IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes: 86039bd3b4 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only references outside of the #ifdef have been removed, so now we
get a warning in non-SMP configurations:
mm/kmemleak.c:1404:13: error: unused function 'scan_large_block' [-Werror,-Wunused-function]
Add a new #ifdef around it.
Link: http://lkml.kernel.org/r/20190416123148.3502045-1-arnd@arndb.de
Fixes: 298a32b132 ("kmemleak: powerpc: skip scanning holes in the .bss section")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed. But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only. The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux. This behavioral
difference is unexpected and undesirable.
When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.
But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes: 2a2e48854d ("mm: vmscan: fix IO/refault regression in cache workingset transition")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
has_unmovable_pages() is used by allocating CMA and gigantic pages as
well as the memory hotplug. The later doesn't know how to offline CMA
pool properly now, but if an unused (free) CMA page is encountered, then
has_unmovable_pages() happily considers it as a free memory and
propagates this up the call chain. Memory offlining code then frees the
page without a proper CMA tear down which leads to an accounting issues.
Moreover if the same memory range is onlined again then the memory never
gets back to the CMA pool.
State after memory offline:
# grep cma /proc/vmstat
nr_free_cma 205824
# cat /sys/kernel/debug/cma/cma-kvm_cma/count
209920
Also, kmemleak still think those memory address are reserved below but
have already been used by the buddy allocator after onlining. This
patch fixes the situation by treating CMA pageblocks as unmovable except
when has_unmovable_pages() is called as part of CMA allocation.
Offlined Pages 4096
kmemleak: Cannot insert 0xc000201f7d040008 into the object search tree (overlaps existing)
Call Trace:
dump_stack+0xb0/0xf4 (unreliable)
create_object+0x344/0x380
__kmalloc_node+0x3ec/0x860
kvmalloc_node+0x58/0x110
seq_read+0x41c/0x620
__vfs_read+0x3c/0x70
vfs_read+0xbc/0x1a0
ksys_read+0x7c/0x140
system_call+0x5c/0x70
kmemleak: Kernel memory leak detector disabled
kmemleak: Object 0xc000201cc8000000 (size 13757317120):
kmemleak: comm "swapper/0", pid 0, jiffies 4294937297
kmemleak: min_count = -1
kmemleak: count = 0
kmemleak: flags = 0x5
kmemleak: checksum = 0
kmemleak: backtrace:
cma_declare_contiguous+0x2a4/0x3b0
kvm_cma_reserve+0x11c/0x134
setup_arch+0x300/0x3f8
start_kernel+0x9c/0x6e8
start_here_common+0x1c/0x4b0
kmemleak: Automatic memory scanning thread ended
[cai@lca.pw: use is_migrate_cma_page() and update commit log]
Link: http://lkml.kernel.org/r/20190416170510.20048-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190413002623.8967-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 58bc4c34d2 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
depends on skipping vmstat entries with empty name introduced in
7aaf772723 ("mm: don't show nr_indirectly_reclaimable in
/proc/vmstat") but reverted in b29940c1ab ("mm: rename and change
semantics of nr_indirectly_reclaimable_bytes").
So skipping no longer works and /proc/vmstat has misformatted lines " 0".
This patch simply shows debug counters "nr_tlb_remote_*" for UP.
Link: http://lkml.kernel.org/r/155481488468.467.4295519102880913454.stgit@buzz
Fixes: 58bc4c34d2 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Cc: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The igrab() in shmem_unuse() looks good, but we forgot that it gives no
protection against concurrent unmounting: a point made by Konstantin
Khlebnikov eight years ago, and then fixed in 2.6.39 by 778dd893ae
("tmpfs: fix race between umount and swapoff"). The current 5.1-rc
swapoff is liable to hit "VFS: Busy inodes after unmount of tmpfs.
Self-destruct in 5 seconds. Have a nice day..." followed by GPF.
Once again, give up on using igrab(); but don't go back to making such
heavy-handed use of shmem_swaplist_mutex as last time: that would spoil
the new design, and I expect could deadlock inside shmem_swapin_page().
Instead, shmem_unuse() just raise a "stop_eviction" count in the shmem-
specific inode, and shmem_evict_inode() wait for that to go down to 0.
Call it "stop_eviction" rather than "swapoff_busy" because it can be put
to use for others later (huge tmpfs patches expect to use it).
That simplifies shmem_unuse(), protecting it from both unlink and
unmount; and in practice lets it locate all the swap in its first try.
But do not rely on that: there's still a theoretical case, when
shmem_writepage() might have been preempted after its get_swap_page(),
before making the swap entry visible to swapoff.
[hughd@google.com: remove incorrect list_del()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904091133570.1898@eggly.anvils
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081259400.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old try_to_unuse() implementation was driven by find_next_to_unuse(),
which terminated as soon as all the swap had been freed.
Add inuse_pages checks now (alongside signal_pending()) to stop scanning
mms and swap_map once finished.
The same ought to be done in shmem_unuse() too, but never was before,
and needs a different interface: so leave it as is for now.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081258200.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SWAP_UNUSE_MAX_TRIES 3 appeared to work well in earlier testing, but
further testing has proved it to be a source of unnecessary swapoff
EBUSY failures (which can then be followed by unmount EBUSY failures).
When mmget_not_zero() or shmem's igrab() fails, there is an mm exiting
or inode being evicted, freeing up swap independent of try_to_unuse().
Those typically completed much sooner than the old quadratic swapoff,
but now it's more common that swapoff may need to wait for them.
It's possible to move those cases from init_mm.mmlist and shmem_swaplist
to separate "exiting" swaplists, and try_to_unuse() then wait for those
lists to be emptied; but we've not bothered with that in the past, and
don't want to risk missing some other forgotten case. So just revert to
cycling around until the swap is gone, without any retries limit.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081256170.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapfile "type" was passed all the way down to shmem_unuse_inode(), but
then forgotten from shmem_find_swap_entries(): with the result that
removing one swapfile would try to free up all the swap from shmem - no
problem when only one swapfile anyway, but counter-productive when more,
causing swapoff to be unnecessarily OOM-killed when it should succeed.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081254470.1523@eggly.anvils
Fixes: b56a2d8af9 ("mm: rid swapoff of quadratic complexity")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: "Alex Xu (Hello71)" <alex_y_xu@yahoo.ca>
Cc: Vineeth Pillai <vpillai@digitalocean.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 51dedad06b ("kasan, slab: make freelist stored without tags")
calls kasan_reset_tag() for off-slab slab management object leading to
freelist being stored non-tagged.
However, cache_grow_begin() calls alloc_slabmgmt() which calls
kmem_cache_alloc_node() assigns a tag for the address and stores it in
the shadow address. As the result, it causes endless errors below
during boot due to drain_freelist() -> slab_destroy() ->
kasan_slab_free() which compares already untagged freelist against the
stored tag in the shadow address.
Since off-slab slab management object freelist is such a special case,
just store it tagged. Non-off-slab management object freelist is still
stored untagged which has not been assigned a tag and should not cause
any other troubles with this inconsistency.
BUG: KASAN: double-free or invalid-free in slab_destroy+0x84/0x88
Pointer tag: [ff], memory tag: [99]
CPU: 0 PID: 1376 Comm: kworker/0:4 Tainted: G W 5.1.0-rc3+ #8
Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.0.6 07/10/2018
Workqueue: cgroup_destroy css_killed_work_fn
Call trace:
print_address_description+0x74/0x2a4
kasan_report_invalid_free+0x80/0xc0
__kasan_slab_free+0x204/0x208
kasan_slab_free+0xc/0x18
kmem_cache_free+0xe4/0x254
slab_destroy+0x84/0x88
drain_freelist+0xd0/0x104
__kmem_cache_shrink+0x1ac/0x224
__kmemcg_cache_deactivate+0x1c/0x28
memcg_deactivate_kmem_caches+0xa0/0xe8
memcg_offline_kmem+0x8c/0x3d4
mem_cgroup_css_offline+0x24c/0x290
css_killed_work_fn+0x154/0x618
process_one_work+0x9cc/0x183c
worker_thread+0x9b0/0xe38
kthread+0x374/0x390
ret_from_fork+0x10/0x18
Allocated by task 1625:
__kasan_kmalloc+0x168/0x240
kasan_slab_alloc+0x18/0x20
kmem_cache_alloc_node+0x1f8/0x3a0
cache_grow_begin+0x4fc/0xa24
cache_alloc_refill+0x2f8/0x3e8
kmem_cache_alloc+0x1bc/0x3bc
sock_alloc_inode+0x58/0x334
alloc_inode+0xb8/0x164
new_inode_pseudo+0x20/0xec
sock_alloc+0x74/0x284
__sock_create+0xb0/0x58c
sock_create+0x98/0xb8
__sys_socket+0x60/0x138
__arm64_sys_socket+0xa4/0x110
el0_svc_handler+0x2c0/0x47c
el0_svc+0x8/0xc
Freed by task 1625:
__kasan_slab_free+0x114/0x208
kasan_slab_free+0xc/0x18
kfree+0x1a8/0x1e0
single_release+0x7c/0x9c
close_pdeo+0x13c/0x43c
proc_reg_release+0xec/0x108
__fput+0x2f8/0x784
____fput+0x1c/0x28
task_work_run+0xc0/0x1b0
do_notify_resume+0xb44/0x1278
work_pending+0x8/0x10
The buggy address belongs to the object at ffff809681b89e00
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 0 bytes inside of
128-byte region [ffff809681b89e00, ffff809681b89e80)
The buggy address belongs to the page:
page:ffff7fe025a06e00 count:1 mapcount:0 mapping:01ff80082000fb00
index:0xffff809681b8fe04
flags: 0x17ffffffc000200(slab)
raw: 017ffffffc000200 ffff7fe025a06d08 ffff7fe022ef7b88 01ff80082000fb00
raw: ffff809681b8fe04 ffff809681b80000 00000001000000e0 0000000000000000
page dumped because: kasan: bad access detected
page allocated via order 0, migratetype Unmovable, gfp_mask
0x2420c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_COMP|__GFP_THISNODE)
prep_new_page+0x4e0/0x5e0
get_page_from_freelist+0x4ce8/0x50d4
__alloc_pages_nodemask+0x738/0x38b8
cache_grow_begin+0xd8/0xa24
____cache_alloc_node+0x14c/0x268
__kmalloc+0x1c8/0x3fc
ftrace_free_mem+0x408/0x1284
ftrace_free_init_mem+0x20/0x28
kernel_init+0x24/0x548
ret_from_fork+0x10/0x18
Memory state around the buggy address:
ffff809681b89c00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
ffff809681b89d00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
>ffff809681b89e00: 99 99 99 99 99 99 99 99 fe fe fe fe fe fe fe fe
^
ffff809681b89f00: 43 43 43 43 43 fe fe fe fe fe fe fe fe fe fe fe
ffff809681b8a000: 6d fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
Link: http://lkml.kernel.org/r/20190403022858.97584-1-cai@lca.pw
Fixes: 51dedad06b ("kasan, slab: make freelist stored without tags")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
store_stackinfo() does not seem used in actual SLAB debugging.
Potentially, it could be added to check_poison_obj() to provide more
information but this seems like an overkill due to the declining
popularity of SLAB, so just remove it instead.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: rientjes@google.com
Cc: sean.j.christopherson@intel.com
Link: https://lkml.kernel.org/r/20190416142258.18694-1-cai@lca.pw
Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
No architecture terminates the stack trace with ULONG_MAX anymore. Remove
the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-mm@kvack.org
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20190410103644.661974663@linutronix.de
No architecture terminates the stack trace with ULONG_MAX anymore. Remove
the cruft.
While at it remove the pointless loop of clearing the stack array
completely. It's sufficient to clear the last entry as the consumers break
out on the first zeroed entry anyway.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Link: https://lkml.kernel.org/r/20190410103644.574058244@linutronix.de
If the page refcount wraps around past zero, it will be freed while
there are still four billion references to it. One of the possible
avenues for an attacker to try to make this happen is by doing direct IO
on a page multiple times. This patch makes get_user_pages() refuse to
take a new page reference if there are already more than two billion
references to the page.
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for arm64 supporting ftrace built on other compiler
options, let's have Makefiles remove the $(CC_FLAGS_FTRACE) flags,
whatever these may be, rather than assuming '-pg'.
There should be no functional change as a result of this patch.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The commit 510ded33e0 ("slab: implement slab_root_caches list")
changes the name of the list node within "struct kmem_cache" from "list"
to "root_caches_node", but leaks_show() still use the "list" which
causes a crash when reading /proc/slab_allocators.
You need to have CONFIG_SLAB=y and CONFIG_MEMCG=y to see the problem,
because without MEMCG all slab caches are root caches, and the "list"
node happens to be the right one.
Fixes: 510ded33e0 ("slab: implement slab_root_caches list")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Tobin C. Harding <tobin@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kerneldoc misdescribes strndup_user()'s return value.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Timur Tabi <timur@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With some architectures like ppc64, set_pmd_at() cannot cope with a
situation where there is already some (different) valid entry present.
Use pmdp_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PMD entries.
This is similar to commit cae85cb8ad ("mm/memory.c: fix modifying of
page protection by insert_pfn()")
We also do similar update w.r.t insert_pfn_pud eventhough ppc64 don't
support pud pfn entries now.
Without this patch we also see the below message in kernel log "BUG:
non-zero pgtables_bytes on freeing mm:"
Link: http://lkml.kernel.org/r/20190402115125.18803-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Chandan Rajendra <chandan@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2d4f567103 ("KVM: PPC: Introduce kvm_tmp framework") adds
kvm_tmp[] into the .bss section and then free the rest of unused spaces
back to the page allocator.
kernel_init
kvm_guest_init
kvm_free_tmp
free_reserved_area
free_unref_page
free_unref_page_prepare
With DEBUG_PAGEALLOC=y, it will unmap those pages from kernel. As the
result, kmemleak scan will trigger a panic when it scans the .bss
section with unmapped pages.
This patch creates dedicated kmemleak objects for the .data, .bss and
potentially .data..ro_after_init sections to allow partial freeing via
the kmemleak_free_part() in the powerpc kvm_free_tmp() function.
Link: http://lkml.kernel.org/r/20190321171917.62049-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Qian Cai <cai@lca.pw>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Qian Cai <cai@lca.pw>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mikhail Gavrilo reported the following bug being triggered in a Fedora
kernel based on 5.1-rc1 but it is relevant to a vanilla kernel.
kernel: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
kernel: ------------[ cut here ]------------
kernel: kernel BUG at include/linux/mm.h:1021!
kernel: invalid opcode: 0000 [#1] SMP NOPTI
kernel: CPU: 6 PID: 116 Comm: kswapd0 Tainted: G C 5.1.0-0.rc1.git1.3.fc31.x86_64 #1
kernel: Hardware name: System manufacturer System Product Name/ROG STRIX X470-I GAMING, BIOS 1201 12/07/2018
kernel: RIP: 0010:__reset_isolation_pfn+0x244/0x2b0
kernel: Code: fe 06 e8 0f 8e fc ff 44 0f b6 4c 24 04 48 85 c0 0f 85 dc fe ff ff e9 68 fe ff ff 48 c7 c6 58 b7 2e 8c 4c 89 ff e8 0c 75 00 00 <0f> 0b 48 c7 c6 58 b7 2e 8c e8 fe 74 00 00 0f 0b 48 89 fa 41 b8 01
kernel: RSP: 0018:ffff9e2d03f0fde8 EFLAGS: 00010246
kernel: RAX: 0000000000000034 RBX: 000000000081f380 RCX: ffff8cffbddd6c20
kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffff8cffbddd6c20
kernel: RBP: 0000000000000001 R08: 0000009898b94613 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000100000
kernel: R13: 0000000000100000 R14: 0000000000000001 R15: ffffca7de07ce000
kernel: FS: 0000000000000000(0000) GS:ffff8cffbdc00000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00007fc1670e9000 CR3: 00000007f5276000 CR4: 00000000003406e0
kernel: Call Trace:
kernel: __reset_isolation_suitable+0x62/0x120
kernel: reset_isolation_suitable+0x3b/0x40
kernel: kswapd+0x147/0x540
kernel: ? finish_wait+0x90/0x90
kernel: kthread+0x108/0x140
kernel: ? balance_pgdat+0x560/0x560
kernel: ? kthread_park+0x90/0x90
kernel: ret_from_fork+0x27/0x50
He bisected it down to e332f741a8 ("mm, compaction: be selective about
what pageblocks to clear skip hints"). The problem is that the patch in
question was sloppy with respect to the handling of zone boundaries. In
some instances, it was possible for PFNs outside of a zone to be examined
and if those were not properly initialised or poisoned then it would
trigger the VM_BUG_ON. This patch corrects the zone boundary issues when
resetting pageblock skip hints and Mikhail reported that the bug did not
trigger after 30 hours of testing.
