IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When pseries SR-IOV is enabled and after a PF driver has resumed from
EEH, platform has to be notified of the event so the child VFs can be
allowed to resume their normal recovery path.
This patch makes the EEH operation allow unfreeze platform dependent
code and adds the call to pseries EEH code.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
To correctly use EEH code one has to make sure that the EEH_PE_VF is
set for dynamic created VFs. Therefore this patch allocates an eeh_pe
of eeh type EEH_PE_VF and associates PE with parent.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add EEH platform operations for pseries to update VF config space.
With this change after EEH, the VF will have updated config space for
pseries platform.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add calls for pseries platform to configure/deconfigure SR-IOV.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@us.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The eeh_dev struct hold a config space address of an associated node
and the very same address is also stored in the pci_dn struct which
is always present during the eeh_dev lifetime.
This uses bus:devfn directly from pci_dn instead of cached and packed
config_addr.
Since config_addr is made from device's bus:dev.fn, there is no point
in keeping it in the debugfs either so remove that too.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The eeh_dev struct already holds a pointer to pci_dn which it does not
exist without and pci_dn itself holds the very same pointer so just
use it.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PHB, PE (and by association MVE) numbers are printed as a mix of decimal
and hexadecimal throughout the kernel. This can be misleading, so make
them all hexadecimal.
Standardising on hex instead of dec because:
- PHB numbers are presented in hex in sysfs/debugfs (and lspci, etc)
- PE numbers are presented as hex in sysfs and parsed in hex in debugfs
The only place I think this could cause confusing are the messages during
boot, i.e.
pci 000a:01 : [PE# 000] Secondary bus 1 associated with PE#0
which can be a quick way to check PE numbers. pe_level_printk() will
only print two characters instead of three, so the above would be
pci 000a:01 : [PE# 00] Secondary bus 1 associated with PE#0
which gives a hint it's in hex.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The RTAS calls "ibm,configure-pe" and "ibm,configure-bridge" perform the
same actions, however the former can skip configuration if unnecessary.
The existing code treats them as different tokens even though only one
will ever be called. Refactor this by making a single token that is
assigned during init.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
In the "ibm,configure-pe" and "ibm,configure-bridge" RTAS calls, the
spec states that values of 9900-9905 can be returned, indicating that
software should delay for 10^x (where x is the last digit, i.e. 990x)
milliseconds and attempt the call again. Currently, the kernel doesn't
know about this, and respecting it fixes some PCI failures when the
hypervisor is busy.
The delay is capped at 0.2 seconds.
Cc: <stable@vger.kernel.org> # 3.10+
Signed-off-by: Russell Currey <ruscur@russell.cc>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This cleans up pseries_eeh_get_state(), no functional changes:
* Return EEH_STATE_NOT_SUPPORT early when the 2nd RTAS output
argument is zero to avoid nested if statements.
* Skip clearing bits in the PE state represented by variable
"result" to simplify the code.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
To retrieve the PCI slot state, EEH driver would set a timeout for that.
While current comment is not aligned to what the code does.
This patch fixes those comments according to the code.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are 3 EEH operations whose arguments contain device_node:
read_config(), write_config() and restore_config(). The patch
replaces device_node with pci_dn.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Originally, EEH core probes on device_node or pci_dev to populate
EEH devices and PEs, which conflicts with the fact: SRIOV VFs are
usually enabled and created by PF's driver and they don't have the
corresponding device_nodes. Instead, SRIOV VFs have dynamically
created pci_dn, which can be used for EEH probe.
The patch reworks EEH probe for PowerNV and pSeries platforms to
do probing based on pci_dn, instead of pci_dev or device_node any
more.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As Anton suggested, the patch decreases the message level on EEH
initialization to avoid unnecessary messages if required. Also,
we have unified hint if any of needful RTAS calls is missed, and
then we can check /proc/device-tree to figure out the missed RTAS
calls.
