IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.
A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.
Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.
Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives. Allowing simple, safe,
well understood work-arounds to known problematic software.
This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work. While writing this patch I saw a handful of such
cases. The most significant being autofs that lives in the module
autofs4.
This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.
After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module. The common pattern in the kernel is to call request_module()
without regards to the users permissions. In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted. In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull vfs update from Al Viro:
- big one - consolidation of descriptor-related logics; almost all of
that is moved to fs/file.c
(BTW, I'm seriously tempted to rename the result to fd.c. As it is,
we have a situation when file_table.c is about handling of struct
file and file.c is about handling of descriptor tables; the reasons
are historical - file_table.c used to be about a static array of
struct file we used to have way back).
A lot of stray ends got cleaned up and converted to saner primitives,
disgusting mess in android/binder.c is still disgusting, but at least
doesn't poke so much in descriptor table guts anymore. A bunch of
relatively minor races got fixed in process, plus an ext4 struct file
leak.
- related thing - fget_light() partially unuglified; see fdget() in
there (and yes, it generates the code as good as we used to have).
- also related - bits of Cyrill's procfs stuff that got entangled into
that work; _not_ all of it, just the initial move to fs/proc/fd.c and
switch of fdinfo to seq_file.
- Alex's fs/coredump.c spiltoff - the same story, had been easier to
take that commit than mess with conflicts. The rest is a separate
pile, this was just a mechanical code movement.
- a few misc patches all over the place. Not all for this cycle,
there'll be more (and quite a few currently sit in akpm's tree)."
Fix up trivial conflicts in the android binder driver, and some fairly
simple conflicts due to two different changes to the sock_alloc_file()
interface ("take descriptor handling from sock_alloc_file() to callers"
vs "net: Providing protocol type via system.sockprotoname xattr of
/proc/PID/fd entries" adding a dentry name to the socket)
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (72 commits)
MAX_LFS_FILESIZE should be a loff_t
compat: fs: Generic compat_sys_sendfile implementation
fs: push rcu_barrier() from deactivate_locked_super() to filesystems
btrfs: reada_extent doesn't need kref for refcount
coredump: move core dump functionality into its own file
coredump: prevent double-free on an error path in core dumper
usb/gadget: fix misannotations
fcntl: fix misannotations
ceph: don't abuse d_delete() on failure exits
hypfs: ->d_parent is never NULL or negative
vfs: delete surplus inode NULL check
switch simple cases of fget_light to fdget
new helpers: fdget()/fdput()
switch o2hb_region_dev_write() to fget_light()
proc_map_files_readdir(): don't bother with grabbing files
make get_file() return its argument
vhost_set_vring(): turn pollstart/pollstop into bool
switch prctl_set_mm_exe_file() to fget_light()
switch xfs_find_handle() to fget_light()
switch xfs_swapext() to fget_light()
...
There's no reason to call rcu_barrier() on every
deactivate_locked_super(). We only need to make sure that all delayed rcu
free inodes are flushed before we destroy related cache.
Removing rcu_barrier() from deactivate_locked_super() affects some fast
paths. E.g. on my machine exit_group() of a last process in IPC
namespace takes 0.07538s. rcu_barrier() takes 0.05188s of that time.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull user namespace changes from Eric Biederman:
"This is a mostly modest set of changes to enable basic user namespace
support. This allows the code to code to compile with user namespaces
enabled and removes the assumption there is only the initial user
namespace. Everything is converted except for the most complex of the
filesystems: autofs4, 9p, afs, ceph, cifs, coda, fuse, gfs2, ncpfs,
nfs, ocfs2 and xfs as those patches need a bit more review.
The strategy is to push kuid_t and kgid_t values are far down into
subsystems and filesystems as reasonable. Leaving the make_kuid and
from_kuid operations to happen at the edge of userspace, as the values
come off the disk, and as the values come in from the network.
Letting compile type incompatible compile errors (present when user
namespaces are enabled) guide me to find the issues.
The most tricky areas have been the places where we had an implicit
union of uid and gid values and were storing them in an unsigned int.
Those places were converted into explicit unions. I made certain to
handle those places with simple trivial patches.
Out of that work I discovered we have generic interfaces for storing
quota by projid. I had never heard of the project identifiers before.
Adding full user namespace support for project identifiers accounts
for most of the code size growth in my git tree.