Link: http://lkml.kernel.org/r/20190327085424.GL3189@techsingularity.net
Fixes: e332f741a8 ("mm, compaction: be selective about what pageblocks to clear skip hints")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
KASAN inserts extra code for every LOAD/STORE emitted by te compiler.
Much of this code is simple and safe to run with AC=1, however the
kasan_report() function, called on error, is most certainly not safe
to call with AC=1.
Therefore wrap kasan_report() in user_access_{save,restore}; which for
x86 SMAP, saves/restores EFLAGS and clears AC before calling the real
function.
Also ensure all the functions are without __fentry__ hook. The
function tracer is also not safe.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are no external users of this API (nor should there be); remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As the comment notes; it is a potentially dangerous operation. Just
use tlb_flush_mmu(), that will skip the (double) TLB invalidate if
it really isn't needed anyway.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since all architectures are now using it, it is redundant.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all architectures are converted to the generic code, remove
the arch hooks.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the Kconfig option HAVE_MMU_GATHER_NO_GATHER to the generic
mmu_gather code. If the option is set the mmu_gather will not
track individual pages for delayed page free anymore. A platform
that enables the option needs to provide its own implementation
of the __tlb_remove_page_size() function to free pages.
No change in behavior intended.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: linux@armlinux.org.uk
Cc: npiggin@gmail.com
Link: http://lkml.kernel.org/r/20180918125151.31744-2-schwidefsky@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make issuing a TLB invalidate for page-table pages the normal case.
The reason is twofold:
- too many invalidates is safer than too few,
- most architectures use the linux page-tables natively
and would thus require this.
Make it an opt-out, instead of an opt-in.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the mmu_gather::page_size things into the generic code instead of
PowerPC specific bits.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Our MIPS 1004Kc SoCs were seeing random userspace crashes with SIGILL
and SIGSEGV that could not be traced back to a userspace code bug. They
had all the magic signs of an I/D cache coherency issue.
Now recently we noticed that the /proc/sys/vm/compact_memory interface
was quite efficient at provoking this class of userspace crashes.
Studying the code in mm/migrate.c there is a distinction made between
migrating a page that is mapped at the instant of migration and one that
is not mapped. Our problem turned out to be the non-mapped pages.
For the non-mapped page the code performs a copy of the page content and
all relevant meta-data of the page without doing the required D-cache
maintenance. This leaves dirty data in the D-cache of the CPU and on
the 1004K cores this data is not visible to the I-cache. A subsequent
page-fault that triggers a mapping of the page will happily serve the
process with potentially stale code.
What about ARM then, this bug should have seen greater exposure? Well
ARM became immune to this flaw back in 2010, see commit c01778001a
("ARM: 6379/1: Assume new page cache pages have dirty D-cache").
My proposed fix moves the D-cache maintenance inside move_to_new_page to
make it common for both cases.
Link: http://lkml.kernel.org/r/20190315083502.11849-1-larper@axis.com
Fixes: 97ee052461 ("flush cache before installing new page at migraton")
Signed-off-by: Lars Persson <larper@axis.com>
Reviewed-by: Paul Burton <paul.burton@mips.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to has_unmovable_pages() taking an incorrect irqsave flag instead of
the isolation flag in set_migratetype_isolate(), there are issues with
HWPOSION and error reporting where dump_page() is not called when there
is an unmovable page.
Link: http://lkml.kernel.org/r/20190320204941.53731-1-cai@lca.pw
Fixes: d381c54760 ("mm: only report isolation failures when offlining memory")
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org> [5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While debugging something, I added a dump_page() into do_swap_page(),
and I got the splat from below. The issue happens when dereferencing
mapping->host in __dump_page():
...
else if (mapping) {
pr_warn("%ps ", mapping->a_ops);
if (mapping->host->i_dentry.first) {
struct dentry *dentry;
dentry = container_of(mapping->host->i_dentry.first, struct dentry, d_u.d_alias);
pr_warn("name:\"%pd\" ", dentry);
}
}
...
Swap address space does not contain an inode information, and so
mapping->host equals NULL.
Although the dump_page() call was added artificially into
do_swap_page(), I am not sure if we can hit this from any other path, so
it looks worth fixing it. We can easily do that by checking
mapping->host first.
Link: http://lkml.kernel.org/r/20190318072931.29094-1-osalvador@suse.de
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy, mbind() should return -EIO. But
commit 6f4576e368 ("mempolicy: apply page table walker on
queue_pages_range()") broke the rule.
And commit c863379849 ("mm: mempolicy: mbind and migrate_pages support
thp migration") didn't return the correct value for THP mbind() too.
If MPOL_MF_STRICT is set, ignore vma_migratable() to make sure it
reaches queue_pages_to_pte_range() or queue_pages_pmd() to check if an
existing page was already on a node that does not follow the policy.
And, non-migratable vma may be used, return -EIO too if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified.
Tested with https://github.com/metan-ucw/ltp/blob/master/testcases/kernel/syscalls/mbind/mbind02.c
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/1553020556-38583-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 6f4576e368 ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.
This is a followup to the discussion in [1], [2].
IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.
For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).
For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
1. This series, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2 page
tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable to reuse
freed fragments until the whole page is freed. [3]
This series is the most memory-efficient approach.
stable@ note:
We confirmed that this is a regression, and IOMMU errors happen on 4.19
and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
platforms (and maybe others?).
[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/
This patch (of 3):
IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems. On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.
For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
1. This patch, adding support for GFP_DMA32 slab caches.
2. genalloc, which requires pre-allocating the maximum number of L2
page tables (4096, so 4MB of memory).
3. page_frag, which is not very memory-efficient as it is unable
to reuse freed fragments until the whole page is freed.
This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.
We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.
This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).
Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.
However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing. Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().
Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE. Those pages
will be marked as MIGRATE_MOVABLE again once onlining. The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.
Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there. Fix an incorrect comment along the way.
[cai@lca.pw: v4]
Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atomic64_read() on ppc64le returns "long int", so fix the same way as
commit d549f545e6 ("drm/virtio: use %llu format string form
atomic64_t") by adding a cast to u64, which makes it work on all arches.
In file included from ./include/linux/printk.h:7,
from ./include/linux/kernel.h:15,
from mm/debug.c:9:
mm/debug.c: In function 'dump_mm':
./include/linux/kern_levels.h:5:18: warning: format '%llx' expects argument of type 'long long unsigned int', but argument 19 has type 'long int' [-Wformat=]
#define KERN_SOH "A" /* ASCII Start Of Header */
^~~~~~
./include/linux/kern_levels.h:8:20: note: in expansion of macro
'KERN_SOH'
#define KERN_EMERG KERN_SOH "0" /* system is unusable */
^~~~~~~~
./include/linux/printk.h:297:9: note: in expansion of macro 'KERN_EMERG'
printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__)
^~~~~~~~~~
mm/debug.c:133:2: note: in expansion of macro 'pr_emerg'
pr_emerg("mm %px mmap %px seqnum %llu task_size %lu"
^~~~~~~~
mm/debug.c:140:17: note: format string is defined here
"pinned_vm %llx data_vm %lx exec_vm %lx stack_vm %lx"
~~~^
%lx
Link: http://lkml.kernel.org/r/20190310183051.87303-1-cai@lca.pw
Fixes: 70f8a3ca68 ("mm: make mm->pinned_vm an atomic64 counter")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aneesh has reported that PPC triggers the following warning when
excercising DAX code:
IP set_pte_at+0x3c/0x190
LR insert_pfn+0x208/0x280
Call Trace:
insert_pfn+0x68/0x280
dax_iomap_pte_fault.isra.7+0x734/0xa40
__xfs_filemap_fault+0x280/0x2d0
do_wp_page+0x48c/0xa40
__handle_mm_fault+0x8d0/0x1fd0
handle_mm_fault+0x140/0x250
__do_page_fault+0x300/0xd60
handle_page_fault+0x18
Now that is WARN_ON in set_pte_at which is
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
The problem is that on some architectures set_pte_at() cannot cope with
a situation where there is already some (different) valid entry present.
Use ptep_set_access_flags() instead to modify the pfn which is built to
deal with modifying existing PTE.
Link: http://lkml.kernel.org/r/20190311084537.16029-1-jack@suse.cz
Fixes: b2770da642 "mm: add vm_insert_mixed_mkwrite()"
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Chandan Rajendra <chandan@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_tag() compiles away when CONFIG_KASAN_SW_TAGS=n, so make
arch_kasan_set_tag() a static inline function to fix warnings below.
mm/kasan/common.c: In function '__kasan_kmalloc':
mm/kasan/common.c:475:5: warning: variable 'tag' set but not used [-Wunused-but-set-variable]
u8 tag;
^~~
Link: http://lkml.kernel.org/r/20190307185244.54648-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit ad67b74d24 ("printk: hash addresses printed with %p"),
at boot "____ptrval____" is printed instead of actual addresses:
percpu: Embedded 38 pages/cpu @(____ptrval____) s124376 r0 d31272 u524288
Instead of changing the print to "%px", and leaking kernel addresses,
just remove the print completely, cfr. e.g. commit 071929dbdd
("arm64: Stop printing the virtual memory layout").
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
* Replace the /sys/class/dax device model with /sys/bus/dax, and include
a compat driver so distributions can opt-in to the new ABI.
* Allow for an alternative driver for the device-dax address-range
* Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
* Arrange for the device-dax target-node to be onlined so that the newly
added memory range can be uniquely referenced by numa apis.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P
Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v
vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL
MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ
bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ
E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6
vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf
S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz
gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU
EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x
XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe
2UrXGcIfXxyJ8V9v8v4q
=hfa3
-----END PGP SIGNATURE-----
Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull device-dax updates from Dan Williams:
"New device-dax infrastructure to allow persistent memory and other
"reserved" / performance differentiated memories, to be assigned to
the core-mm as "System RAM".
Some users want to use persistent memory as additional volatile
memory. They are willing to cope with potential performance
differences, for example between DRAM and 3D Xpoint, and want to use
typical Linux memory management apis rather than a userspace memory
allocator layered over an mmap() of a dax file. The administration
model is to decide how much Persistent Memory (pmem) to use as System
RAM, create a device-dax-mode namespace of that size, and then assign
it to the core-mm. The rationale for device-dax is that it is a
generic memory-mapping driver that can be layered over any "special
purpose" memory, not just pmem. On subsequent boots udev rules can be
used to restore the memory assignment.
One implication of using pmem as RAM is that mlock() no longer keeps
data off persistent media. For this reason it is recommended to enable
NVDIMM Security (previously merged for 5.0) to encrypt pmem contents
at rest. We considered making this recommendation an actively enforced
requirement, but in the end decided to leave it as a distribution /
administrator policy to allow for emulation and test environments that
lack security capable NVDIMMs.
Summary:
- Replace the /sys/class/dax device model with /sys/bus/dax, and
include a compat driver so distributions can opt-in to the new ABI.
- Allow for an alternative driver for the device-dax address-range
- Introduce the 'kmem' driver to hotplug / assign a device-dax
address-range to the core-mm.
- Arrange for the device-dax target-node to be onlined so that the
newly added memory range can be uniquely referenced by numa apis"
NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because
we currently have special - and very annoying rules in the kernel about
accessing PMEM only with the "MC safe" accessors, because machine checks
inside the regular repeat string copy functions can be fatal in some
(not described) circumstances.
And apparently the PMEM modules can cause that a lot more than regular
RAM. The argument is that this happens because PMEM doesn't necessarily
get scrubbed at boot like RAM does, but that is planned to be added for
the user space tooling.
Quoting Dan from another email:
"The exposure can be reduced in the volatile-RAM case by scanning for
and clearing errors before it is onlined as RAM. The userspace tooling
for that can be in place before v5.1-final. There's also runtime
notifications of errors via acpi_nfit_uc_error_notify() from
background scrubbers on the DIMM devices. With that mechanism the
kernel could proactively clear newly discovered poison in the volatile
case, but that would be additional development more suitable for v5.2.
I understand the concern, and the need to highlight this issue by
tapping the brakes on feature development, but I don't see PMEM as RAM
making the situation worse when the exposure is also there via DAX in
the PMEM case. Volatile-RAM is arguably a safer use case since it's
possible to repair pages where the persistent case needs active
application coordination"
* tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
device-dax: "Hotplug" persistent memory for use like normal RAM
mm/resource: Let walk_system_ram_range() search child resources
mm/memory-hotplug: Allow memory resources to be children
mm/resource: Move HMM pr_debug() deeper into resource code
mm/resource: Return real error codes from walk failures
device-dax: Add a 'modalias' attribute to DAX 'bus' devices
device-dax: Add a 'target_node' attribute
device-dax: Auto-bind device after successful new_id
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
device-dax: Add /sys/class/dax backwards compatibility
device-dax: Add support for a dax override driver
device-dax: Move resource pinning+mapping into the common driver
device-dax: Introduce bus + driver model
device-dax: Start defining a dax bus model
device-dax: Remove multi-resource infrastructure
device-dax: Kill dax_region base
device-dax: Kill dax_region ida
I thought Josef Bacik's patch to drop the mmap_sem was buggy, because
when looking at the error cases, there was one case where we returned
VM_FAULT_RETRY without actually dropping the mmap_sem.
Josef had to explain to me (using small words) that yes, that's actually
what we're supposed to do, and his patch was correct. Which not only
convinced me he knew what he was doing and I should stop arguing with
him, but also that I should add a comment to the case I was confused
about.
Patiently-pointed-out-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we only drop the mmap_sem if there is contention on the page
lock. The idea is that we issue readahead and then go to lock the page
while it is under IO and we want to not hold the mmap_sem during the IO.
The problem with this is the assumption that the readahead does anything.
In the case that the box is under extreme memory or IO pressure we may end
up not reading anything at all for readahead, which means we will end up
reading in the page under the mmap_sem.
Even if the readahead does something, it could get throttled because of io
pressure on the system and the process is in a lower priority cgroup.
Holding the mmap_sem while doing IO is problematic because it can cause
system-wide priority inversions. Consider some large company that does a
lot of web traffic. This large company has load balancing logic in it's
core web server, cause some engineer thought this was a brilliant plan.
This load balancing logic gets statistics from /proc about the system,
which trip over processes mmap_sem for various reasons. Now the web
server application is in a protected cgroup, but these other processes may
not be, and if they are being throttled while their mmap_sem is held we'll
stall, and cause this nice death spiral.
Instead rework filemap fault path to drop the mmap sem at any point that
we may do IO or block for an extended period of time. This includes while
issuing readahead, locking the page, or needing to call ->readpage because
readahead did not occur. Then once we have a fully uptodate page we can
return with VM_FAULT_RETRY and come back again to find our nicely in-cache
page that was gotten outside of the mmap_sem.
This patch also adds a new helper for locking the page with the mmap_sem
dropped. This doesn't make sense currently as generally speaking if the
page is already locked it'll have been read in (unless there was an error)
before it was unlocked. However a forthcoming patchset will change this
with the ability to abort read-ahead bio's if necessary, making it more
likely that we could contend for a page lock and still have a not uptodate
page. This allows us to deal with this case by grabbing the lock and
issuing the IO without the mmap_sem held, and then returning
VM_FAULT_RETRY to come back around.
[josef@toxicpanda.com: v6]
Link: http://lkml.kernel.org/r/20181212152757.10017-1-josef@toxicpanda.com
[kirill@shutemov.name: fix race in filemap_fault()]
Link: http://lkml.kernel.org/r/20181228235106.okk3oastsnpxusxs@kshutemo-mobl1
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181211173801.29535-4-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: syzbot+b437b5a429d680cf2217@syzkaller.appspotmail.com
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "drop the mmap_sem when doing IO in the fault path", v6.