Suggested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch introduces eeh_ops::err_inject(), which allows to inject
specified errors to indicated PE for testing purpose. The functionality
isn't support on pSeries platform. On PowerNV, the functionality
relies on OPAL API opal_pci_err_inject().
Signed-off-by: Mike Qiu <qiudayu@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch adds one more option (EEH_OPT_FREEZE_PE) to set_option()
method to proactively freeze PE, which will be issued before resetting
pass-throughed PE to drop MMIO access during reset because it's
always contributing to recursive EEH error.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
pr_warn() is equal to pr_warning(), but the former is a bit more
formal according to commit fc62f2f ("kernel.h: add pr_warn for
symmetry to dev_warn, netdev_warn").
The patch replaces pr_warning() with pr_warn().
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
According to the experiment I did, PCI config access is blocked
on P7IOC frozen PE by hardware, but PHB3 doesn't do that. That
means we always get 0xFF's while dumping PCI config space of the
frozen PE on P7IOC. We don't have the problem on PHB3. So we have
to enable I/O prioir to collecting error log. Otherwise, meaningless
0xFF's are always returned.
The patch fixes it by EEH flag (EEH_ENABLE_IO_FOR_LOG), which is
selectively set to indicate the case for: P7IOC on PowerNV platform,
pSeries platform.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There are multiple global EEH flags. Almost each flag has its own
accessor, which doesn't make sense. The patch refactors EEH flag
accessors so that they look unified:
eeh_add_flag(): Add EEH flag
eeh_clear_flag(): Clear EEH flag
eeh_has_flag(): Check if one specific flag has been set
eeh_enabled(): Check if EEH functionality has been enabled
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
A lot of the code in platforms/pseries is using non-machine initcalls.
That means if a kernel built with pseries support runs on another
platform, for example powernv, the initcalls will still run.
Most of these cases are OK, though sometimes only due to luck. Some were
having more effect:
* hcall_inst_init
- Checking FW_FEATURE_LPAR which is set on ps3 & celleb.
* mobility_sysfs_init
- created sysfs files unconditionally
- but no effect due to ENOSYS from rtas_ibm_suspend_me()
* apo_pm_init
- created sysfs, allows write
- nothing checks the value written to though
* alloc_dispatch_log_kmem_cache
- creating kmem_cache on non-pseries machines
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Basically, we have 3 types of resets to fulfil PE reset: fundamental,
hot and PHB reset. For the later 2 cases, we need PCI bus reset hold
and settlement delay as specified by PCI spec. PowerNV and pSeries
platforms are running on top of different firmware and some of the
delays have been covered by underly firmware (PowerNV).
The patch makes the delays unified to be done in backend, instead of
EEH core.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In pseries_eeh_get_state(), EEH_STATE_UNAVAILABLE is always
overwritten by EEH_STATE_NOT_SUPPORT because of the missed
"break" there. The patch fixes the issue.
Reported-by: Joe Perches <joe@perches.com>
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When calling into eeh_gather_pci_data() on pSeries platform, we
possiblly don't have pci_dev instance yet, but eeh_dev is always
ready. So we use cached capability from eeh_dev instead of pci_dev
for log dump there. In order to keep things unified, we also cache
PCI capability positions to eeh_dev for PowerNV as well.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch cleans up variable eeh_subsystem_enabled so that we needn't
refer the variable directly from external. Instead, we will use
function eeh_enabled() and eeh_set_enable() to operate the variable.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
After reset on the specific PE or PHB, we never configure AER
correctly on PowerNV platform. We needn't care it on pSeries
platform. The patch introduces additional EEH operation eeh_ops::
restore_config() so that we have chance to configure AER correctly
for PowerNV platform.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch introduces flag EEH_DEV_SYSFS to keep track that the sysfs
entries for the corresponding EEH device (then PCI device) has been
added or removed, in order to avoid race condition.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While restoring BARs for one specific PCI device, the pci_dev
instance should have been released. So it's not reliable to use
the pci_dev instance on restoring BARs. However, we still need
some information (e.g. PCIe capability position, header type) from
the pci_dev instance. So we have to store those information to
EEH device in advance.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When EEH error happens to one specific PE, some devices with drivers
supporting EEH won't except hotplug on the device. However, there
might have other deivces without driver, or with driver without EEH
support. For the case, we need do partial hotplug in order to make
sure that the PE becomes absolutely quite during reset. Otherise,
the PE reset might fail and leads to failure of error recovery.