Ultimately there will be work to relax privlige checks from
"capable(FOO)" to "ns_capable(user_ns, FOO)" where it is safe allowing
root in a user names to do those things that today we only forbid to
non-root users because it will confuse suid root applications.
While I was pushing kuid_t and kgid_t changes deep into the audit code
I made a few other cleanups. I capitalized on the fact we process
netlink messages in the context of the message sender. I removed
usage of NETLINK_CRED, and started directly using current->tty.
Some of these patches have also made it into maintainer trees, with no
problems from identical code from different trees showing up in
linux-next.
After reading through all of this code I feel like I might be able to
win a game of kernel trivial pursuit."
Fix up some fairly trivial conflicts in netfilter uid/git logging code.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (107 commits)
userns: Convert the ufs filesystem to use kuid/kgid where appropriate
userns: Convert the udf filesystem to use kuid/kgid where appropriate
userns: Convert ubifs to use kuid/kgid
userns: Convert squashfs to use kuid/kgid where appropriate
userns: Convert reiserfs to use kuid and kgid where appropriate
userns: Convert jfs to use kuid/kgid where appropriate
userns: Convert jffs2 to use kuid and kgid where appropriate
userns: Convert hpfs to use kuid and kgid where appropriate
userns: Convert btrfs to use kuid/kgid where appropriate
userns: Convert bfs to use kuid/kgid where appropriate
userns: Convert affs to use kuid/kgid wherwe appropriate
userns: On alpha modify linux_to_osf_stat to use convert from kuids and kgids
userns: On ia64 deal with current_uid and current_gid being kuid and kgid
userns: On ppc convert current_uid from a kuid before printing.
userns: Convert s390 getting uid and gid system calls to use kuid and kgid
userns: Convert s390 hypfs to use kuid and kgid where appropriate
userns: Convert binder ipc to use kuids
userns: Teach security_path_chown to take kuids and kgids
userns: Add user namespace support to IMA
userns: Convert EVM to deal with kuids and kgids in it's hmac computation
...
flush[_delayed]_work_sync() are now spurious. Mark them deprecated
and convert all users to flush[_delayed]_work().
If you're cc'd and wondering what's going on: Now all workqueues are
non-reentrant and the regular flushes guarantee that the work item is
not pending or running on any CPU on return, so there's no reason to
use the sync flushes at all and they're going away.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ian Campbell <ian.campbell@citrix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mattia Dongili <malattia@linux.it>
Cc: Kent Yoder <key@linux.vnet.ibm.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Karsten Keil <isdn@linux-pingi.de>
Cc: Bryan Wu <bryan.wu@canonical.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-wireless@vger.kernel.org
Cc: Anton Vorontsov <cbou@mail.ru>
Cc: Sangbeom Kim <sbkim73@samsung.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Petr Vandrovec <petr@vandrovec.name>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Avi Kivity <avi@redhat.com>
This patch makes affs stop using the VFS '->write_super()' method along with
the 's_dirt' superblock flag, because they are on their way out.
The whole "superblock write-out" VFS infrastructure is served by the
'sync_supers()' kernel thread, which wakes up every 5 (by default) seconds and
writes out all dirty superblocks using the '->write_super()' call-back. But the
problem with this thread is that it wastes power by waking up the system every
5 seconds, even if there are no diry superblocks, or there are no client
file-systems which would need this (e.g., btrfs does not use
'->write_super()'). So we want to kill it completely and thus, we need to make
file-systems to stop using the '->write_super()' VFS service, and then remove
it together with the kernel thread.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add an 'sb' VFS superblock back-reference to the 'struct affs_sb_info' data
structure - we will need to find the VFS superblock from a 'struct
affs_sb_info' object in the next patch, so this change is jut a preparation.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The VFS's 'lock_super()' and 'unlock_super()' calls are deprecated and unwanted
and just wait for a brave knight who'd kill them. This patch makes AFFS stop
using them and use the buffer-head's own lock instead.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
AFFS wants to serialize the superblock (the root block in AFFS terms) updates
and uses 'lock_super()/unlock_super()' for these purposes. This patch pushes the
locking down to the 'affs_commit_super()' from the callers.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We do not need to write out the superblock from '->remount_fs()' because
VFS has already called '->sync_fs()' by this time and the superblock has
already been written out. Thus, remove the 'affs_write_super()'
infocation from 'affs_remount()'.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We do not need to write out the superblock from '->put_super()' because VFS has
already called '->sync_fs()' by this time and the superblock has already been
written out. Thus, remove the 'affs_commit_super()' infocation from
'affs_put_super()'.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
AFFS stores values '1' and '2' in 'bm_flags', and I fail to see any logic when
it prefers one or another. AFFS writes '1' only from '->put_super()', while
'->sync_fs()' and '->write_super()' store value '2'. So on the first glance,
it looks like we want to have '1' if we unmount. However, this does not really
happen in these cases:
1. superblock is written via 'write_super()' then we unmount;
2. we re-mount R/O, then unmount.
which are quite typical.