Now that we have proper isolation in place with cgroups2 we have started
going through and fixing the various priority inversions. Most are all
gone now, but this one is sort of weird since it's not necessarily a
priority inversion that happens within the kernel, but rather because of
something userspace does.
We have giant applications that we want to protect, and parts of these
giant applications do things like watch the system state to determine how
healthy the box is for load balancing and such. This involves running
'ps' or other such utilities. These utilities will often walk
/proc/<pid>/whatever, and these files can sometimes need to
down_read(&task->mmap_sem). Not usually a big deal, but we noticed when
we are stress testing that sometimes our protected application has latency
spikes trying to get the mmap_sem for tasks that are in lower priority
cgroups.
This is because any down_write() on a semaphore essentially turns it into
a mutex, so even if we currently have it held for reading, any new readers
will not be allowed on to keep from starving the writer. This is fine,
except a lower priority task could be stuck doing IO because it has been
throttled to the point that its IO is taking much longer than normal. But
because a higher priority group depends on this completing it is now stuck
behind lower priority work.
In order to avoid this particular priority inversion we want to use the
existing retry mechanism to stop from holding the mmap_sem at all if we
are going to do IO. This already exists in the read case sort of, but
needed to be extended for more than just grabbing the page lock. With
io.latency we throttle at submit_bio() time, so the readahead stuff can
block and even page_cache_read can block, so all these paths need to have
the mmap_sem dropped.
The other big thing is ->page_mkwrite. btrfs is particularly shitty here
because we have to reserve space for the dirty page, which can be a very
expensive operation. We use the same retry method as the read path, and
simply cache the page and verify the page is still setup properly the next
pass through ->page_mkwrite().
I've tested these patches with xfstests and there are no regressions.
This patch (of 3):
If we do not have a page at filemap_fault time we'll do this weird forced
page_cache_read thing to populate the page, and then drop it again and
loop around and find it. This makes for 2 ways we can read a page in
filemap_fault, and it's not really needed. Instead add a FGP_FOR_MMAP
flag so that pagecache_get_page() will return a unlocked page that's in
pagecache. Then use the normal page locking and readpage logic already in
filemap_fault. This simplifies the no page in page cache case
significantly.
[akpm@linux-foundation.org: fix comment text]
[josef@toxicpanda.com: don't unlock null page in FGP_FOR_MMAP case]
Link: http://lkml.kernel.org/r/20190312201742.22935-1-josef@toxicpanda.com
Link: http://lkml.kernel.org/r/20181211173801.29535-2-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All of the arguments to these functions come from the vmf.
Cut down on the amount of arguments passed by simply passing in the vmf
to these two helpers.
Link: http://lkml.kernel.org/r/20181211173801.29535-3-josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just like blocks, chunks now maintain a scan_hint. This can be used to
skip some scanning by promoting the scan_hint to be the contig_hint.
The chunk's scan_hint is primarily updated on the backside and relies on
full scanning when a block becomes free or the free region spans across
blocks.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
As mentioned in the last patch, a chunk's hints are no different than a
block just responsible for more bits. This converts chunk level hints to
use a pcpu_block_md to maintain them. This lets us reuse the same hint
helper functions as a block. The left_free and right_free are unused by
the chunk's pcpu_block_md.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
In reality, a chunk is just a block covering a larger number of bits.
The hints themselves are one in the same. Rather than maintaining the
hints separately, first introduce nr_bits to genericize
pcpu_block_update() to correctly maintain block->right_free. The next
patch will convert chunk hints to be managed as a pcpu_block_md.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Blocks now remember the latest scan_hint. This can be used on the
allocation path as when a contig_hint is broken, we can promote the
scan_hint to the contig_hint and scan forward from there. This works
because pcpu_block_refresh_hint() is only called on the allocation path
while block free regions are updated manually in
pcpu_block_update_hint_free().
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Percpu allocations attempt to do first fit by scanning forward from the
first_free of a block. However, fragmentation from allocation requests
can cause holes not seen by block hint update functions. To address
this, create a local version of bitmap_find_next_zero_area_off() that
remembers the largest area skipped over. The caveat is that it only sees
regions skipped over due to not fitting, not regions skipped due to
alignment.
Prior to updating the scan_hint, a scan backwards is done to try and
recover free bits skipped due to alignment. While this can cause
scanning to miss earlier possible free areas, smaller allocations will
eventually fill those holes due to first fit.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Fragmentation can cause both blocks and chunks to have an early
first_firee bit available, but only able to satisfy allocations much
later on. This patch introduces a scan_hint to help mitigate some
unnecessary scanning.
The scan_hint remembers the largest area prior to the contig_hint. If
the contig_hint == scan_hint, then scan_hint_start > contig_hint_start.
This is necessary for scan_hint discovery when refreshing a block.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Previously, block size was flexible based on the constraint that the
GCD(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) > 1. However, this carried the
overhead that keeping a floating number of populated free pages required
scanning over the free regions of a chunk.
Setting the block size to be fixed at PAGE_SIZE lets us know when an
empty page becomes used as we will break a full contig_hint of a block.
This means we no longer have to scan the whole chunk upon breaking a
contig_hint which empty page management piggybacked off. A later patch
takes advantage of this to optimize the allocation path by only scanning
forward using the scan_hint introduced later too.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
In certain cases, requestors of percpu memory may want specific
alignments. However, it is possible to end up in situations where the
contig_hint matches, but the alignment does not. This causes excess
scanning of chunks that will fail. To prevent this, if a small
allocation fails (< 32B), the chunk is moved to the empty list. Once an
allocation is freed from that chunk, it is placed back into rotation.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
When a chunk becomes fragmented, it can end up having a large number of
small allocation areas free. The free_bytes sorting of chunks leads to
unnecessary checking of chunks that cannot satisfy the allocation.
Switch to contig_bits sorting to prevent scanning chunks that may not be
able to service the allocation request.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
While block hints were always accurate, it's possible when spanning
across blocks that we miss updating the chunk's contig_hint. Rather than
rely on correctness of the boundaries of hints, do a full overlap
comparison.
A future patch introduces the scan_hint which makes the contig_hint
slightly fuzzy as they can at times be smaller than the actual hint.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
pcpu_find_block_fit() guarantees that a fit is found within
PCPU_BITMAP_BLOCK_BITS. Iteration is used to determine the first fit as
it compares against the block's contig_hint. This can lead to
incorrectly scanning past the end of the bitmap. The behavior was okay
given the check after for bit_off >= end and the correctness of the
hints from pcpu_find_block_fit().
This patch fixes this by bounding the end offset by the number of bits
in a chunk.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
When updating the chunk's contig_hint on the free path of a hint that
does not touch the page boundaries, it was incorrectly using the
starting offset of the free region and the block's contig_hint. This
could lead to incorrect assumptions about fit given a size and better
alignment of the start. Fix this by using (end - start) as this is only
called when updating a hint within a block.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Merge misc updates from Andrew Morton:
- a few misc things
- the rest of MM
- remove flex_arrays, replace with new simple radix-tree implementation
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
Drop flex_arrays
sctp: convert to genradix
proc: commit to genradix
generic radix trees
selinux: convert to kvmalloc
md: convert to kvmalloc
openvswitch: convert to kvmalloc
of: fix kmemleak crash caused by imbalance in early memory reservation
mm: memblock: update comments and kernel-doc
memblock: split checks whether a region should be skipped to a helper function
memblock: remove memblock_{set,clear}_region_flags
memblock: drop memblock_alloc_*_nopanic() variants
memblock: memblock_alloc_try_nid: don't panic
treewide: add checks for the return value of memblock_alloc*()
swiotlb: add checks for the return value of memblock_alloc*()
init/main: add checks for the return value of memblock_alloc*()
mm/percpu: add checks for the return value of memblock_alloc*()
sparc: add checks for the return value of memblock_alloc*()
ia64: add checks for the return value of memblock_alloc*()
arch: don't memset(0) memory returned by memblock_alloc()
...
__next_mem_range() and __next_mem_range_rev() duplicate the code that
checks whether a region should be skipped because of node or flags
incompatibility.
Split this code into a helper function.
Link: http://lkml.kernel.org/r/1549455025-17706-3-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock API provides dedicated helpers to set or clear a flag on a
memory region, e.g. memblock_{mark,clear}_hotplug().
The memblock_{set,clear}_region_flags() functions are used only by the
memblock internal function that adjusts the region flags. Drop these
functions and use open-coded implementation instead.
Link: http://lkml.kernel.org/r/1549455025-17706-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.
Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com> [printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As all the memblock_alloc*() users are now checking the return value and
panic() in case of error, the panic() call can be removed from the core
memblock allocator, namely memblock_alloc_try_nid().
Link: http://lkml.kernel.org/r/1548057848-15136-21-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add panic() calls if memblock_alloc() returns NULL.
The panic() format duplicates the one used by memblock itself and in
order to avoid explosion with long parameters list replace open coded
allocation size calculations with a local variable.
Link: http://lkml.kernel.org/r/1548057848-15136-17-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memblock has several internal functions with overlapping
functionality. They all call memblock_find_in_range_node() to find free
memory and then reserve the allocated range and mark it with kmemleak.
However, there is difference in the allocation constraints and in
fallback strategies.
The allocations returning physical address first attempt to find free
memory on the specified node within mirrored memory regions, then retry
on the same node without the requirement for memory mirroring and
finally fall back to all available memory.
The allocations returning virtual address start with clamping the
allowed range to memblock.current_limit, attempt to allocate from the
specified node from regions with mirroring and with user defined minimal
address. If such allocation fails, next attempt is done with node
restriction lifted. Next, the allocation is retried with minimal
address reset to zero and at last without the requirement for mirrored
regions.
Let's consolidate various fallbacks handling and make them more
consistent for physical and virtual variants. Most of the fallback
handling is moved to memblock_alloc_range_nid() and it now handles node
and mirror fallbacks.
The memblock_alloc_internal() uses memblock_alloc_range_nid() to get a
physical address of the allocated range and converts it to virtual
address.
The fallback for allocation below the specified minimal address remains
in memblock_alloc_internal() because memblock_alloc_range_nid() is used
by CMA with exact requirement for lower bounds.
The memblock_phys_alloc_nid() function is completely dropped as it is not
used anywhere outside memblock and its only usage can be replaced by a
call to memblock_alloc_range_nid().
[rppt@linux.ibm.com: fix parameter order in memblock_phys_alloc_try_nid()]
Link: http://lkml.kernel.org/r/20190203113915.GC8620@rapoport-lnx
Link: http://lkml.kernel.org/r/1548057848-15136-11-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_alloc_base() function tries to allocate a memory up to the
limit specified by its max_addr parameter and panics if the allocation
fails. Replace its usage with memblock_phys_alloc_range() and make the
callers check the return value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-10-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __memblock_alloc_base() function tries to allocate a memory up to
the limit specified by its max_addr parameter. Depending on the value
of this parameter, the __memblock_alloc_base() can is replaced with the
appropriate memblock_phys_alloc*() variant.
Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the memblock_phys_alloc() function an inline wrapper for
memblock_phys_alloc_range() and update the memblock_phys_alloc() callers
to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-8-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memblock_phys_alloc_try_nid() function tries to allocate memory from
the requested node and then falls back to allocation from any node in
the system. The memblock_alloc_base() fallback used by this function
panics if the allocation fails.
Replace the memblock_alloc_base() fallback with the direct call to
memblock_alloc_range_nid() and update the memblock_phys_alloc_try_nid()
callers to check the returned value and panic in case of error.
Link: http://lkml.kernel.org/r/1548057848-15136-7-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename memblock_alloc_range() to memblock_phys_alloc_range() to
emphasize that it returns a physical address.
While on it, remove the 'enum memblock_flags' parameter from this
function as its only user anyway sets it to MEMBLOCK_NONE, which is the
default for the most of memblock allocations.
Link: http://lkml.kernel.org/r/1548057848-15136-6-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert to use vm_fault_t type as return type for fault handler.
kbuild reported warning during testing of
*mm-create-the-new-vm_fault_t-type.patch* available in below link -
https://patchwork.kernel.org/patch/10752741/
kernel/memremap.c:46:34: warning: incorrect type in return expression
(different base types)
kernel/memremap.c:46:34: expected restricted vm_fault_t
kernel/memremap.c:46:34: got int
This patch has fixed the warnings and also hmm_devmem_fault() is
converted to return vm_fault_t to avoid further warnings.
[sfr@canb.auug.org.au: drm/nouveau/dmem: update for struct hmm_devmem_ops member change]
Link: http://lkml.kernel.org/r/20190220174407.753d94e5@canb.auug.org.au
Link: http://lkml.kernel.org/r/20190110145900.GA1317@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
=8Zfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"xen fixes and features:
- remove fallback code for very old Xen hypervisors
- three patches for fixing Xen dom0 boot regressions
- an old patch for Xen PCI passthrough which was never applied for
unknown reasons
- some more minor fixes and cleanup patches"
* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix dom0 boot on huge systems
xen, cpu_hotplug: Prevent an out of bounds access
xen: remove pre-xen3 fallback handlers
xen/ACPI: Switch to bitmap_zalloc()
x86/xen: dont add memory above max allowed allocation
x86: respect memory size limiting via mem= parameter
xen/gntdev: Check and release imported dma-bufs on close
xen/gntdev: Do not destroy context while dma-bufs are in use
xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
xen-scsiback: mark expected switch fall-through
xen: mark expected switch fall-through
This has been a slightly more active cycle than normal with ongoing core
changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5 On-Demand-Paging MR
feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and fixing
the various unregistration race conditions in rxe's unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
* Drivers should not assume umem SGLs are in PAGE_SIZE chunks
* ucontext is accessed via udata not other means
* Start to make the core code responsible for object memory
allocation
* Drivers should convert struct device to struct ib_device
via a helper
* Drivers have more tools to avoid use after unregister problems
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAlyAJYYACgkQOG33FX4g
mxrWwQ/+OyAx4Moru7Aix0C6GWxTJp/wKgw21CS3reZxgLai6x81xNYG/s2wCNjo
IccObVd7mvzyqPdxOeyHBsJBbQDqWvoD6O2duH8cqGMgBRgh3CSdUep2zLvPpSAx
2W1SvWYCLDnCuarboFrCA8c4AN3eCZiqD7z9lHyFQGjy3nTUWzk1uBaOP46uaiMv
w89N8EMdXJ/iY6ONzihvE05NEYbMA8fuvosKLLNdghRiHIjbMQU8SneY23pvyPDd
ZziPu9NcO3Hw9OVbkwtJp47U3KCBgvKHmnixyZKkikjiD+HVoABw2IMwcYwyBZwP
Bic/ddONJUvAxMHpKRnQaW7znAiHARk21nDG28UAI7FWXH/wMXgicMp6LRcNKqKF
vqXdxHTKJb0QUR4xrYI+eA8ihstss7UUpgSgByuANJ0X729xHiJtlEvPb1DPo1Dz
9CB4OHOVRl5O8sA5Jc6PSusZiKEpvWoyWbdmw0IiwDF5pe922VLl5Nv88ta+sJ38
v2Ll5AgYcluk7F3599Uh9D7gwp5hxW2Ph3bNYyg2j3HP4/dKsL9XvIJPXqEthgCr
3KQS9rOZfI/7URieT+H+Mlf+OWZhXsZilJG7No0fYgIVjgJ00h3SF1/299YIq6Qp
9W7ZXBfVSwLYA2AEVSvGFeZPUxgBwHrSZ62wya4uFeB1jyoodPk=
=p12E
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull rdma updates from Jason Gunthorpe:
"This has been a slightly more active cycle than normal with ongoing
core changes and quite a lot of collected driver updates.
- Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe
- A new data transfer mode for HFI1 giving higher performance
- Significant functional and bug fix update to the mlx5
On-Demand-Paging MR feature
- A chip hang reset recovery system for hns
- Change mm->pinned_vm to an atomic64
- Update bnxt_re to support a new 57500 chip
- A sane netlink 'rdma link add' method for creating rxe devices and
fixing the various unregistration race conditions in rxe's
unregister flow
- Allow lookup up objects by an ID over netlink
- Various reworking of the core to driver interface:
- drivers should not assume umem SGLs are in PAGE_SIZE chunks
- ucontext is accessed via udata not other means
- start to make the core code responsible for object memory
allocation
- drivers should convert struct device to struct ib_device via a
helper
- drivers have more tools to avoid use after unregister problems"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits)
net/mlx5: ODP support for XRC transport is not enabled by default in FW
IB/hfi1: Close race condition on user context disable and close
RDMA/umem: Revert broken 'off by one' fix
RDMA/umem: minor bug fix in error handling path
RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp
cxgb4: kfree mhp after the debug print
IB/rdmavt: Fix concurrency panics in QP post_send and modify to error
IB/rdmavt: Fix loopback send with invalidate ordering
IB/iser: Fix dma_nents type definition
IB/mlx5: Set correct write permissions for implicit ODP MR
bnxt_re: Clean cq for kernel consumers only
RDMA/uverbs: Don't do double free of allocated PD
RDMA: Handle ucontext allocations by IB/core
RDMA/core: Fix a WARN() message
bnxt_re: fix the regression due to changes in alloc_pbl
IB/mlx4: Increase the timeout for CM cache
IB/core: Abort page fault handler silently during owning process exit
IB/mlx5: Validate correct PD before prefetch MR
IB/mlx5: Protect against prefetch of invalid MR
RDMA/uverbs: Store PR pointer before it is overwritten
...
Pull x86 mm cleanup from Ingo Molnar:
"A single GUP cleanup"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/gup: Remove the 'write' parameter from gup_fast_permitted()
Pull percpu updates from Dennis Zhou:
"There are 2 minor changes to the percpu allocator this merge window:
- for loop condition that could be out of bounds on multi-socket UP
- cosmetic removal of pcpu_group_offsets[0] in UP code as it is 0
There has been an interest in having better alignment with percpu
allocations. This has caused a performance regression in at least one
reported workload. I have a series out which adds scan hints to the
allocator as well as some other performance oriented changes. I hope
to have this queued for v5.2 soon"
* 'for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: km: no need to consider pcpu_group_offsets[0]
percpu: use nr_groups as check condition
When using mremap() syscall in addition to MREMAP_FIXED flag, mremap()
calls mremap_to() which does the following:
1) unmaps the destination region where we are going to move the map
2) If the new region is going to be smaller, we unmap the last part
of the old region
Then, we will eventually call move_vma() to do the actual move.
move_vma() checks whether we are at least 4 maps below max_map_count
before going further, otherwise it bails out with -ENOMEM. The problem
is that we might have already unmapped the vma's in steps 1) and 2), so
it is not possible for userspace to figure out the state of the vmas
after it gets -ENOMEM, and it gets tricky for userspace to clean up
properly on error path.
While it is true that we can return -ENOMEM for more reasons (e.g: see
may_expand_vm() or move_page_tables()), I think that we can avoid this
scenario if we check early in mremap_to() if the operation has high
chances to succeed map-wise.
Should that not be the case, we can bail out before we even try to unmap
anything, so we make sure the vma's are left untouched in case we are
likely to be short of maps.
The thumb-rule now is to rely on the worst-scenario case we can have.
That is when both vma's (old region and new region) are going to be
split in 3, so we get two more maps to the ones we already hold (one per
each). If current map count + 2 maps still leads us to 4 maps below the
threshold, we are going to pass the check in move_vma().
Of course, this is not free, as it might generate false positives when
it is true that we are tight map-wise, but the unmap operation can
release several vma's leading us to a good state.
Another approach was also investigated [1], but it may be too much
hassle for what it brings.
[1] https://lore.kernel.org/lkml/20190219155320.tkfkwvqk53tfdojt@d104.suse.de/
Link: http://lkml.kernel.org/r/20190226091314.18446-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_present_section_nr() could only return an unsigned number -1, so
just check it specifically where compilers will convert -1 to unsigned
if needed.
mm/sparse.c: In function 'sparse_init_nid':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:478:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:497:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin, pnum) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/sparse.c: In function 'sparse_init':
mm/sparse.c:200:20: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits]
((section_nr >= 0) && \
^~
mm/sparse.c:520:2: note: in expansion of macro
'for_each_present_section_nr'
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~
Link: http://lkml.kernel.org/r/20190228181839.86504-1-cai@lca.pw
Fixes: c4e1be9ec1 ("mm, sparsemem: break out of loops early")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP testcase mtest06 [1] can trigger a crash on s390x running 5.0.0-rc8.
This is a stress test, where one thread mmaps/writes/munmaps memory area
and other thread is trying to read from it:
CPU: 0 PID: 2611 Comm: mmap1 Not tainted 5.0.0-rc8+ #51
Hardware name: IBM 2964 N63 400 (z/VM 6.4.0)
Krnl PSW : 0404e00180000000 00000000001ac8d8 (__lock_acquire+0x7/0x7a8)
Call Trace:
([<0000000000000000>] (null))
[<00000000001adae4>] lock_acquire+0xec/0x258
[<000000000080d1ac>] _raw_spin_lock_bh+0x5c/0x98
[<000000000012a780>] page_table_free+0x48/0x1a8
[<00000000002f6e54>] do_fault+0xdc/0x670
[<00000000002fadae>] __handle_mm_fault+0x416/0x5f0
[<00000000002fb138>] handle_mm_fault+0x1b0/0x320
[<00000000001248cc>] do_dat_exception+0x19c/0x2c8
[<000000000080e5ee>] pgm_check_handler+0x19e/0x200
page_table_free() is called with NULL mm parameter, but because "0" is a
valid address on s390 (see S390_lowcore), it keeps going until it
eventually crashes in lockdep's lock_acquire. This crash is
reproducible at least since 4.14.
Problem is that "vmf->vma" used in do_fault() can become stale. Because
mmap_sem may be released, other threads can come in, call munmap() and
cause "vma" be returned to kmem cache, and get zeroed/re-initialized and
re-used:
handle_mm_fault |
__handle_mm_fault |
do_fault |
vma = vmf->vma |
do_read_fault |
__do_fault |
vma->vm_ops->fault(vmf); |
mmap_sem is released |
|
| do_munmap()
| remove_vma_list()
| remove_vma()
| vm_area_free()
| # vma is released
| ...
| # same vma is allocated
| # from kmem cache
| do_mmap()
| vm_area_alloc()
| memset(vma, 0, ...)
|
pte_free(vma->vm_mm, ...); |
page_table_free |
spin_lock_bh(&mm->context.lock);|
<crash> |
Cache mm_struct to avoid using potentially stale "vma".
[1] https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/mem/mtest06/mmap1.c
Link: http://lkml.kernel.org/r/5b3fdf19e2a5be460a384b936f5b56e13733f1b8.1551595137.git.jstancek@redhat.com
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a00cc7d9dd ("mm, x86: add support for PUD-sized transparent
hugepages") introduced pudp_huge_get_and_clear_full() but no one uses
its return code.
In order to not diverge from pmdp_huge_get_and_clear_full(), just change
zap_huge_pud() to not assign the return value from
pudp_huge_get_and_clear_full().
mm/huge_memory.c: In function 'zap_huge_pud':
mm/huge_memory.c:1982:8: warning: variable 'orig_pud' set but not used [-Wunused-but-set-variable]
pud_t orig_pud;
^~~~~~~~
Link: http://lkml.kernel.org/r/20190301221956.97493-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages
in the block from kernel, However, it does not map those pages while
offlining at the beginning. As the result, it triggers a panic below
while onlining on ppc64le as it checks if the pages are mapped before
unmapping. However, the imbalance exists for all arches where
double-unmappings could happen. Therefore, let kernel map those pages
in generic_online_page() before they have being freed into the page
allocator for the first time where it will set the page count to one.
On the other hand, it works fine during the boot, because at least for
IBM POWER8, it does,
early_setup
early_init_mmu
harsh__early_init_mmu
htab_initialize [1]
htab_bolt_mapping [2]
where it effectively map all memblock regions just like
kernel_map_linear_page(), so later mem_init() -> memblock_free_all()
will unmap them just fine without any imbalance. On other arches
without this imbalance checking, it still unmap them once at the most.
[1]
for_each_memblock(memory, reg) {
base = (unsigned long)__va(reg->base);
size = reg->size;
DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
base, size, prot);
BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
prot, mmu_linear_psize, mmu_kernel_ssize));
}
[2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815!
Oops: Exception in kernel mode, sig: 5 [#1]
LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries
CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15
NIP: c000000000062670 LR: c00000000006265c CTR: 0000000000000000
REGS: c0000005bf8a75b0 TRAP: 0700 Not tainted (5.0.0-rc7+)
MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28422842
XER: 00000000
CFAR: c000000000804f44 IRQMASK: 1
NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0
LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0
Call Trace:
__kernel_map_pages+0x2cc/0x4f0
free_unref_page_prepare+0x2f0/0x4d0
free_unref_page+0x44/0x90
__online_page_free+0x84/0x110
online_pages_range+0xc0/0x150
walk_system_ram_range+0xc8/0x120
online_pages+0x280/0x5a0
memory_subsys_online+0x1b4/0x270
device_online+0xc0/0xf0
state_store+0xc0/0x180
dev_attr_store+0x3c/0x60
sysfs_kf_write+0x70/0xb0
kernfs_fop_write+0x10c/0x250
__vfs_write+0x48/0x240
vfs_write+0xd8/0x210
ksys_write+0x70/0x120
system_call+0x5c/0x70
Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.
mm/memcontrol.c:5774: warning: bad line: | 0, otherwise.
Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case cma_init_reserved_mem failed, need to free the memblock
allocated by memblock_reserve or memblock_alloc_range.
Quote Catalin's comments:
https://lkml.org/lkml/2019/2/26/482
Kmemleak is supposed to work with the memblock_{alloc,free} pair and it
ignores the memblock_reserve() as a memblock_alloc() implementation
detail. It is, however, tolerant to memblock_free() being called on
a sub-range or just a different range from a previous memblock_alloc().
So the original patch looks fine to me. FWIW:
Link: http://lkml.kernel.org/r/20190227144631.16708-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
too_many_isolated() in mm/compaction.c looks only at node state, so it
makes more sense to change argument to pgdat instead of zone.
Link: http://lkml.kernel.org/r/20190228083329.31892-3-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
workingset_eviction() doesn't use and never did use the @mapping
argument. Remove it.
Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
size = sizeof(struct foo) + count * sizeof(struct boo);
instance = kvzalloc(size, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kvzalloc(struct_size(instance, entry, count), GFP_KERNEL);
Notice that, in this case, variable size is not necessary, hence it is
removed.
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190221154622.GA19599@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cma_debugfs_root is static storage. That is unnecessary since
it will be only used by next cma_debugfs_add_one(). We can just pass it
to following calling to save thisspace. Also remove useless idx
parameter.
Link: http://lkml.kernel.org/r/20190221040130.8940-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_get_pages_range() and find_get_pages_range_tag() already correctly
increment reference count on head when seeing compound page, but they
may still use page index from tail. Page index from tail is always
zero, so these functions don't work on huge shmem. This hasn't been a
problem because, AFAIK, nobody calls these functions on (huge) shmem.
Fix them anyway just in case.
Link: http://lkml.kernel.org/r/20190110030838.84446-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is only used by built-in code, which makes perfect sense
given the purpose of it.
Link: http://lkml.kernel.org/r/20190213174621.29297-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_huge_page() expects we pass the head of hugetlb page to it:
bool isolate_huge_page(...)
{
...
VM_BUG_ON_PAGE(!PageHead(page), page);
...
}
While I really cannot think of any situation where we end up with a
non-head page between hands in do_migrate_range(), let us make sure the
code is as sane as possible by explicitly passing the Head. Since we
already got the pointer, it does not take us extra effort.
Link: http://lkml.kernel.org/r/20190208090604.975-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea has noted that page migration code propagates page_mapping(page)
through the whole migration stack down to migrate_page() function so it
seems stupid to then use page_mapping(page) in expected_page_refs()
instead of passed down 'mapping' argument. I agree so let's make
expected_page_refs() more in line with the rest of the migration stack.
Link: http://lkml.kernel.org/r/20190207112314.24872-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many kernel-doc comments in mm/ have the return value descriptions
either misformatted or omitted at all which makes kernel-doc script
unhappy:
$ make V=1 htmldocs
...
./mm/util.c:36: info: Scanning doc for kstrdup
./mm/util.c:41: warning: No description found for return value of 'kstrdup'
./mm/util.c:57: info: Scanning doc for kstrdup_const
./mm/util.c:66: warning: No description found for return value of 'kstrdup_const'
./mm/util.c:75: info: Scanning doc for kstrndup
./mm/util.c:83: warning: No description found for return value of 'kstrndup'
...
Fixing the formatting and adding the missing return value descriptions
eliminates ~100 such warnings.
Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Number of online NUMA nodes can't be negative as well. This doesn't
save space as the variable is used only in 32-bit context, but do it
anyway for consistency.
Link: http://lkml.kernel.org/r/20190201223151.GB15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter reports a potential NULL dereference in
get_swap_page_of_type:
Smatch complains that the NULL checks on "si" aren't consistent. This
seems like a real bug because we have not ensured that the type is
valid and so "si" can be NULL.
Add the missing check for NULL, taking care to use a read barrier to
ensure CPU1 observes CPU0's updates in the correct order:
CPU0 CPU1
alloc_swap_info() if (type >= nr_swapfiles)
swap_info[type] = p /* handle invalid entry */
smp_wmb() smp_rmb()
++nr_swapfiles p = swap_info[type]
Without smp_rmb, CPU1 might observe CPU0's write to nr_swapfiles before
CPU0's write to swap_info[type] and read NULL from swap_info[type].
Ying Huang noticed other places in swapfile.c don't order these reads
properly. Introduce swap_type_to_swap_info to encourage correct usage.
Use READ_ONCE and WRITE_ONCE to follow the Linux Kernel Memory Model
(see tools/memory-model/Documentation/explanation.txt).
This ordering need not be enforced in places where swap_lock is held
(e.g. si_swapinfo) because swap_lock serializes updates to nr_swapfiles
and the swap_info array.
Link: http://lkml.kernel.org/r/20190131024410.29859-1-daniel.m.jordan@oracle.com
Fixes: ec8acf20af ("swap: add per-partition lock for swapfile")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack
variables for the statistics twice. This is completely useless, and
this just consumes stack much more, then we really need.
The patch kills duplicate stack variables from shrink_page_list(), and
this reduce stack usage and object file size significantly:
Stack usage:
Before: vmscan.c:1122:22:shrink_page_list 648 static
After: vmscan.c:1122:22:shrink_page_list 616 static
Size of vmscan.o:
text data bss dec hex filename
Before: 56866 4720 128 61714 f112 mm/vmscan.o
After: 56770 4720 128 61618 f0b2 mm/vmscan.o
Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksmd needs to search the stable tree to look for the suitable KSM page,
but the KSM page might be locked for a while due to i.e. KSM page rmap
walk. Basically it is not a big deal since commit 2c653d0ee2 ("ksm:
introduce ksm_max_page_sharing per page deduplication limit"), since
max_page_sharing limits the number of shared KSM pages.
But it still sounds not worth waiting for the lock, the page can be
skip, then try to merge it in the next scan to avoid potential stall if
its content is still intact.
Introduce trylock mode to get_ksm_page() to not block on page lock, like
what try_to_merge_one_page() does. And, define three possible
operations (nolock, lock and trylock) as enum type to avoid stacking up
bools and make the code more readable.
Return -EBUSY if trylock fails, since NULL means not find suitable KSM
page, which is a valid case.
With the default max_page_sharing setting (256), there is almost no
observed change comparing lock vs trylock.
However, with ksm02 of LTP, the reduced ksmd full scan time can be
observed, which has set max_page_sharing to 786432. With lock version,
ksmd may tak 10s - 11s to run two full scans, with trylock version ksmd
may take 8s - 11s to run two full scans. And, the number of
pages_sharing and pages_to_scan keep same. Basically, this change has
no harm.
[hughd@google.com: fix BUG_ON()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1902182122280.6914@eggly.anvils
Link: http://lkml.kernel.org/r/1548793753-62377-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide. This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.