The current code doesn't handle that 'mixed' case properly, it either
uses the error callbacks to the drivers, or tries hotplug, but doesn't
handle a PE (EEH domain) composed of a combination of the two.
The patch intends to support so-called "partial" hotplug for EEH:
Before we do reset, we stop and remove those PCI devices without
EEH sensitive driver. The corresponding EEH devices are not detached
from its PE, but with special flag. After the reset is done, those
EEH devices with the special flag will be scanned one by one.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
RTAS token "ibm,get-config-addr-info" or ibm,get-config-addr-info2"
are used to retrieve the PE address according to PCI address, which
made up of domain/bus/slot/function. If we don't have those 2 tokens,
the domain/bus/slot/function would be used as the address for EEH
RTAS operations. Some older f/w might not have those 2 tokens and
that blocks the EEH functionality to be initialized. It was introduced
by commit e2af155c ("powerpc/eeh: pseries platform EEH initialization").
The patch skips the check on those 2 tokens so we can bring up EEH
functionality successfully. And domain/bus/slot/function will be
used as address for EEH RTAS operations.
Cc: <stable@vger.kernel.org> # v3.4+
Reported-by: Robert Knight <knight@princeton.edu>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Tested-by: Robert Knight <knight@princeton.edu>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While EEH module is installed, PCI devices is checked one by one
to see if it supports eeh. On different platforms, the PCI devices
are referred through different ways when the EEH module is loaded.
For example, on pSeries platform, that is done by OF node. However,
we would do that by real PCI devices (struct pci_dev) on PowerNV
platform in future. So we needs some mechanism to differentiate
those cases by classifying them to probe modes, either from OF
nodes or real PCI devices.
The patch implements the support to eeh probe mode. Also, the
EEH on pSeries has set it into EEH_PROBE_MODE_DEVTREE. That means
the probe will be done based on OF nodes on pSeries platform.
In addition, On pSeries platform, it's done by OF nodes. The patch
moves the the probe function from EEH core to platform dependent
backend and some cleanup applied.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Originally, all the EEH operations were implemented based on OF node.
Actually, it explicitly breaks the rules that the operation target
is PE instead of device. Therefore, the patch makes all the operations
based on PE instead of device.
Unfortunately, the backend for config space has to be kept as original
because it doesn't depend on PE.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch adds more logs to EEH initialization functions for
debugging purpose. Also, the machine type (pSeries) is checked
in the platform initialization to assure it's the correct platform
to invoke it.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, we have 3 phases for EEH initialization on pSeries platform.
All of them are done through builtin functions: platform initialization,
EEH device creation, and EEH subsystem enablement. All of them are done
no later than ppc_md.setup_arch. That means that the slab/slub isn't ready
yet, so we have to allocate memory chunks on basis of PAGE_SIZE for those
dynamically created EEH devices. That's pretty expensive.
In order to utilize slab/slub for memory allocation, we have to move the EEH
initialization functions around, but all of them should be called after slab
is ready.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
With the original EEH implementation, the access to config space of
the corresponding PCI device is done by RTAS sensitive function. That
depends on pci_dn heavily. That would limit EEH extension to other
platforms like powernv because other platforms might have different
ways to access PCI config space.
The patch splits those functions used to access PCI config space
and implement them in platform related EEH component. It would be
helpful to support EEH on multiple platforms simutaneously in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The pci_dn has been replaced with eeh_dev. In order to comply with
the rule, the EEH platform implementation on pSeries should also
be adjusted for a little bit so that it will depend on eeh_dev instead
of pci_dn.