I could not find good documentation describing this field, except of one random
piece of documentation in the internet which says that -1 means that the root
block is valid, which is not consistent with what we have in the Linux AFFS
driver.
Jan Kara commented on this: "I have some vague recollection that on Amiga
boolean was usually encoded as: 0 == false, ~0 == -1 == true. But it has been
ages..."
Thus, my conclusion is that value of '1' is as good as value of '2' and we can
just always use '2'. An Jan Kara suggested to go further: "generally bm_flags
handling looks strange. If they are 0, we mount fs read only and thus cannot
change them. If they are != 0, we write 2 there. So IMHO if you just removed
bm_flags setting, nothing will really happen."
So this patch removes the bm_flags setting completely. This makes the "clean"
argument of the 'affs_commit_super()' function unneeded, so it is also removed.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Seeing that just about every destructor got that INIT_LIST_HEAD() copied into
it, there is no point whatsoever keeping this INIT_LIST_HEAD in inode_init_once();
the cost of taking it into inode_init_always() will be negligible for pipes
and sockets and negative for everything else. Not to mention the removal of
boilerplate code from ->destroy_inode() instances...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
* 'vfs' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl: (30 commits)
BKL: remove BKL from freevxfs
BKL: remove BKL from qnx4
autofs4: Only declare function when CONFIG_COMPAT is defined
autofs: Only declare function when CONFIG_COMPAT is defined
ncpfs: Lock socket in ncpfs while setting its callbacks
fs/locks.c: prepare for BKL removal
BKL: Remove BKL from ncpfs
BKL: Remove BKL from OCFS2
BKL: Remove BKL from squashfs
BKL: Remove BKL from jffs2
BKL: Remove BKL from ecryptfs
BKL: Remove BKL from afs
BKL: Remove BKL from USB gadgetfs
BKL: Remove BKL from autofs4
BKL: Remove BKL from isofs
BKL: Remove BKL from fat
BKL: Remove BKL from ext2 filesystem
BKL: Remove BKL from do_new_mount()
BKL: Remove BKL from cgroup
BKL: Remove BKL from NTFS
...
Get rid of init_MUTE() and use sema_init() instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
LKML-Reference: <20100907125056.511395595@linutronix.de>
The BKL is only used in put_super, fill_super and remount_fs that are all
three protected by the superblocks s_umount rw_semaphore. Therefore it is
safe to remove the BKL entirely.
Signed-off-by: Jan Blunck <jblunck@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This patch is a preparation necessary to remove the BKL from do_new_mount().
It explicitly adds calls to lock_kernel()/unlock_kernel() around
get_sb/fill_super operations for filesystems that still uses the BKL.
I've read through all the code formerly covered by the BKL inside
do_kern_mount() and have satisfied myself that it doesn't need the BKL
any more.
do_kern_mount() is already called without the BKL when mounting the rootfs
and in nfsctl. do_kern_mount() calls vfs_kern_mount(), which is called
from various places without BKL: simple_pin_fs(), nfs_do_clone_mount()
through nfs_follow_mountpoint(), afs_mntpt_do_automount() through
afs_mntpt_follow_link(). Both later functions are actually the filesystems
follow_link inode operation. vfs_kern_mount() is calling the specified
get_sb function and lets the filesystem do its job by calling the given
fill_super function.
Therefore I think it is safe to push down the BKL from the VFS to the
low-level filesystems get_sb/fill_super operation.
[arnd: do not add the BKL to those file systems that already
don't use it elsewhere]
Signed-off-by: Jan Blunck <jblunck@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Christoph Hellwig <hch@infradead.org>
AFFS does not ever wait for superblock synchronization in
->put_super(), ->write_super, and ->sync_fs().
However, it should wait for synchronization in ->put_super() because
it is about to be unmounted, in ->write_super() because this is
periodic SB synchronization performed from a separate kernel thread,
and in ->sync_fs() it should respect the 'wait' flag. This patch fixes
the situation.