For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic]. This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page. It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.
[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In current implementation, both kswapd and direct reclaim has to iterate
all mem cgroups. It is not a problem before offline mem cgroups could
be iterated. But, currently with iterating offline mem cgroups, it
could be very time consuming. In our workloads, we saw over 400K mem
cgroups accumulated in some cases, only a few hundred are online memcgs.
Although kswapd could help out to reduce the number of memcgs, direct
reclaim still get hit with iterating a number of offline memcgs in some
cases. We experienced the responsiveness problems due to this
occassionally.
A simple test with pref shows it may take around 220ms to iterate 8K
memcgs in direct reclaim:
dd 13873 [011] 578.542919: vmscan:mm_vmscan_direct_reclaim_begin
dd 13873 [011] 578.758689: vmscan:mm_vmscan_direct_reclaim_end
So for 400K, it may take around 11 seconds to iterate all memcgs.
Here just break the iteration once it reclaims enough pages as what
memcg direct reclaim does. This may hurt the fairness among memcgs.
But the cached iterator cookie could help to achieve the fairness more
or less.
Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android uses ashmem for sharing memory regions. We are looking forward
to migrating all usecases of ashmem to memfd so that we can possibly
remove the ashmem driver in the future from staging while also
benefiting from using memfd and contributing to it. Note staging
drivers are also not ABI and generally can be removed at anytime.
One of the main usecases Android has is the ability to create a region
and mmap it as writeable, then add protection against making any
"future" writes while keeping the existing already mmap'ed
writeable-region active. This allows us to implement a usecase where
receivers of the shared memory buffer can get a read-only view, while
the sender continues to write to the buffer. See CursorWindow
documentation in Android for more details:
https://developer.android.com/reference/android/database/CursorWindow
This usecase cannot be implemented with the existing F_SEAL_WRITE seal.
To support the usecase, this patch adds a new F_SEAL_FUTURE_WRITE seal
which prevents any future mmap and write syscalls from succeeding while
keeping the existing mmap active.
A better way to do F_SEAL_FUTURE_WRITE seal was discussed [1] last week
where we don't need to modify core VFS structures to get the same
behavior of the seal. This solves several side-effects pointed by Andy.
self-tests are provided in later patch to verify the expected semantics.
[1] https://lore.kernel.org/lkml/20181111173650.GA256781@google.com/
Thanks a lot to Andy for suggestions to improve code.
Link: http://lkml.kernel.org/r/20190112203816.85534-2-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch updates get_user_pages_longterm to migrate pages allocated
out of CMA region. This makes sure that we don't keep non-movable pages
(due to page reference count) in the CMA area.
This will be used by ppc64 in a later patch to avoid pinning pages in
the CMA region. ppc64 uses CMA region for allocation of the hardware
page table (hash page table) and not able to migrate pages out of CMA
region results in page table allocation failures.
One case where we hit this easy is when a guest using a VFIO passthrough
device. VFIO locks all the guest's memory and if the guest memory is
backed by CMA region, it becomes unmovable resulting in fragmenting the
CMA and possibly preventing other guests from allocation a large enough
hash page table.
NOTE: We allocate the new page without using __GFP_THISNODE
Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch was initially posted by Kelley Nielsen. Reposting the patch
with all review comments addressed and with minor modifications and
optimizations. Also, folding in the fixes offered by Hugh Dickins and
Huang Ying. Tests were rerun and commit message updated with new
results.
try_to_unuse() is of quadratic complexity, with a lot of wasted effort.
It unuses swap entries one by one, potentially iterating over all the
page tables for all the processes in the system for each one.
This new proposed implementation of try_to_unuse simplifies its
complexity to linear. It iterates over the system's mms once, unusing
all the affected entries as it walks each set of page tables. It also
makes similar changes to shmem_unuse.
Improvement
swapoff was called on a swap partition containing about 6G of data, in a
VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted.
Present implementation....about 1200M calls(8min, avg 80% cpu util).
Prototype.................about 9.0K calls(3min, avg 5% cpu util).
Details
In shmem_unuse(), iterate over the shmem_swaplist and, for each
shmem_inode_info that contains a swap entry, pass it to
shmem_unuse_inode(), along with the swap type. In shmem_unuse_inode(),
iterate over its associated xarray, and store the index and value of
each swap entry in an array for passing to shmem_swapin_page() outside
of the RCU critical section.
In try_to_unuse(), instead of iterating over the entries in the type and
unusing them one by one, perhaps walking all the page tables for all the
processes for each one, iterate over the mmlist, making one pass. Pass
each mm to unuse_mm() to begin its page table walk, and during the walk,
unuse all the ptes that have backing store in the swap type received by
try_to_unuse(). After the walk, check the type for orphaned swap
entries with find_next_to_unuse(), and remove them from the swap cache.
If find_next_to_unuse() starts over at the beginning of the type, repeat
the check of the shmem_swaplist and the walk a maximum of three times.
Change unuse_mm() and the intervening walk functions down to
unuse_pte_range() to take the type as a parameter, and to iterate over
their entire range, calling the next function down on every iteration.
In unuse_pte_range(), make a swap entry from each pte in the range using
the passed in type. If it has backing store in the type, call
swapin_readahead() to retrieve the page and pass it to unuse_pte().
Pass the count of pages_to_unuse down the page table walks in
try_to_unuse(), and return from the walk when the desired number of
pages has been swapped back in.
Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swapin logic can be reused independently without rest of the logic in
shmem_getpage_gfp. So lets refactor it out as an independent function.
Link: http://lkml.kernel.org/r/20190114153129.4852-1-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We may simply check for sc->may_unmap in isolate_lru_pages() instead of
doing that in both of its callers.
Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot with KMSAN reports (excerpt):
==================================================================
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x173/0x1d0 lib/dump_stack.c:113
kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613
__msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295
mpol_rebind_policy mm/mempolicy.c:353 [inline]
mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120
update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline]
update_nodemask kernel/cgroup/cpuset.c:1253 [inline]
cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728
...
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline]
kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158
kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176
kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777
mpol_new mm/mempolicy.c:276 [inline]
do_mbind mm/mempolicy.c:1180 [inline]
kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347
__do_sys_mbind mm/mempolicy.c:1354 [inline]
As it's difficult to report where exactly the uninit value resides in
the mempolicy object, we have to guess a bit. mm/mempolicy.c:353
contains this part of mpol_rebind_policy():
if (!mpol_store_user_nodemask(pol) &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
"mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't
ever see being uninitialized after leaving mpol_new(). So I'll guess
it's actually about accessing pol->w.cpuset_mems_allowed on line 354,
but still part of statement starting on line 353.
For w.cpuset_mems_allowed to be not initialized, and the nodes_equal()
reachable for a mempolicy where mpol_set_nodemask() is called in
do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy
with empty set of nodes, i.e. MPOL_LOCAL equivalent, with MPOL_F_LOCAL
flag. Let's exclude such policies from the nodes_equal() check. Note
the uninit access should be benign anyway, as rebinding this kind of
policy is always a no-op. Therefore no actual need for stable
inclusion.
Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz
Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two early memory allocations that use
memblock_alloc_node_nopanic() and do not check its return value.
While this happens very early during boot and chances that the
allocation will fail are diminishing, it is still worth to have proper
checks for the allocation errors.
Link: http://lkml.kernel.org/r/1547734941-944-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Follow the regular pte change protection
sequence for hugetlb too. This allows the architectures to override the
update sequence.
Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Enable that by passing old pte value as
the arg.
Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates. This patch series does that.
This patch (of 5):
Some architectures may want to call flush_tlb_range from these helpers.
Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change.
Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable 'addr' is redundant in arch_get_unmapped_area_topdown(),
just use parameter 'addr0' directly. Then remove the const qualifier of
the parameter, and change its name to 'addr'.
And in according with other functions, remove the const qualifier of all
other no-pointer parameters in function arch_get_unmapped_area_topdown().
Link: http://lkml.kernel.org/r/20190127041112.25599-1-nullptr.cpp@gmail.com
Signed-off-by: Yang Fan <nullptr.cpp@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the start of the git history of Linux, the kernel after selecting
the worst process to be oom-killed, prefer to kill its child (if the
child does not share mm with the parent). Later it was changed to
prefer to kill a child who is worst. If the parent is still the worst
then the parent will be killed.
This heuristic assumes that the children did less work than their parent
and by killing one of them, the work lost will be less. However this is
very workload dependent. If there is a workload which can benefit from
this heuristic, can use oom_score_adj to prefer children to be killed
before the parent.
The select_bad_process() has already selected the worst process in the
system/memcg. There is no need to recheck the badness of its children
and hoping to find a worse candidate. That's a lot of unneeded racy
work. Also the heuristic is dangerous because it make fork bomb like
workloads to recover much later because we constantly pick and kill
processes which are not memory hogs. So, let's remove this whole
heuristic.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Link: http://lkml.kernel.org/r/20190122152151.16139-14-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages which use page_type must never be mapped to userspace as it would
destroy their page type. Add an explicit check for this instead of
assuming that kernel drivers always get this right.
Link: http://lkml.kernel.org/r/20190129053830.3749-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's never appropriate to map a page allocated by SLAB into userspace.
A buggy device driver might try this, or an attacker might be able to
find a way to make it happen.
Christoph said:
: Let's just fail the code. Currently this may work with SLUB. But SLAB
: and SLOB overlay fields with mapcount. So you would have a corrupted page
: struct if you mapped a slab page to user space.
Link: http://lkml.kernel.org/r/20190125173827.2658-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the vmalloc stress test case triggers the kernel BUG():
<snip>
[60.562151] ------------[ cut here ]------------
[60.562154] kernel BUG at mm/vmalloc.c:512!
[60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161
[60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
[60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390
<snip>
it can happen due to big align request resulting in overflowing of
calculated address, i.e. it becomes 0 after ALIGN()'s fixup.
Fix it by checking if calculated address is within vstart/vend range.
Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task. This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator. The
intent is to avoid redundant scanning.
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%)
Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%)
Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%)
Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%)
Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%)
Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%*
Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%)
Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%)
Latency is only moderately affected but the devil is in the details. A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%)
Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%)
Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%)
Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%)
Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%)
Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%)
Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%)
Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%)
And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.
Compaction migrate scanned 20815362 19573286
Compaction free scanned 16352612 11510663
[mgorman@techsingularity.net: remove redundant check]
Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock hints are cleared when compaction restarts or kswapd makes
enough progress that it can sleep but it's over-eager in that the bit is
cleared for migration sources with no LRU pages and migration targets
with no free pages. As pageblock skip hint flushes are relatively rare
and out-of-band with respect to kswapd, this patch makes a few more
expensive checks to see if it's appropriate to even clear the bit.
Every pageblock that is not cleared will avoid 512 pages being scanned
unnecessarily on x86-64.
The impact is variable with different workloads showing small
differences in latency, success rates and scan rates. This is expected
as clearing the hints is not that common but doing a small amount of
work out-of-band to avoid a large amount of work in-band later is
generally a good thing.
Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
[cai@lca.pw: no stuck in __reset_isolation_pfn()]
Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once fast searching finishes, there is a possibility that the linear
scanner is scanning full blocks found by the fast scanner earlier. This
patch uses an adaptive stride to sample pageblocks for free pages. The
more consecutive full pageblocks encountered, the larger the stride
until a pageblock with free pages is found. The scanners might meet
slightly sooner but it is an acceptable risk given that the search of
the free lists may still encounter the pages and adjust the cached PFN
of the free scanner accordingly.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2752.37 ( 0.00%) 2729.95 ( 0.81%)
Amean fault-both-5 4341.69 ( 0.00%) 4397.80 ( -1.29%)
Amean fault-both-7 6308.75 ( 0.00%) 6097.61 ( 3.35%)
Amean fault-both-12 10241.81 ( 0.00%) 9407.15 ( 8.15%)
Amean fault-both-18 13736.09 ( 0.00%) 10857.63 * 20.96%*
Amean fault-both-24 16853.95 ( 0.00%) 13323.24 * 20.95%*
Amean fault-both-30 15862.61 ( 0.00%) 17345.44 ( -9.35%)
Amean fault-both-32 18450.85 ( 0.00%) 16892.00 ( 8.45%)
The latency is mildly improved offseting some overhead from earlier
patches that are prerequisites for the rest of the series. However, a
major impact is on the free scan rate with an 82% reduction.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Compaction migrate scanned 21607271 20116887
Compaction free scanned 95336406 16668703
It's also the first time in the series where the number of pages scanned
by the migration scanner is greater than the free scanner due to the
increased search efficiency.
Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As compaction proceeds and creates high-order blocks, the free list
search gets less efficient as the larger blocks are used as compaction
targets. Eventually, the larger blocks will be behind the migration
scanner for partially migrated pageblocks and the search fails. This
patch round-robins what orders are searched so that larger blocks can be
ignored and find smaller blocks that can be used as migration targets.
The overall impact was small on 1-socket but it avoids corner cases
where the migration/free scanners meet prematurely or situations where
many of the pageblocks encountered by the free scanner are almost full
instead of being properly packed. Previous testing had indicated that
without this patch there were occasional large spikes in the free
scanner without this patch.
[dan.carpenter@oracle.com: fix static checker warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fast isolation of free pages allows the cached PFN of the free
scanner to advance faster than necessary depending on the contents of
the free list. The key is that fast_isolate_freepages() can update
zone->compact_cached_free_pfn via isolate_freepages_block(). When the
fast search fails, the linear scan can start from a point that has
skipped valid migration targets, particularly pageblocks with just
low-order free pages. This can cause the migration source/target
scanners to meet prematurely causing a reset.
This patch starts by avoiding an update of the pageblock skip
information and cached PFN from isolate_freepages_block() and puts the
responsibility of updating that information in the callers. The fast
scanner will update the cached PFN if and only if it finds a block that
is higher than the existing cached PFN and sets the skip if the
pageblock is full or nearly full. The linear scanner will update
skipped information and the cached PFN only when a block is completely
scanned. The total impact is that the free scanner advances more slowly
as it is primarily driven by the linear scanner instead of the fast
search.
5.0.0-rc1 5.0.0-rc1
noresched-v3r17 slowfree-v3r17
Amean fault-both-3 2965.68 ( 0.00%) 3036.75 ( -2.40%)
Amean fault-both-5 3995.90 ( 0.00%) 4522.24 * -13.17%*
Amean fault-both-7 5842.12 ( 0.00%) 6365.35 ( -8.96%)
Amean fault-both-12 9550.87 ( 0.00%) 10340.93 ( -8.27%)
Amean fault-both-18 13304.72 ( 0.00%) 14732.46 ( -10.73%)
Amean fault-both-24 14618.59 ( 0.00%) 16288.96 ( -11.43%)
Amean fault-both-30 16650.96 ( 0.00%) 16346.21 ( 1.83%)
Amean fault-both-32 17145.15 ( 0.00%) 19317.49 ( -12.67%)
The impact to latency is higher than the last version but it appears to
be due to a slight increase in the free scan rates which is a potential
side-effect of the patch. However, this is necessary for later patches
that are more careful about how pageblocks are treated as earlier
iterations of those patches hit corner cases where the restarts were
punishing and very visible.
Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Scanning on large machines can take a considerable length of time and
eventually need to be rescheduled. This is treated as an abort event
but that's not appropriate as the attempt is likely to be retried after
making numerous checks and taking another cycle through the page
allocator. This patch will check the need to reschedule if necessary
but continue the scanning.
The main benefit is reduced scanning when compaction is taking a long
time or the machine is over-saturated. It also avoids an unnecessary
exit of compaction that ends up being retried by the page allocator in
the outer loop.
5.0.0-rc1 5.0.0-rc1
synccached-v3r16 noresched-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2958.27 ( 0.00%) 2965.68 ( -0.25%)
Amean fault-both-5 4091.90 ( 0.00%) 3995.90 ( 2.35%)
Amean fault-both-7 5803.05 ( 0.00%) 5842.12 ( -0.67%)
Amean fault-both-12 9481.06 ( 0.00%) 9550.87 ( -0.74%)
Amean fault-both-18 14141.51 ( 0.00%) 13304.72 ( 5.92%)
Amean fault-both-24 16438.00 ( 0.00%) 14618.59 ( 11.07%)
Amean fault-both-30 17531.72 ( 0.00%) 16650.96 ( 5.02%)
Amean fault-both-32 17101.96 ( 0.00%) 17145.15 ( -0.25%)
Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With incremental changes, compact_should_abort no longer makes any
documented sense. Rename to compact_check_resched and update the
associated comments. There is no benefit other than reducing redundant
code and making the intent slightly clearer. It could potentially be
merged with earlier patches but it just makes the review slightly
harder.
Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrate has separate cached PFNs for ASYNC and SYNC* migration on the
basis that some migrations will fail in ASYNC mode. However, if the
cached PFNs match at the start of scanning and pageblocks are skipped
due to having no isolation candidates, then the sync state does not
matter. This patch keeps matching cached PFNs in sync until a pageblock
with isolation candidates is found.
The actual benefit is marginal given that the sync scanner following the
async scanner will often skip a number of pageblocks but it's useless
work. Any benefit depends heavily on whether the scanners restarted
recently.
Link: http://lkml.kernel.org/r/20190118175136.31341-16-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When scanning for sources or targets, PageCompound is checked for huge
pages as they can be skipped quickly but it happens relatively late
after a lot of setup and checking. This patch short-cuts the check to
make it earlier. It might still change when the lock is acquired but
this has less overhead overall. The free scanner advances but the
migration scanner does not. Typically the free scanner encounters more
movable blocks that change state over the lifetime of the system and
also tends to scan more aggressively as it's actively filling its
portion of the physical address space with data. This could change in
the future but for the moment, this worked better in practice and
incurred fewer scan restarts.
The impact on latency and allocation success rates is marginal but the
free scan rates are reduced by 15% and system CPU usage is reduced by
3.3%. The 2-socket results are not materially different.
Link: http://lkml.kernel.org/r/20190118175136.31341-15-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async migration aborts on spinlock contention but contention can be high
when there are multiple compaction attempts and kswapd is active. The
consequence is that the migration scanners move forward uselessly while
still contending on locks for longer while leaving suitable migration
sources behind.
This patch will acquire the lock but track when contention occurs. When
it does, the current pageblock will finish as compaction may succeed for
that block and then abort. This will have a variable impact on latency
as in some cases useless scanning is avoided (reduces latency) but a
lock will be contended (increase latency) or a single contended
pageblock is scanned that would otherwise have been skipped (increase
latency).
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3002.07 ( 0.00%) 3153.17 ( -5.03%)
Amean fault-both-5 4684.47 ( 0.00%) 4280.52 ( 8.62%)
Amean fault-both-7 6815.54 ( 0.00%) 5811.50 * 14.73%*
Amean fault-both-12 10864.02 ( 0.00%) 9276.85 ( 14.61%)
Amean fault-both-18 12247.52 ( 0.00%) 11032.67 ( 9.92%)
Amean fault-both-24 15683.99 ( 0.00%) 14285.70 ( 8.92%)
Amean fault-both-30 18620.02 ( 0.00%) 16293.76 * 12.49%*
Amean fault-both-32 19250.28 ( 0.00%) 16721.02 * 13.14%*
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Percentage huge-3 95.00 ( 0.00%) 96.82 ( 1.92%)
Percentage huge-5 94.22 ( 0.00%) 95.40 ( 1.26%)
Percentage huge-7 92.35 ( 0.00%) 95.92 ( 3.86%)
Percentage huge-12 91.90 ( 0.00%) 96.73 ( 5.25%)
Percentage huge-18 89.58 ( 0.00%) 96.77 ( 8.03%)
Percentage huge-24 90.03 ( 0.00%) 96.05 ( 6.69%)
Percentage huge-30 89.14 ( 0.00%) 96.81 ( 8.60%)
Percentage huge-32 90.58 ( 0.00%) 97.41 ( 7.54%)
There is a variable impact that is mostly good on latency while allocation
success rates are slightly higher. System CPU usage is reduced by about
10% but scan rate impact is mixed
Compaction migrate scanned 27997659.00 20148867
Compaction free scanned 120782791.00 118324914
Migration scan rates are reduced 28% which is expected as a pageblock is
used by the async scanner instead of skipped. The impact on the free
scanner is known to be variable. Overall the primary justification for
this patch is that completing scanning of a pageblock is very important
for later patches.
[yuehaibing@huawei.com: fix unused variable warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-14-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: YueHaibing <yuehaibing@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblocks are marked for skip when no pages are isolated after a scan.
However, it's possible to hit corner cases where the migration scanner
gets stuck near the boundary between the source and target scanner. Due
to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are
migrated can be reallocated before the pageblock is complete. The
pageblock is not necessarily skipped so it can be rescanned multiple
times. Similarly, a pageblock with some dirty/writeback pages may fail
to migrate and be rescanned until writeback completes which is wasteful.
This patch tracks if a pageblock is being rescanned. If so, then the
entire pageblock will be migrated as one operation. This narrows the
race window during which pages can be reallocated during migration.
Secondly, if there are pages that cannot be isolated then the pageblock
will still be fully scanned and marked for skipping. On the second
rescan, the pageblock skip is set and the migration scanner makes
progress.
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%)
Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%)
Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%)
Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%)
Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%)
Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%)
Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%)
Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%*
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%)
Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%)
Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%)
Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%)
Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%)
Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%)
Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%)
Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%)
Negligible difference but this was likely a case when the specific
corner case was not hit. A previous run of the same patch based on an
earlier iteration of the series showed large differences where migration
rates could be halved when the corner case was hit.
The specific corner case where migration scan rates go through the roof
was due to a dirty/writeback pageblock located at the boundary of the
migration/free scanner did not happen in this case. When it does
happen, the scan rates multipled by massive margins.
Link: http://lkml.kernel.org/r/20190118175136.31341-13-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the migration scanner, this patch uses the free lists to
quickly locate a migration target. The search is different in that
lower orders will be searched for a suitable high PFN if necessary but
the search is still bound. This is justified on the grounds that the
free scanner typically scans linearly much more than the migration
scanner.
If a free page is found, it is isolated and compaction continues if
enough pages were isolated. For SYNC* scanning, the full pageblock is
scanned for any remaining free pages so that is can be marked for
skipping in the near future.
1-socket thpfioscale
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Amean fault-both-3 3024.41 ( 0.00%) 3200.68 ( -5.83%)
Amean fault-both-5 4749.30 ( 0.00%) 4847.75 ( -2.07%)
Amean fault-both-7 6454.95 ( 0.00%) 6658.92 ( -3.16%)
Amean fault-both-12 10324.83 ( 0.00%) 11077.62 ( -7.29%)
Amean fault-both-18 12896.82 ( 0.00%) 12403.97 ( 3.82%)
Amean fault-both-24 13470.60 ( 0.00%) 15607.10 * -15.86%*
Amean fault-both-30 17143.99 ( 0.00%) 18752.27 ( -9.38%)
Amean fault-both-32 17743.91 ( 0.00%) 21207.54 * -19.52%*
The impact on latency is variable but the search is optimistic and
sensitive to the exact system state. Success rates are similar but the
major impact is to the rate of scanning
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Compaction migrate scanned 25646769 29507205
Compaction free scanned 201558184 100359571
The free scan rates are reduced by 50%. The 2-socket reductions for the
free scanner are more dramatic which is a likely reflection that the
machine has more memory.
[dan.carpenter@oracle.com: fix static checker warning]
[vbabka@suse.cz: correct number of pages scanned for lower orders]
Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to either a fast search of the free list or a linear scan, it is
possible for multiple compaction instances to pick the same pageblock
for migration. This is lucky for one scanner and increased scanning for
all the others. It also allows a race between requests on which first
allocates the resulting free block.
This patch tests and updates the pageblock skip for the migration
scanner carefully. When isolating a block, it will check and skip if
the block is already in use. Once the zone lock is acquired, it will be
rechecked so that only one scanner can set the pageblock skip for
exclusive use. Any scanner contending will continue with a linear scan.
The skip bit is still set if no pages can be isolated in a range. While
this may result in redundant scanning, it avoids unnecessarily acquiring
the zone lock when there are no suitable migration sources.
1-socket thpscale
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3390.40 ( 0.00%) 3024.41 ( 10.80%)
Amean fault-both-5 5082.28 ( 0.00%) 4749.30 ( 6.55%)
Amean fault-both-7 7012.51 ( 0.00%) 6454.95 ( 7.95%)
Amean fault-both-12 11346.63 ( 0.00%) 10324.83 ( 9.01%)
Amean fault-both-18 15324.19 ( 0.00%) 12896.82 * 15.84%*
Amean fault-both-24 16088.50 ( 0.00%) 13470.60 * 16.27%*
Amean fault-both-30 18723.42 ( 0.00%) 17143.99 ( 8.44%)
Amean fault-both-32 18612.01 ( 0.00%) 17743.91 ( 4.66%)
5.0.0-rc1 5.0.0-rc1
findmig-v3r15 isolmig-v3r15
Percentage huge-3 89.83 ( 0.00%) 92.96 ( 3.48%)
Percentage huge-5 91.96 ( 0.00%) 93.26 ( 1.41%)
Percentage huge-7 92.85 ( 0.00%) 93.63 ( 0.84%)
Percentage huge-12 92.74 ( 0.00%) 92.80 ( 0.07%)
Percentage huge-18 91.71 ( 0.00%) 91.62 ( -0.10%)
Percentage huge-24 92.13 ( 0.00%) 91.50 ( -0.69%)
Percentage huge-30 93.79 ( 0.00%) 92.73 ( -1.13%)
Percentage huge-32 91.27 ( 0.00%) 91.94 ( 0.74%)
This shows a reasonable reduction in latency as multiple compaction
scanners do not operate on the same blocks with a similar allocation
success rate.
Compaction migrate scanned 41093126 25646769
Migration scan rates are reduced by 38%.
Link: http://lkml.kernel.org/r/20190118175136.31341-11-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner is a linear scan of a zone with a potentiall large
search space. Furthermore, many pageblocks are unusable such as those
filled with reserved pages or partially filled with pages that cannot
migrate. These still get scanned in the common case of allocating a THP
and the cost accumulates.
The patch uses a partial search of the free lists to locate a migration
source candidate that is marked as MOVABLE when allocating a THP. It
prefers picking a block with a larger number of free pages already on
the basis that there are fewer pages to migrate to free the entire
block. The lowest PFN found during searches is tracked as the basis of
the start for the linear search after the first search of the free list
fails. After the search, the free list is shuffled so that the next
search will not encounter the same page. If the search fails then the
subsequent searches will be shorter and the linear scanner is used.
If this search fails, or if the request is for a small or
unmovable/reclaimable allocation then the linear scanner is still used.
It is somewhat pointless to use the list search in those cases. Small
free pages must be used for the search and there is no guarantee that
movable pages are located within that block that are contiguous.
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%)
Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%)
Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%)
Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%)
Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%)
Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%*
Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%*
Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%*
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%)
Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%)
Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%)
Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%)
Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%)
Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%)
Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%)
Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%)
This shows an improvement in allocation latencies with similar
allocation success rates. While not presented, there was a 31%
reduction in migration scanning and a 8% reduction on system CPU usage.
A 2-socket machine showed similar benefits.
[mgorman@techsingularity.net: several fixes]
Link: http://lkml.kernel.org/r/20190204120111.GL9565@techsingularity.net
[vbabka@suse.cz: migrate block that was found-fast, some optimisations]
Link: http://lkml.kernel.org/r/20190118175136.31341-10-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <Vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pageblocks get fragmented, watermarks are artifically boosted to
reclaim pages to avoid further fragmentation events. However,
compaction is often either fragmentation-neutral or moving movable pages
away from unmovable/reclaimable pages. As the true watermarks are
preserved, allow compaction to ignore the boost factor.
The expected impact is very slight as the main benefit is that
compaction is slightly more likely to succeed when the system has been
fragmented very recently. On both 1-socket and 2-socket machines for
THP-intensive allocation during fragmentation the success rate was
increased by less than 1% which is marginal. However, detailed tracing
indicated that failure of migration due to a premature ENOMEM triggered
by watermark checks were eliminated.
Link: http://lkml.kernel.org/r/20190118175136.31341-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When compaction is finishing, it uses a flag to ensure the pageblock is
complete but it makes sense to always complete migration of a pageblock.
Minimally, skip information is based on a pageblock and partially
scanned pageblocks may incur more scanning in the future. The pageblock
skip handling also becomes more strict later in the series and the hint
is more useful if a complete pageblock was always scanned.
The potentially impacts latency as more scanning is done but it's not a
consistent win or loss as the scanning is not always a high percentage
of the pageblock and sometimes it is offset by future reductions in
scanning. Hence, the results are not presented this time due to a
misleading mix of gains/losses without any clear pattern. However, full
scanning of the pageblock is important for later patches.
Link: http://lkml.kernel.org/r/20190118175136.31341-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages with no migration handler use a fallback handler which sometimes
works and sometimes persistently retries. A historical example was
blockdev pages but there are others such as odd refcounting when
page->private is used. These are retried multiple times which is
wasteful during compaction so this patch will fail migration faster
unless the caller specifies MIGRATE_SYNC.
This is not expected to help THP allocation success rates but it did
reduce latencies very slightly in some cases.
1-socket thpfioscale
4.20.0 4.20.0
noreserved-v2r15 failfast-v2r15
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%)
Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%)
Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%)
Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%)
Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%)
Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%)
Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%)
Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%)
The 2-socket results are not materially different. Scan rates are
similar as expected.
Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's non-obvious that high-order free pages are split into order-0 pages
from the function name. Fix it.
Link: http://lkml.kernel.org/r/20190118175136.31341-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A zone parameter is passed into a number of top-level compaction
functions despite the fact that it's already in compact_control. This
is harmless but it did need an audit to check if zone actually ever
changes meaningfully. This patches removes the parameter in a number of
top-level functions. The change could be much deeper but this was
enough to briefly clarify the flow.
No functional change.
Link: http://lkml.kernel.org/r/20190118175136.31341-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last_migrated_pfn field is a bit dubious as to whether it really
helps but either way, the information from it can be inferred without
increasing the size of compact_control so remove the field.
Link: http://lkml.kernel.org/r/20190118175136.31341-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
compact_control spans two cache lines with write-intensive lines on
both. Rearrange so the most write-intensive fields are in the same
cache line. This has a negligible impact on the overall performance of
compaction and is more a tidying exercise than anything.
Link: http://lkml.kernel.org/r/20190118175136.31341-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Increase success rates and reduce latency of compaction", v3.
This series reduces scan rates and success rates of compaction,
primarily by using the free lists to shorten scans, better controlling
of skip information and whether multiple scanners can target the same
block and capturing pageblocks before being stolen by parallel requests.
The series is based on mmotm from January 9th, 2019 with the previous
compaction series reverted.
I'm mostly using thpscale to measure the impact of the series. The
benchmark creates a large file, maps it, faults it, punches holes in the
mapping so that the virtual address space is fragmented and then tries
to allocate THP. It re-executes for different numbers of threads. From
a fragmentation perspective, the workload is relatively benign but it
does stress compaction.
The overall impact on latencies for a 1-socket machine is
baseline patches
Amean fault-both-3 3832.09 ( 0.00%) 2748.56 * 28.28%*
Amean fault-both-5 4933.06 ( 0.00%) 4255.52 ( 13.73%)
Amean fault-both-7 7017.75 ( 0.00%) 6586.93 ( 6.14%)
Amean fault-both-12 11610.51 ( 0.00%) 9162.34 * 21.09%*
Amean fault-both-18 17055.85 ( 0.00%) 11530.06 * 32.40%*
Amean fault-both-24 19306.27 ( 0.00%) 17956.13 ( 6.99%)
Amean fault-both-30 22516.49 ( 0.00%) 15686.47 * 30.33%*
Amean fault-both-32 23442.93 ( 0.00%) 16564.83 * 29.34%*
The allocation success rates are much improved
baseline patches
Percentage huge-3 85.99 ( 0.00%) 97.96 ( 13.92%)
Percentage huge-5 88.27 ( 0.00%) 96.87 ( 9.74%)
Percentage huge-7 85.87 ( 0.00%) 94.53 ( 10.09%)
Percentage huge-12 82.38 ( 0.00%) 98.44 ( 19.49%)
Percentage huge-18 83.29 ( 0.00%) 99.14 ( 19.04%)
Percentage huge-24 81.41 ( 0.00%) 97.35 ( 19.57%)
Percentage huge-30 80.98 ( 0.00%) 98.05 ( 21.08%)
Percentage huge-32 80.53 ( 0.00%) 97.06 ( 20.53%)
That's a nearly perfect allocation success rate.