The patch replaces pci_dn with eeh_dev. The corresponding information
will be retrieved from eeh_dev instead of pci_dn.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In order to enable particular PCI device, which has been included
in the parent PE. The involved PCI bridges should be enabled explicitly
if there has. On pSeries platform, there're dedicated RTAS calls
to fulfil the purpose.
The patch implements the function of configuring PCI bridges through
the dedicated RTAS calls. Besides, the function has been abstracted
by struct eeh_ops::configure_bridge so that the EEH core components
could support multiple platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On RTAS compliant pSeries platform, one dedicated RTAS call has
been introduced to retrieve EEH temporary or permanent error log.
The patch implements the function of retriving EEH error log through
RTAS call. Besides, it has been abstracted by struct eeh_ops::get_log
so that EEH core components could support multiple platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On RTAS compliant pSeries platform, there is a dedicated RTAS call
(ibm,set-slot-reset) to reset the specified PE. Furthermore, two
types of resets are supported: hot and fundamental. the type of
reset is to be used actually depends on the included PCI device's
requirements.
The patch implements resetting PE on pSeries platform through RTAS
call. Besides, it has been abstracted through struct eeh_ops::reset
so that EEH core components could support multiple platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On pSeries platform, the PE state might be temporarily unavailable.
In that case, the firmware will return the corresponding wait time.
That means the kernel has to wait for appropriate time in order to
get the PE state.
The patch does the implementation for that. Besides, the function
has been abstracted through struct eeh_ops::wait_state so that EEH core
components could support multiple platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On pSeries platform, there're 2 dedicated RTAS calls introduced to
retrieve the corresponding PE's state: ibm,read-slot-reset-state and
ibm,read-slot-reset-state2.
The patch implements the retrieval of PE's state according to the
given PE address. Besides, the implementation has been abstracted by
struct eeh_ops::get_state so that EEH core components could support
multiple platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There're 2 types of addresses used for EEH operations. The first
one would be BDF (Bus/Device/Function) address which is retrieved
from the reg property of the corresponding FDT node. Another one
is PE address that should be enquired from firmware through RTAS
call on pSeries platform. When issuing EEH operation, the PE address
has precedence over BDF address.
The patch implements retrieving PE address according to the given
BDF address on pSeries platform. Also, the struct eeh_early_enable_info
has been removed since the information can be figured out from
dn->pdn->phb->buid directly and that simplifies the code.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There're 4 EEH operations that are covered by the dedicated RTAS
call <ibm,set-eeh-option>: enable or disable EEH, enable MMIO and
enable DMA. At early stage of system boot, the EEH would be tried
to enable on PCI device related device node. MMIO and DMA for
particular PE should be enabled when doing recovery on EEH errors
so that the PE could function properly again.
The patch implements it and abstract that through struct
eeh_ops::set_eeh. It would be help for EEH to support multiple
platforms in future.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The platform specific EEH operations have been abstracted by
struct eeh_ops. The individual platroms, including pSeries, needs
doing necessary initialization before the platform dependent EEH
operations work properly.
The patch is addressing that and do necessary platform initialization
for pSeries platform. More specificly, it will figure out the tokens
of EEH related RTAS calls.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
EEH has been implemented on RTAS-compliant pSeries platform.
That's to say, the EEH operations will be implemented through RTAS
calls eventually. The situation limited feasible extension on EEH.
In order to support EEH on multiple platforms like pseries and powernv
simutaneously. We have to split the platform dependent EEH options
up out of current implementation.
The patch addresses supporting EEH on multiple platforms. The pseries
platform dependent EEH operations will be abstracted by struct eeh_ops.
EEH core components will be built based on the registered EEH operations.
With the mechanism, what the individual platform needs to do is implement
platform dependent EEH operations.
For now, the pseries platform is covered under the mechanism. That means
we have to think about other platforms to support EEH, like powernv.
Besides, we only have framework for the mechanism and we have to implement
it for pseries platform later.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>