go away, because we only use if blen is good from
the scanned AGs otherwise we ignore it altogether and use minlen.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:55 +11:00
Dave Chinner
89563e7dc0 xfs: factor out filestreams from xfs_bmap_btalloc_nullfb
There's many if (filestreams) {} else {} branches in this function.
Split it out into a filestreams specific function so that we can
then work directly on cleaning up the filestreams code without
impacting the rest of the allocation algorithms.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
35bf2b1abc xfs: convert trim to use for_each_perag_range
To convert it to using active perag references and hence make it
shrink safe.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
3432ef6111 xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker
Now that the AG iteration code in the core allocation code has been
cleaned up, we can easily convert it to use a for_each_perag..()
variant to use active references and skip AGs that it can't get
active references on.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
8b81356825 xfs: move the minimum agno checks into xfs_alloc_vextent_check_args
All of the allocation functions now extract the minimum allowed AG
from the transaction and then use it in some way. The allocation
functions that are restricted to a single AG all check if the
AG requested can be allocated from and return an error if so. These
all set args->agno appropriately.

All the allocation functions that iterate AGs use it to calculate
the scan start AG. args->agno is not set until the iterator starts
walking AGs.

Hence we can easily set up a conditional check against the minimum
AG allowed in xfs_alloc_vextent_check_args() based on whether
args->agno contains NULLAGNUMBER or not and move all the repeated
setup code to xfs_alloc_vextent_check_args(), further simplifying
the allocation functions.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
230e8fe846 xfs: fold xfs_alloc_ag_vextent() into callers
We don't need the multiplexing xfs_alloc_ag_vextent() provided
anymore - we can just call the exact/near/size variants directly.
This allows us to remove args->type completely and stop using
args->fsbno as an input to the allocator algorithms.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
e4d1742607 xfs: move allocation accounting to xfs_alloc_vextent_set_fsbno()
Move it from xfs_alloc_ag_vextent() so we can get rid of that layer.
Rename xfs_alloc_vextent_set_fsbno() to xfs_alloc_vextent_finish()
to indicate that it's function is finishing off the allocation that
we've run now that it contains much more functionality.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
74b9aa6319 xfs: introduce xfs_alloc_vextent_prepare()
Now that we have wrapper functions for each type of allocation we
can ask for, we can start unravelling xfs_alloc_ag_vextent(). That
is essentially just a prepare stage, the allocation multiplexer
and a post-allocation accounting step is the allocation proceeded.

The current xfs_alloc_vextent*() wrappers all have a prepare stage,
the allocation operation and a post-allocation accounting step.

We can consolidate this by moving the AG alloc prep code into the
wrapper functions, the accounting code in the wrapper accounting
functions, and cut out the multiplexer layer entirely.

This patch consolidates the AG preparation stage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
5f36b2ce79 xfs: introduce xfs_alloc_vextent_exact_bno()
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
db4710fd12 xfs: introduce xfs_alloc_vextent_near_bno()
The remaining callers of xfs_alloc_vextent() are all doing NEAR_BNO
allocations. We can replace that function with a new
xfs_alloc_vextent_near_bno() function that does this explicitly.

We also multiplex NEAR_BNO allocations through
xfs_alloc_vextent_this_ag via args->type. Replace all of these with
direct calls to xfs_alloc_vextent_near_bno(), too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:54 +11:00
Dave Chinner
2a7f6d41d8 xfs: use xfs_alloc_vextent_start_bno() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_start_bno(). Callers no long need to specify
XFS_ALLOCTYPE_START_BNO, and so the type can be driven inward and
removed.

While doing this, also pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
319c9e874a xfs: use xfs_alloc_vextent_first_ag() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_first_ag(). This gets rid of
XFS_ALLOCTYPE_FIRST_AG as the type used within
xfs_alloc_vextent_first_ag() during iteration is _THIS_AG. Hence we
can remove the setting of args->type from all the callers of
_first_ag() and remove the alloctype.

While doing this, pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno. This starts the process
of making args->fsbno an output only variable rather than
input/output.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
8584332709 xfs: factor xfs_bmap_btalloc()
There are several different contexts xfs_bmap_btalloc() handles, and
large chunks of the code execute independent allocation contexts.
Try to untangle this mess a bit.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
74c36a8689 xfs: use xfs_alloc_vextent_this_ag() where appropriate
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.

The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
4811c933ea xfs: combine __xfs_alloc_vextent_this_ag and xfs_alloc_ag_vextent
There's a bit of a recursive conundrum around
xfs_alloc_ag_vextent(). We can't first call xfs_alloc_ag_vextent()
without preparing the AGFL for the allocation, and preparing the
AGFL calls xfs_alloc_ag_vextent() to prepare the AGFL for the
allocation. This "double allocation" requirement is not really clear
from the current xfs_alloc_fix_freelist() calls that are sprinkled
through the allocation code.