The biggest impact is on the scan rates
Compaction migrate scanned 55893379 19341254
Compaction free scanned 474739990 11903963
The number of pages scanned for migration was reduced by 65% and the
free scanner was reduced by 97.5%. So much less work in exchange for
lower latency and better success rates.
The series was also evaluated using a workload that heavily fragments
memory but the benefits there are also significant, albeit not
presented.
It was commented that we should be rethinking scanning entirely and to a
large extent I agree. However, to achieve that you need a lot of this
series in place first so it's best to make the linear scanners as best
as possible before ripping them out.
This patch (of 22):
The isolate and migrate scanners should never isolate more than a
pageblock of pages so unsigned int is sufficient saving 8 bytes on a
64-bit build.
Link: http://lkml.kernel.org/r/20190118175136.31341-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'end_byte' parameter of filemap_range_has_page is required to be
inclusive, so follow the rule.
Link: http://lkml.kernel.org/r/1548678679-18122-1-git-send-email-zhengbin13@huawei.com
Fixes: 6be96d3ad3 ("fs: return if direct I/O will trigger writeback")
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hou Tao <houtao1@huawei.com>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_vma_readahead()'s comment is missing, just add it.
Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap readahead would read in a few pages regardless if the underlying
device is busy or not. It may incur long waiting time if the device is
congested, and it may also exacerbate the congestion.
Use inode_read_congested() to check if the underlying device is busy or
not like what file page readahead does. Get inode from
swap_info_struct.
Although we can add inode information in swap_address_space
(address_space->host), it may lead some unexpected side effect, i.e. it
may break mapping_cap_account_dirty(). Using inode from
swap_info_struct seems simple and good enough.
Just does the check in vma_cluster_readahead() since
swap_vma_readahead() is just used for non-rotational device which much
less likely has congestion than traditional HDD.
Although swap slots may be consecutive on swap partition, it still may
be fragmented on swap file. This check would help to reduce excessive
stall for such case.
The test with page_fault1 of will-it-scale (sometimes tracing may just
show runtest.py that is the wrapper script of page_fault1), which
basically launches NR_CPU threads to generate 128MB anonymous pages for
each thread, on my virtual machine with congested HDD shows long tail
latency is reduced significantly.
Without the patch
page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page();
page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page();
page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page();
page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page();
page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page();
page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page();
page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page();
page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page();
With the patch
runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page();
runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page();
runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page();
runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page();
runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page();
runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page();
runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page();
runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page();
[akpm@linux-foundation.org: code cleanup]
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com
Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After we establish a reference on the page, we check the pointer
continues to be in the correct position in i_pages. Checking
page->index afterwards is unnecessary; if it were to change, then the
pointer to it from the page cache would also move. The check used to be
done before grabbing a reference on the page which was racy (see commit
9cbb4cb21b ("mm: find_get_pages_contig fixlet")), but nobody noticed
that moving the check after grabbing the reference was redundant.
Link: http://lkml.kernel.org/r/20190107200224.13260-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation, there are two places to isolate a range
of page: __offline_pages() and alloc_contig_range(). During this
procedure, it will drain pages on pcp list.
Below is a brief call flow:
__offline_pages()/alloc_contig_range()
start_isolate_page_range()
set_migratetype_isolate()
drain_all_pages()
drain_all_pages() <--- A
This snippet shows the current logic is isolate and drain pcp list for
each pageblock and drain pcp list again for the whole range.
start_isolate_page_range is responsible for isolating the given pfn
range. One part of that job is to make sure that also pages that are on
the allocator pcp lists are properly isolated. Otherwise they could be
reused and the range wouldn't be completely isolated until the memory is
freed back. While there is no strict guarantee here because pages might
get allocated at any time before drain_all_pages is called there doesn't
seem to be any strong demand for such a guarantee.
In any case, draining is already done at the isolation level and there
is no need to do it again later by start_isolate_page_range callers
(memory hotplug and CMA allocator currently). Therefore remove
pointless draining in existing callers to make the code more clear and
functionally correct.
[mhocko@suse.com: provide a clearer changelog for the last two paragraphs]
Link: http://lkml.kernel.org/r/20190105233141.2329-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "arm64/mm: Enable HugeTLB migration", v4.
This patch series enables HugeTLB migration support for all supported
huge page sizes at all levels including contiguous bit implementation.
Following HugeTLB migration support matrix has been enabled with this
patch series. All permutations have been tested except for the 16GB.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
First the series adds migration support for PUD based huge pages. It
then adds a platform specific hook to query an architecture if a given
huge page size is supported for migration while also providing a default
fallback option preserving the existing semantics which just checks for
(PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB
migration on arm64 and subscribe to this new platform specific hook by
defining an override.
The second patch differentiates between movability and migratability
aspects of huge pages and implements hugepage_movable_supported() which
can then be used during allocation to decide whether to place the huge
page in movable zone or not.
This patch (of 5):
During huge page allocation it's migratability is checked to determine
if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE.
But the movability aspect of the huge page could depend on other factors
than just migratability. Movability in itself is a distinct property
which should not be tied with migratability alone.
This differentiates these two and implements an enhanced movability check
which also considers huge page size to determine if it is feasible to be
placed under a movable zone. At present it just checks for gigantic pages
but going forward it can incorporate other enhanced checks.
Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysctl_extfrag_handler() neglects to propagate the return value from
proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need
to exist, so just use proc_dointvec_minmax() directly.
Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reported-by: Aditya Pakki <pakki001@umn.edu>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export __vmaloc_node_range() function if CONFIG_TEST_VMALLOC_MODULE is
enabled. Some test cases in vmalloc test suite module require and make
use of that function. Please note, that it is not supposed to be used
for other purposes.
We need it only for performance analysis, stressing and stability check
of vmalloc allocator.
Link: http://lkml.kernel.org/r/20190103142108.20744-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmalloc_user*() calls differ from normal vmalloc() only in that they set
VM_USERMAP flags for the area. During the whole history of vmalloc.c
changes now it is possible simply to pass VM_USERMAP flags directly to
__vmalloc_node_range() call instead of finding the area (which obviously
takes time) after the allocation.
Link: http://lkml.kernel.org/r/20190103145954.16942-4-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__vmalloc_area_node() calls vfree() on error path, which in turn calls
kmemleak_free(), but area is not yet accounted by kmemleak_vmalloc().
Link: http://lkml.kernel.org/r/20190103145954.16942-3-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When VM_NO_GUARD is not set area->size includes adjacent guard page,
thus for correct size checking get_vm_area_size() should be used, but
not area->size.
This fixes possible kernel oops when userspace tries to mmap an area on
1 page bigger than was allocated by vmalloc_user() call: the size check
inside remap_vmalloc_range_partial() accounts non-existing guard page
also, so check successfully passes but vmalloc_to_page() returns NULL
(guard page does not physically exist).
The following code pattern example should trigger an oops:
static int oops_mmap(struct file *file, struct vm_area_struct *vma)
{
void *mem;
mem = vmalloc_user(4096);
BUG_ON(!mem);
/* Do not care about mem leak */
return remap_vmalloc_range(vma, mem, 0);
}
And userspace simply mmaps size + PAGE_SIZE:
mmap(NULL, 8192, PROT_WRITE|PROT_READ, MAP_PRIVATE, fd, 0);
Possible candidates for oops which do not have any explicit size
checks:
*** drivers/media/usb/stkwebcam/stk-webcam.c:
v4l_stk_mmap[789] ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
Or the following one:
*** drivers/video/fbdev/core/fbmem.c
static int
fb_mmap(struct file *file, struct vm_area_struct * vma)
...
res = fb->fb_mmap(info, vma);
Where fb_mmap callback calls remap_vmalloc_range() directly without any
explicit checks:
*** drivers/video/fbdev/vfb.c
static int vfb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
return remap_vmalloc_range(vma, (void *)info->fix.smem_start, vma->vm_pgoff);
}
Link: http://lkml.kernel.org/r/20190103145954.16942-2-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch repeats the original one from David S Miller:
2dca6999ee ("mm, perf_event: Make vmalloc_user() align base kernel virtual address to SHMLBA")
but for missed vmalloc_32_user() case, which also requires correct
alignment of virtual address on kernel side to avoid D-caches aliases.
A bit of copy-paste from original patch to recover in memory of what is
all about:
When a vmalloc'd area is mmap'd into userspace, some kind of
co-ordination is necessary for this to work on platforms with cpu
D-caches which can have aliases.
Otherwise kernel side writes won't be seen properly in userspace and
vice versa.
If the kernel side mapping and the user side one have the same
alignment, modulo SHMLBA, this can work as long as VM_SHARED is shared
of VMA and for all current users this is true. VM_SHARED will force
SHMLBA alignment of the user side mmap on platforms with D-cache
aliasing matters.
David S. Miller
> What are the user-visible runtime effects of this change?
In simple words: proper alignment avoids possible difference in data,
seen by different virtual mapings: userspace and kernel in our case.
I.e. userspace reads cache line A, kernel writes to cache line B. Both
cache lines correspond to the same physical memory (thus aliases).
So this should fix data corruption for archs with vivt and vipt caches,
e.g. armv6. Personally I've never worked with this archs, I just
spotted the strange difference in code: for one case we do alignment,
for another - not. I have a strong feeling that David simply missed
vmalloc_32_user() case.
>
> Is a -stable backport needed?
No, I do not think so. The only one user of vmalloc_32_user() is
virtual frame buffer device drivers/video/fbdev/vfb.c, which has in the
description "The main use of this frame buffer device is testing and
debugging the frame buffer subsystem. Do NOT enable it for normal
systems!".
And it seems to me that this vfb.c does not need 32bit addressable pages
(vmalloc_32_user() case), because it is virtual device and should not
care about things like dma32 zones, etc. Probably is better to clean
the code and switch vfb.c from vmalloc_32_user() to vmalloc_user() case
and wipe out vmalloc_32_user() from vmalloc.c completely. But I'm not
very much sure that this is worth to do, that's so minor, so we can
leave it as is.
Link: http://lkml.kernel.org/r/20190108110944.23591-1-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two cases when put_cpu_partial() is invoked.
* __slab_free
* get_partial_node
This patch just makes it cover these two cases.
Link: http://lkml.kernel.org/r/20181025094437.18951-3-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an optimization for KSM pages almost in the same way that we have
for ordinary anonymous pages. If there is a write fault in a page,
which is mapped to an only pte, and it is not related to swap cache; the
page may be reused without copying its content.
[ Note that we do not consider PageSwapCache() pages at least for now,
since we don't want to complicate __get_ksm_page(), which has nice
optimization based on this (for the migration case). Currenly it is
spinning on PageSwapCache() pages, waiting for when they have
unfreezed counters (i.e., for the migration finish). But we don't want
to make it also spinning on swap cache pages, which we try to reuse,
since there is not a very high probability to reuse them. So, for now
we do not consider PageSwapCache() pages at all. ]
So in reuse_ksm_page() we check for 1) PageSwapCache() and 2)
page_stable_node(), to skip a page, which KSM is currently trying to
link to stable tree. Then we do page_ref_freeze() to prohibit KSM to
merge one more page into the page, we are reusing. After that, nobody
can refer to the reusing page: KSM skips !PageSwapCache() pages with
zero refcount; and the protection against of all other participants is
the same as for reused ordinary anon pages pte lock, page lock and
mmap_sem.
[akpm@linux-foundation.org: replace BUG_ON()s with WARN_ON()s]
Link: http://lkml.kernel.org/r/154471491016.31352.1168978849911555609.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_vmap_area() can return a NULL pointer and we're going to
dereference it without checking it first. Use the existing
find_vm_area() function which does exactly what we want and checks for
the NULL pointer.
Link: http://lkml.kernel.org/r/20181228171009.22269-1-liviu@dudau.co.uk
Fixes: f3c01d2f3a ("mm: vmalloc: avoid racy handling of debugobjects in vunmap")
Signed-off-by: Liviu Dudau <liviu@dudau.co.uk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When freeing pages are done with higher order, time spent on coalescing
pages by buddy allocator can be reduced. With section size of 256MB,
hot add latency of a single section shows improvement from 50-60 ms to
less than 1 ms, hence improving the hot add latency by 60 times. Modify
external providers of online callback to align with the change.
[arunks@codeaurora.org: v11]
Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org
[akpm@linux-foundation.org: remove unused local, per Arun]
[akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar]
[akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch]
[arunks@codeaurora.org: v8]
Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org
[arunks@codeaurora.org: v9]
Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org
Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"addr" function argument is not used in alloc_consistency_checks() at
all, so remove it.
Link: http://lkml.kernel.org/r/20190211123214.35592-1-cai@lca.pw
Fixes: becfda68ab ("slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak throws endless warnings during boot due to in
__alloc_alien_cache(),
alc = kmalloc_node(memsize, gfp, node);
init_arraycache(&alc->ac, entries, batch);
kmemleak_no_scan(ac);
Kmemleak does not track the array cache (alc->ac) but the alien cache
(alc) instead, so let it track the latter by lifting kmemleak_no_scan()
out of init_arraycache().
There is another place that calls init_arraycache(), but
alloc_kmem_cache_cpus() uses the percpu allocation where will never be
considered as a leak.
kmemleak: Found object by alias at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
lookup_object+0x84/0xac
find_and_get_object+0x84/0xe4
kmemleak_no_scan+0x74/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
kmemleak: Object 0xffff8007b9aa7e00 (size 256):
kmemleak: comm "swapper/0", pid 1, jiffies 4294697137
kmemleak: min_count = 1
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
kmemleak_alloc+0x84/0xb8
kmem_cache_alloc_node_trace+0x31c/0x3a0
__kmalloc_node+0x58/0x78
setup_kmem_cache_node+0x26c/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
kmemleak_no_scan+0x90/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw
Fixes: 1fe00d50a9 ("slab: factor out initialization of array cache")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
new_slab_objects() will return immediately if freelist is not NULL.
if (freelist)
return freelist;
One more assignment operation could be avoided.
Link: http://lkml.kernel.org/r/20181229062512.30469-1-rocking@whu.edu.cn
Signed-off-by: Peng Wang <rocking@whu.edu.cn>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kasan_p4d_table(), kasan_pmd_table() and kasan_pud_table() are declared
as returning bool, but return 0 instead of false, which produces a
coccinelle warning. Fix it.
Link: http://lkml.kernel.org/r/1fa6fadf644859e8a6a8ecce258444b49be8c7ee.1551716733.git.andreyknvl@google.com
Fixes: 0207df4fa1 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Building little-endian allmodconfig kernels on arm64 started failing
with the generated atomic.h implementation, since we now try to call
kasan helpers from the EFI stub:
aarch64-linux-gnu-ld: drivers/firmware/efi/libstub/arm-stub.stub.o: in function `atomic_set':
include/generated/atomic-instrumented.h:44: undefined reference to `__efistub_kasan_check_write'
I suspect that we get similar problems in other files that explicitly
disable KASAN for some reason but call atomic_t based helper functions.
We can fix this by checking the predefined __SANITIZE_ADDRESS__ macro
that the compiler sets instead of checking CONFIG_KASAN, but this in
turn requires a small hack in mm/kasan/common.c so we do see the extern
declaration there instead of the inline function.
Link: http://lkml.kernel.org/r/20181211133453.2835077-1-arnd@arndb.de
Fixes: b1864b828644 ("locking/atomics: build atomic headers as required")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>,
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN does not play well with the page poisoning (CONFIG_PAGE_POISONING).
It triggers false positives in the allocation path:
BUG: KASAN: use-after-free in memchr_inv+0x2ea/0x330
Read of size 8 at addr ffff88881f800000 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Not tainted 5.0.0-rc1+ #54
Call Trace:
dump_stack+0xe0/0x19a
print_address_description.cold.2+0x9/0x28b
kasan_report.cold.3+0x7a/0xb5
__asan_report_load8_noabort+0x19/0x20
memchr_inv+0x2ea/0x330
kernel_poison_pages+0x103/0x3d5
get_page_from_freelist+0x15e7/0x4d90
because KASAN has not yet unpoisoned the shadow page for allocation
before it checks memchr_inv() but only found a stale poison pattern.