Also, in ->put_super(), do not write the SB if it is not dirty.
Tested-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In 'affs_write_super()': remove ancient and wrong commented code,
remove unneeded 'clean' variable, so the function becomes a bit
cleaner and simpler.
In 'affs_remount(): remove unnecessary SB dirty flag changes.
Tested-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Error handling in that sucker got broken back in 2003. If function
returns 0 on failure, it's not nice to add return -EINVAL into it.
Adding return 1 on other failure exits is also not a good thing (and
yes, original success exits with 1 and some of failure exits with 0
are still there; so's the original logics in callers).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
A couple of fields in affs_sb_info is used in follow_link() and
symlink() for handling AFFS "absolute" symlinks. Need locking
against affs_remount() updates.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a ->sync_fs method for data integrity syncs. Factor out common code
between affs_put_super, affs_write_super and the new affs_sync_fs into
a helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Push down lock_super into ->write_super instances and remove it from the
caller.
Following filesystem don't need ->s_lock in ->write_super and are skipped:
* bfs, nilfs2 - no other uses of s_lock and have internal locks in
->write_super
* ext2 - uses BKL in ext2_write_super and has internal calls without s_lock
* reiserfs - no other uses of s_lock as has reiserfs_write_lock (BKL) in
->write_super
* xfs - no other uses of s_lock and uses internal lock (buffer lock on
superblock buffer) to serialize ->write_super. Also xfs_fs_write_super
is superflous and will go away in the next merge window
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move BKL into ->put_super from the only caller. A couple of
filesystems had trivial enough ->put_super (only kfree and NULLing of
s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
hugetlbfs, omfs, qnx4, shmem, all others got the full treatment. Most
of them probably don't need it, but I'd rather sort that out individually.
Preferably after all the other BKL pushdowns in that area.
[AV: original used to move lock_super() down as well; these changes are
removed since we don't do lock_super() at all in generic_shutdown_super()
now]
[AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Put generic_show_options read access to s_options under rcu_read_lock,
split save_mount_options() into "we are setting it the first time"
(uses in foo_fill_super()) and "we are relacing and freeing the old one",
synchronize_rcu() before kfree() in the latter.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Make affs return f_fsid info for statfs(2).
Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: James Morris <jmorris@namei.org>
This is a much better version of a previous patch to make the parser
tables constant. Rather than changing the typedef, we put the "const" in
all the various places where its required, allowing the __initconst
exception for nfsroot which was the cause of the previous trouble.
This was posted for review some time ago and I believe its been in -mm
since then.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Alexander Viro <aviro@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The semaphore s_bmlock is used as a mutex. Convert it to the mutex API.
Signed-off-by: Matthias Kaehlcke <matthias@kaehlcke.net>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- remove affs_put_inode, so preallocations aren't discared unnecessarily
often.
- remove affs_drop_inode, it's called with a spinlock held, so it can't
use a mutex.
- make i_opencnt atomic
- avoid direct b_count manipulations
- a few allocation failure fixes, so that these are more gracefully
handled now.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a .show_options super operation to affs.
Use generic_show_options() and save the complete option string in
affs_fill_super() and affs_remount().
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stop the AFFS filesystem from using iget() and read_inode(). Replace
affs_read_inode() with affs_iget(), and call that instead of iget().
affs_iget() then uses iget_locked() directly and returns a proper error code
instead of an inode in the event of an error.
affs_fill_super() returns any error incurred when getting the root inode
instead of EINVAL.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab constructors currently have a flags parameter that is never used. And
the order of the arguments is opposite to other slab functions. The object
pointer is placed before the kmem_cache pointer.
Convert
ctor(void *object, struct kmem_cache *s, unsigned long flags)
to
ctor(struct kmem_cache *s, void *object)
throughout the kernel
[akpm@linux-foundation.org: coupla fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab destructors were no longer supported after Christoph's
c59def9f222d44bb7e2f0a559f2906191a0862d7 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@ucw.cz>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by
SLAB.
I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again? The callback is
performed before each freeing of an object.
I would think that it is much easier to check the object state manually
before the free. That also places the check near the code object
manipulation of the object.
Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on. If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code. But there is no such code
in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e. add debug code before kfree).
There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches. Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
This is the last slab flag that SLUB did not support. Remove the check for
unimplemented flags from SLUB.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>