It's not helped that xfs_alloc_ag_vextent() can actually allocate
from the AGFL itself, but there's special code to prevent AGFL prep
allocations from allocating from the free list it's trying to prep.
The naming is also not consistent: args->wasfromfl is true when we
allocated _from_ the free list, but the indication that we are
allocating _for_ the free list is via checking that (args->resv ==
XFS_AG_RESV_AGFL).

So, lets make this "allocation required for allocation" situation
clear by moving it all inside xfs_alloc_ag_vextent(). The freelist
allocation is a specific XFS_ALLOCTYPE_THIS_AG allocation, which
translated directly to xfs_alloc_ag_vextent_size() allocation.

This enables us to replace __xfs_alloc_vextent_this_ag() with a call
to xfs_alloc_ag_vextent(), and we drive the freelist fixing further
into the per-ag allocation algorithm.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
2edf06a50f xfs: factor xfs_alloc_vextent_this_ag() for _iterate_ags()
The core of the per-ag iteration is effectively doing a "this ag"
allocation on one AG at a time. Use the same code to implement the
core "this ag" allocation in both xfs_alloc_vextent_this_ag()
and xfs_alloc_vextent_iterate_ags().

This means we only call xfs_alloc_ag_vextent() from one place so we
can easily collapse the call stack in future patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
ecd788a924 xfs: rework xfs_alloc_vextent()
It's a multiplexing mess that can be greatly simplified, and really
needs to be simplified to allow active per-ag references to
propagate from initial AG selection code the the bmapi code.

This splits the code out into separate a parameter checking
function, an iterator function, and allocation completion functions
and then implements the individual policies using these functions.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
76257a1587 xfs: introduce xfs_for_each_perag_wrap()
In several places we iterate every AG from a specific start agno and
wrap back to the first AG when we reach the end of the filesystem to
continue searching. We don't have a primitive for this iteration
yet, so add one for conversion of these algorithms to per-ag based
iteration.

The filestream AG select code is a mess, and this initially makes it
worse. The per-ag selection needs to be driven completely into the
filestream code to clean this up and it will be done in a future
patch that makes the filestream allocator use active per-ag
references correctly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:53 +11:00
Dave Chinner
7ac2ff8bb3 xfs: perags need atomic operational state
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.

For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
20a5eab49d xfs: convert xfs_ialloc_next_ag() to an atomic
This is currently a spinlock lock protected rotor which can be
implemented with a single atomic operation. Change it to be more
efficient and get rid of the m_agirotor_lock. Noticed while
converting the inode allocation AG selection loop to active perag
references.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
bab8b79518 xfs: inobt can use perags in many more places than it does
Lots of code in the inobt infrastructure is passed both xfs_mount
and perags. We only need perags for the per-ag inode allocation
code, so reduce the duplication by passing only the perags as the
primary object.

This ends up reducing the code size by a bit:

	   text    data     bss     dec     hex filename
orig	1138878  323979     548 1463405  16546d (TOTALS)
patched	1138709  323979     548 1463236  1653c4 (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
dedab3e437 xfs: use active perag references for inode allocation
Convert the inode allocation routines to use active perag references
or references held by callers rather than grab their own. Also drive
the perag further inwards to replace xfs_mounts when doing
operations on a specific AG.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
498f0adbcd xfs: convert xfs_imap() to take a perag
Callers have referenced perags but they don't pass it into
xfs_imap() so it takes it's own reference. Fix that so we can change
inode allocation over to using active references.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
368e2d09b4 xfs: rework the perag trace points to be perag centric
So that they all output the same information in the traces to make
debugging refcount issues easier.

This means that all the lookup/drop functions no longer need to use
the full memory barrier atomic operations (atomic*_return()) so
will have less overhead when tracing is off. The set/clear tag
tracepoints no longer abuse the reference count to pass the tag -
the tag being cleared is obvious from the _RET_IP_ that is recorded
in the trace point.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:52 +11:00
Dave Chinner
c4d5660afb xfs: active perag reference counting
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.

To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.

Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
  and shrink transactions where high level active references to the
  AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
  memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
  started.

Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.

This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.

Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-13 09:14:42 +11:00
Dave Chinner
55d5c3a386 xfs: don't assert fail on transaction cancel with deferred ops
We can error out of an allocation transaction when updating BMBT
blocks when things go wrong. This can be a btree corruption, and
unexpected ENOSPC, etc. In these cases, we already have deferred ops
queued for the first allocation that has been done, and we just want
to cancel out the transaction and shut down the filesystem on error.

In fact, we do just that for production systems - the assert that we
can't have a transaction with defer ops attached unless we are
already shut down is bogus and gets in the way of debugging
whatever issue is actually causing the transaction to be cancelled.