Also, false positives in free path,
BUG: KASAN: slab-out-of-bounds in kernel_poison_pages+0x29e/0x3d5
Write of size 4096 at addr ffff8888112cc000 by task swapper/0/1
CPU: 5 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc1+ #55
Call Trace:
dump_stack+0xe0/0x19a
print_address_description.cold.2+0x9/0x28b
kasan_report.cold.3+0x7a/0xb5
check_memory_region+0x22d/0x250
memset+0x28/0x40
kernel_poison_pages+0x29e/0x3d5
__free_pages_ok+0x75f/0x13e0
due to KASAN adds poisoned redzones around slab objects, but the page
poisoning needs to poison the whole page.
Link: http://lkml.kernel.org/r/20190114233405.67843-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use after scope bugs detector seems to be almost entirely useless for
the linux kernel. It exists over two years, but I've seen only one
valid bug so far [1]. And the bug was fixed before it has been
reported. There were some other use-after-scope reports, but they were
false-positives due to different reasons like incompatibility with
structleak plugin.
This feature significantly increases stack usage, especially with GCC <
9 version, and causes a 32K stack overflow. It probably adds
performance penalty too.
Given all that, let's remove use-after-scope detector entirely.
While preparing this patch I've noticed that we mistakenly enable
use-after-scope detection for clang compiler regardless of
CONFIG_KASAN_EXTRA setting. This is also fixed now.
[1] http://lkml.kernel.org/r/<20171129052106.rhgbjhhis53hkgfn@wfg-t540p.sh.intel.com>
Link: http://lkml.kernel.org/r/20190111185842.13978-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Will Deacon <will.deacon@arm.com> [arm64]
Cc: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When soft_offline_in_use_page() runs on a thp tail page after pmd is
split, we trigger the following VM_BUG_ON_PAGE():
Memory failure: 0x3755ff: non anonymous thp
__get_any_page: 0x3755ff: unknown zero refcount page type 2fffff80000000
Soft offlining pfn 0x34d805 at process virtual address 0x20fff000
page:ffffea000d360140 count:0 mapcount:0 mapping:0000000000000000 index:0x1
flags: 0x2fffff80000000()
raw: 002fffff80000000 ffffea000d360108 ffffea000d360188 0000000000000000
raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(page_ref_count(page) == 0)
------------[ cut here ]------------
kernel BUG at ./include/linux/mm.h:519!
soft_offline_in_use_page() passed refcount and page lock from tail page
to head page, which is not needed because we can pass any subpage to
split_huge_page().
Naoya had fixed a similar issue in c3901e722b ("mm: hwpoison: fix thp
split handling in memory_failure()"). But he missed fixing soft
offline.
Link: http://lkml.kernel.org/r/1551452476-24000-1-git-send-email-zhongjiang@huawei.com
Fixes: 61f5d698cc ("mm: re-enable THP")
Signed-off-by: zhongjiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton:
"2 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
hugetlbfs: fix races and page leaks during migration
kasan: turn off asan-stack for clang-8 and earlier
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes: bcc5422230 ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
[mike.kravetz@oracle.com: v2]
Link: http://lkml.kernel.org/r/7534d322-d782-8ac6-1c8d-a8dc380eb3ab@oracle.com
[mike.kravetz@oracle.com: update comment and changelog]
Link: http://lkml.kernel.org/r/420bcfd6-158b-38e4-98da-26d0cd85bd01@oracle.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mm/resource.c code is used to manage the physical address
space. The current resource configuration can be viewed in
/proc/iomem. An example of this is at the bottom of this
description.
The nvdimm subsystem "owns" the physical address resources which
map to persistent memory and has resources inserted for them as
"Persistent Memory". The best way to repurpose this for volatile
use is to leave the existing resource in place, but add a "System
RAM" resource underneath it. This clearly communicates the
ownership relationship of this memory.
The request_resource_conflict() API only deals with the
top-level resources. Replace it with __request_region() which
will search for !IORESOURCE_BUSY areas lower in the resource
tree than the top level.
We *could* also simply truncate the existing top-level
"Persistent Memory" resource and take over the released address
space. But, this means that if we ever decide to hot-unplug the
"RAM" and give it back, we need to recreate the original setup,
which may mean going back to the BIOS tables.
This should have no real effect on the existing collision
detection because the areas that truly conflict should be marked
IORESOURCE_BUSY.
00000000-00000fff : Reserved
00001000-0009fbff : System RAM
0009fc00-0009ffff : Reserved
000a0000-000bffff : PCI Bus 0000:00
000c0000-000c97ff : Video ROM
000c9800-000ca5ff : Adapter ROM
000f0000-000fffff : Reserved
000f0000-000fffff : System ROM
00100000-9fffffff : System RAM
01000000-01e071d0 : Kernel code
01e071d1-027dfdff : Kernel data
02dc6000-0305dfff : Kernel bss
a0000000-afffffff : Persistent Memory (legacy)
a0000000-a7ffffff : System RAM
b0000000-bffdffff : System RAM
bffe0000-bfffffff : Reserved
c0000000-febfffff : PCI Bus 0000:00
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
HMM consumes physical address space for its own use, even
though nothing is mapped or accessible there. It uses a
special resource description (IORES_DESC_DEVICE_PRIVATE_MEMORY)
to uniquely identify these areas.
When HMM consumes address space, it makes a best guess about
what to consume. However, it is possible that a future memory
or device hotplug can collide with the reserved area. In the
case of these conflicts, there is an error message in
register_memory_resource().
Later patches in this series move register_memory_resource()
from using request_resource_conflict() to __request_region().
Unfortunately, __request_region() does not return the conflict
like the previous function did, which makes it impossible to
check for IORES_DESC_DEVICE_PRIVATE_MEMORY in a conflicting
resource.
Instead of warning in register_memory_resource(), move the
check into the core resource code itself (__request_region())
where the conflicting resource _is_ available. This has the
added bonus of producing a warning in case of HMM conflicts
with devices *or* RAM address space, as opposed to the RAM-
only warnings that were there previously.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
security_mmap_addr() does a capability check with current_cred(), but
we can reach this code from contexts like a VFS write handler where
current_cred() must not be used.
This can be abused on systems without SMAP to make NULL pointer
dereferences exploitable again.
Fixes: 8869477a49 ("security: protect from stack expansion into low vm addresses")
Cc: stable@kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu-km is used on UP systems which only has one group,
so the group offset will be always 0, there is no need
to subtract pcpu_group_offsets[0] when assigning chunk->base_addr
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
When we made the shmem_reserve_inode call in shmem_link conditional, we
forgot to update the declaration for ret so that it always has a known
value. Dan Carpenter pointed out this deficiency in the original patch.
Fixes: 1062af920c ("tmpfs: fix link accounting when a tmpfile is linked in")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Matej Kupljen <matej.kupljen@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 9da3f2b740.
It was well-intentioned, but wrong. Overriding the exception tables for
instructions for random reasons is just wrong, and that is what the new
code did.
It caused problems for tracing, and it caused problems for strncpy_from_user(),
because the new checks made perfectly valid use cases break, rather than
catch things that did bad things.
Unchecked user space accesses are a problem, but that's not a reason to
add invalid checks that then people have to work around with silly flags
(in this case, that 'kernel_uaccess_faults_ok' flag, which is just an
odd way to say "this commit was wrong" and was sprinked into random
places to hide the wrongness).
The real fix to unchecked user space accesses is to get rid of the
special "let's not check __get_user() and __put_user() at all" logic.
Make __{get|put}_user() be just aliases to the regular {get|put}_user()
functions, and make it impossible to access user space without having
the proper checks in places.
The raison d'être of the special double-underscore versions used to be
that the range check was expensive, and if you did multiple user
accesses, you'd do the range check up front (like the signal frame
handling code, for example). But SMAP (on x86) and PAN (on ARM) have
made that optimization pointless, because the _real_ expense is the "set
CPU flag to allow user space access".
Do let's not break the valid cases to catch invalid cases that shouldn't
even exist.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
group_cnt array is defined with NR_CPUS entries, but normally
nr_groups will not reach up to NR_CPUS. So there is no issue
to the current code.
Checking other parts of pcpu_build_alloc_info, use nr_groups as
check condition, so make it consistent to use 'group < nr_groups'
as for loop check. In case we do have nr_groups equals with NR_CPUS,
we could also avoid memory access out of bounds.
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Rong Chen has reported the following boot crash:
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
RIP: 0010:page_mapping+0x12/0x80
Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48
RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202
RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a
RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000
RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13
R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000
R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001
FS: 00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0
Call Trace:
__dump_page+0x14/0x2c0
is_mem_section_removable+0x24c/0x2c0
removable_show+0x87/0xa0
dev_attr_show+0x25/0x60
sysfs_kf_seq_show+0xba/0x110
seq_read+0x196/0x3f0
__vfs_read+0x34/0x180
vfs_read+0xa0/0x150
ksys_read+0x44/0xb0
do_syscall_64+0x5e/0x4a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
and bisected it down to commit efad4e475c ("mm, memory_hotplug:
is_mem_section_removable do not pass the end of a zone").
The reason for the crash is that the mapping is garbage for poisoned
(uninitialized) page. This shouldn't happen as all pages in the zone's
boundary should be initialized.
Later debugging revealed that the actual problem is an off-by-one when
evaluating the end_page. 'start_pfn + nr_pages' resp 'zone_end_pfn'
refers to a pfn after the range and as such it might belong to a
differen memory section.
This along with CONFIG_SPARSEMEM then makes the loop condition
completely bogus because a pointer arithmetic doesn't work for pages
from two different sections in that memory model.
Fix the issue by reworking is_pageblock_removable to be pfn based and
only use struct page where necessary. This makes the code slightly
easier to follow and we will remove the problematic pointer arithmetic
completely.
Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org
Fixes: efad4e475c ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: <rong.a.chen@intel.com>
Tested-by: <rong.a.chen@intel.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memdump_user usually gets fed unchecked userspace input. Blasting a
full backtrace into dmesg every time is a bit excessive - I'm not sure
on the kernel rule in general, but at least in drm we're trying not to
let unpriviledge userspace spam the logs freely. Definitely not entire
warning backtraces.
It also means more filtering for our CI, because our testsuite exercises
these corner cases and so hits these a lot.
Link: http://lkml.kernel.org/r/20190220204058.11676-1-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Stancek <jstancek@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Bartosz Golaszewski <brgl@bgdev.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similarly to commit 96fedce27e ("kasan: make tag based mode work with
CONFIG_HARDENED_USERCOPY"), we need to reset pointer tags in
__check_heap_object() in mm/slab.c before doing any pointer math.
Link: http://lkml.kernel.org/r/9a5c0f958db10e69df5ff9f2b997866b56b7effc.1550602886.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgeniy Stepanov <eugenis@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two issues with assigning random percpu seeds right now:
1. We use for_each_possible_cpu() to iterate over cpus, but cpumask is
not set up yet at the moment of kasan_init(), and thus we only set
the seed for cpu #0.
2. A call to get_random_u32() always returns the same number and produces
a message in dmesg, since the random subsystem is not yet initialized.
Fix 1 by calling kasan_init_tags() after cpumask is set up.
Fix 2 by using get_cycles() instead of get_random_u32(). This gives us
lower quality random numbers, but it's good enough, as KASAN is meant to
be used as a debugging tool and not a mitigation.
Link: http://lkml.kernel.org/r/1f815cc914b61f3516ed4cc9bfd9eeca9bd5d9de.1550677973.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tmpfs has a peculiarity of accounting hard links as if they were
separate inodes: so that when the number of inodes is limited, as it is
by default, a user cannot soak up an unlimited amount of unreclaimable
dcache memory just by repeatedly linking a file.
But when v3.11 added O_TMPFILE, and the ability to use linkat() on the
fd, we missed accommodating this new case in tmpfs: "df -i" shows that
an extra "inode" remains accounted after the file is unlinked and the fd
closed and the actual inode evicted. If a user repeatedly links
tmpfiles into a tmpfs, the limit will be hit (ENOSPC) even after they
are deleted.
Just skip the extra reservation from shmem_link() in this case: there's
a sense in which this first link of a tmpfile is then cheaper than a
hard link of another file, but the accounting works out, and there's
still good limiting, so no need to do anything more complicated.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1902182134370.7035@eggly.anvils
Fixes: f4e0c30c19 ("allow the temp files created by open() to be linked to")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Matej Kupljen <matej.kupljen@gmail.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since for_each_cpu(cpu, mask) added by commit 2d3854a37e
("cpumask: introduce new API, without changing anything") did not
evaluate the mask argument if NR_CPUS == 1 due to CONFIG_SMP=n,
lru_add_drain_all() is hitting WARN_ON() at __flush_work() added by
commit 4d43d395fe ("workqueue: Try to catch flush_work() without
INIT_WORK().") by unconditionally calling flush_work() [1].
Workaround this issue by using CONFIG_SMP=n specific lru_add_drain_all
implementation. There is no real need to defer the implementation to
the workqueue as the draining is going to happen on the local cpu. So
alias lru_add_drain_all to lru_add_drain which does all the necessary
work.
[akpm@linux-foundation.org: fix various build warnings]
[1] https://lkml.kernel.org/r/18a30387-6aa5-6123-e67c-57579ecc3f38@roeck-us.net
Link: http://lkml.kernel.org/r/20190213124334.GH4525@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Debugged-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yury Norov reported that an arm64 KVM instance could not boot since
after v5.0-rc1 and could addressed by reverting the patches
1c30844d2d ("mm: reclaim small amounts of memory when an external
73444bc4d8 ("mm, page_alloc: do not wake kswapd with zone lock held")
The problem is that a division by zero error is possible if boosting
occurs very early in boot if the system has very little memory. This
patch avoids the division by zero error.
Link: http://lkml.kernel.org/r/20190213143012.GT9565@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Evaluating page_mapping() on a poisoned page ends up dereferencing junk
and making PF_POISONED_CHECK() considerably crashier than intended:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000006
Mem abort info:
ESR = 0x96000005
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000005
CM = 0, WnR = 0
user pgtable: 4k pages, 39-bit VAs, pgdp = 00000000c2f6ac38
[0000000000000006] pgd=0000000000000000, pud=0000000000000000
Internal error: Oops: 96000005 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 491 Comm: bash Not tainted 5.0.0-rc1+ #1
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Dec 17 2018
pstate: 00000005 (nzcv daif -PAN -UAO)
pc : page_mapping+0x18/0x118
lr : __dump_page+0x1c/0x398
Process bash (pid: 491, stack limit = 0x000000004ebd4ecd)
Call trace:
page_mapping+0x18/0x118
__dump_page+0x1c/0x398
dump_page+0xc/0x18
remove_store+0xbc/0x120
dev_attr_store+0x18/0x28
sysfs_kf_write+0x40/0x50
kernfs_fop_write+0x130/0x1d8
__vfs_write+0x30/0x180
vfs_write+0xb4/0x1a0
ksys_write+0x60/0xd0
__arm64_sys_write+0x18/0x20
el0_svc_common+0x94/0xf8
el0_svc_handler+0x68/0x70
el0_svc+0x8/0xc
Code: f9400401 d1000422 f240003f 9a801040 (f9400402)
---[ end trace cdb5eb5bf435cecb ]---
Fix that by not inspecting the mapping until we've determined that it's
likely to be valid. Now the above condition still ends up stopping the
kernel, but in the correct manner:
page:ffffffbf20000000 is uninitialized and poisoned
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
------------[ cut here ]------------
kernel BUG at ./include/linux/mm.h:1006!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 483 Comm: bash Not tainted 5.0.0-rc1+ #3
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Dec 17 2018
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : remove_store+0xbc/0x120
lr : remove_store+0xbc/0x120
...
Link: http://lkml.kernel.org/r/03b53ee9d7e76cda4b9b5e1e31eea080db033396.1550071778.git.robin.murphy@arm.com
Fixes: 1c6fb1d89e ("mm: print more information about mapping in __dump_page")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>