Remove the assert because it is causing spurious test failures to
hang test machines.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:12:06 +11:00
Dave Chinner
692b6cddeb xfs: t_firstblock is tracking AGs not blocks
The tp->t_firstblock field is now raelly tracking the highest AG we
have locked, not the block number of the highest allocation we've
made. It's purpose is to prevent AGF locking deadlocks, so rename it
to "highest AG" and simplify the implementation to just track the
agno rather than a fsbno.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:11:06 +11:00
Dave Chinner
36b6ad2d9c xfs: drop firstblock constraints from allocation setup
Now that xfs_alloc_vextent() does all the AGF deadlock prevention
filtering for multiple allocations in a single transaction, we no
longer need the allocation setup code to care about what AGs we
might already have locked.

Hence we can remove all the "nullfb" conditional logic in places
like xfs_bmap_btalloc() and instead have them focus simply on
setting up locality constraints. If the allocation fails due to
AGF lock filtering in xfs_alloc_vextent, then we just fall back as
we normally do to more relaxed allocation constraints.

As a result, any allocation that allows AG scanning (i.e. not
confined to a single AG) and does not force a worst case full
filesystem scan will now be able to attempt allocation from AGs
lower than that defined by tp->t_firstblock. This is because
xfs_alloc_vextent() allows try-locking of the AGFs and hence enables
low space algorithms to at least -try- to get space from AGs lower
than the one that we have currently locked and allocated from. This
is a significant improvement in the low space allocation algorithm.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:10:06 +11:00
Dave Chinner
d5753847b2 xfs: block reservation too large for minleft allocation
When we enter xfs_bmbt_alloc_block() without having first allocated
a data extent (i.e. tp->t_firstblock == NULLFSBLOCK) because we
are doing something like unwritten extent conversion, the transaction
block reservation is used as the minleft value.

This works for operations like unwritten extent conversion, but it
assumes that the block reservation is only for a BMBT split. THis is
not always true, and sometimes results in larger than necessary
minleft values being set. We only actually need enough space for a
btree split, something we already handle correctly in
xfs_bmapi_write() via the xfs_bmapi_minleft() calculation.

We should use xfs_bmapi_minleft() in xfs_bmbt_alloc_block() to
calculate the number of blocks a BMBT split on this inode is going to
require, not use the transaction block reservation that contains the
maximum number of blocks this transaction may consume in it...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:09:06 +11:00
Dave Chinner
f08f984c63 xfs: prefer free inodes at ENOSPC over chunk allocation
When an XFS filesystem has free inodes in chunks already allocated
on disk, it will still allocate new inode chunks if the target AG
has no free inodes in it. Normally, this is a good idea as it
preserves locality of all the inodes in a given directory.

However, at ENOSPC this can lead to using the last few remaining
free filesystem blocks to allocate a new chunk when there are many,
many free inodes that could be allocated without consuming free
space. This results in speeding up the consumption of the last few
blocks and inode create operations then returning ENOSPC when there
free inodes available because we don't have enough block left in the
filesystem for directory creation reservations to proceed.

Hence when we are near ENOSPC, we should be attempting to preserve
the remaining blocks for directory block allocation rather than
using them for unnecessary inode chunk creation.

This particular behaviour is exposed by xfs/294, when it drives to
ENOSPC on empty file creation whilst there are still thousands of
free inodes available for allocation in other AGs in the filesystem.

Hence, when we are within 1% of ENOSPC, change the inode allocation
behaviour to prefer to use existing free inodes over allocating new
inode chunks, even though it results is poorer locality of the data
set. It is more important for the allocations to be space efficient
near ENOSPC than to have optimal locality for performance, so lets
modify the inode AG selection code to reflect that fact.

This allows generic/294 to not only pass with this allocator rework
patchset, but to increase the number of post-ENOSPC empty inode
allocations to from ~600 to ~9080 before we hit ENOSPC on the
directory create transaction reservation.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:08:06 +11:00
Dave Chinner
1dd0510f6d xfs: fix low space alloc deadlock
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.

Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.

The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.

The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.

xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.

This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-02-11 04:07:06 +11:00
Darrick J. Wong
dd07bb8b6b xfs: revert commit 8954c44ff477
The name passed into __xfs_xattr_put_listent is exactly namelen bytes
long and not null-terminated.  Passing namelen+1 to the strscpy function

    strscpy(offset, (char *)name, namelen + 1);

is therefore wrong.  Go back to the old code, which works fine because
strncpy won't find a null in @name and stops after namelen bytes.  It
really could be a memcpy call, but it worked for years.

Reported-by: syzbot+898115bc6d7140437215@syzkaller.appspotmail.com
Fixes: 8954c44ff477 ("xfs: use strscpy() to instead of strncpy()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-10 09:06:06 -08:00