17292 Commits

Author SHA1 Message Date
SeongJae Park
d7d0ec85e9 mm/damon/dbgfs: support quotas of schemes
This makes the debugfs interface of DAMON support the scheme quotas by
chaning the format of the input for the schemes file.

Link: https://lkml.kernel.org/r/20211019150731.16699-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
1cd2430300 mm/damon/schemes: implement time quota
The size quota feature of DAMOS is useful for IO resource-critical
systems, but not so intuitive for CPU time-critical systems.  Systems
using zram or zswap-like swap device would be examples.

To provide another intuitive ways for such systems, this implements
time-based quota for DAMON-based Operation Schemes.  If the quota is
set, DAMOS tries to use only up to the user-defined quota of CPU time
within a given time window.

Link: https://lkml.kernel.org/r/20211019150731.16699-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
50585192bc mm/damon/schemes: skip already charged targets and regions
If DAMOS has stopped applying action in the middle of a group of memory
regions due to its size quota, it starts the work again from the
beginning of the address space in the next charge window.  If there is a
huge memory region at the beginning of the address space and it fulfills
the scheme's target data access pattern always, the action will applied
to only the region.

This mitigates the case by skipping memory regions that charged in
current charge window at the beginning of next charge window.

Link: https://lkml.kernel.org/r/20211019150731.16699-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
2b8a248d58 mm/damon/schemes: implement size quota for schemes application speed control
There could be arbitrarily large memory regions fulfilling the target
data access pattern of a DAMON-based operation scheme.  In the case,
applying the action of the scheme could incur too high overhead.  To
provide an intuitive way for avoiding it, this implements a feature
called size quota.  If the quota is set, DAMON tries to apply the action
only up to the given amount of memory regions within a given time
window.

Link: https://lkml.kernel.org/r/20211019150731.16699-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
57223ac295 mm/damon/paddr: support the pageout scheme
Introduction
============

This patchset 1) makes the engine for general data access
pattern-oriented memory management (DAMOS) be more useful for production
environments, and 2) implements a static kernel module for lightweight
proactive reclamation using the engine.

Proactive Reclamation
---------------------

On general memory over-committed systems, proactively reclaiming cold
pages helps saving memory and reducing latency spikes that incurred by
the direct reclaim or the CPU consumption of kswapd, while incurring
only minimal performance degradation[2].

A Free Pages Reporting[8] based memory over-commit virtualization system
would be one more specific use case.  In the system, the guest VMs
reports their free memory to host, and the host reallocates the reported
memory to other guests.  As a result, the system's memory utilization
can be maximized.  However, the guests could be not so memory-frugal,
because some kernel subsystems and user-space applications are designed
to use as much memory as available.  Then, guests would report only
small amount of free memory to host, results in poor memory utilization.
Running the proactive reclamation in such guests could help mitigating
this problem.

Google has also implemented this idea and using it in their data center.
They further proposed upstreaming it in LSFMM'19, and "the general
consensus was that, while this sort of proactive reclaim would be useful
for a number of users, the cost of this particular solution was too high
to consider merging it upstream"[3].  The cost mainly comes from the
coldness tracking.  Roughly speaking, the implementation periodically
scans the 'Accessed' bit of each page.  For the reason, the overhead
linearly increases as the size of the memory and the scanning frequency
grows.  As a result, Google is known to dedicating one CPU for the work.
That's a reasonable option to someone like Google, but it wouldn't be so
to some others.

DAMON and DAMOS: An engine for data access pattern-oriented memory management
-----------------------------------------------------------------------------

DAMON[4] is a framework for general data access monitoring.  Its
adaptive monitoring overhead control feature minimizes its monitoring
overhead.  It also let the upper-bound of the overhead be configurable
by clients, regardless of the size of the monitoring target memory.
While monitoring 70 GiB memory of a production system every 5
milliseconds, it consumes less than 1% single CPU time.  For this, it
could sacrify some of the quality of the monitoring results.
Nevertheless, the lower-bound of the quality is configurable, and it
uses a best-effort algorithm for better quality.  Our test results[5]
show the quality is practical enough.  From the production system
monitoring, we were able to find a 4 KiB region in the 70 GiB memory
that shows highest access frequency.

We normally don't monitor the data access pattern just for fun but to
improve something like memory management.  Proactive reclamation is one
such usage.  For such general cases, DAMON provides a feature called
DAMon-based Operation Schemes (DAMOS)[6].  It makes DAMON an engine for
general data access pattern oriented memory management.  Using this,
clients can ask DAMON to find memory regions of specific data access
pattern and apply some memory management action (e.g., page out, move to
head of the LRU list, use huge page, ...).  We call the request
'scheme'.

Proactive Reclamation on top of DAMON/DAMOS
-------------------------------------------

Therefore, by using DAMON for the cold pages detection, the proactive
reclamation's monitoring overhead issue can be solved.  Actually, we
previously implemented a version of proactive reclamation using DAMOS
and achieved noticeable improvements with our evaluation setup[5].
Nevertheless, it more for a proof-of-concept, rather than production
uses.  It supports only virtual address spaces of processes, and require
additional tuning efforts for given workloads and the hardware.  For the
tuning, we introduced a simple auto-tuning user space tool[8].  Google
is also known to using a ML-based similar approach for their fleets[2].
But, making it just works with intuitive knobs in the kernel would be
helpful for general users.

To this end, this patchset improves DAMOS to be ready for such
production usages, and implements another version of the proactive
reclamation, namely DAMON_RECLAIM, on top of it.

DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks
--------------------------------------------------------------------------

First of all, the current version of DAMOS supports only virtual address
spaces.  This patchset makes it supports the physical address space for
the page out action.

Next major problem of the current version of DAMOS is the lack of the
aggressiveness control, which can results in arbitrary overhead.  For
example, if huge memory regions having the data access pattern of
interest are found, applying the requested action to all of the regions
could incur significant overhead.  It can be controlled by tuning the
target data access pattern with manual or automated approaches[2,7].
But, some people would prefer the kernel to just work with only
intuitive tuning or default values.

For such cases, this patchset implements a safeguard, namely time/size
quota.  Using this, the clients can specify up to how much time can be
used for applying the action, and/or up to how much memory regions the
action can be applied within a user-specified time duration.  A followup
question is, to which memory regions should the action applied within
the limits? We implement a simple regions prioritization mechanism for
each action and make DAMOS to apply the action to high priority regions
first.  It also allows clients tune the prioritization mechanism to use
different weights for size, access frequency, and age of memory regions.
This means we could use not only LRU but also LFU or some fancy
algorithms like CAR[9] with lightweight overhead.

Though DAMON is lightweight, someone would want to remove even the cold
pages monitoring overhead when it is unnecessary.  Currently, it should
manually turned on and off by clients, but some clients would simply
want to turn it on and off based on some metrics like free memory ratio
or memory fragmentation.  For such cases, this patchset implements a
watermarks-based automatic activation feature.  It allows the clients
configure the metric of their interest, and three watermarks of the
metric.  If the metric is higher than the high watermark or lower than
the low watermark, the scheme is deactivated.  If the metric is lower
than the mid watermark but higher than the low watermark, the scheme is
activated.

DAMON-based Reclaim
-------------------

Using the improved version of DAMOS, this patchset implements a static
kernel module called 'damon_reclaim'.  It finds memory regions that
didn't accessed for specific time duration and page out.  Consuming too
much CPU for the paging out operations, or doing pageout too frequently
can be critical for systems configuring their swap devices with
software-defined in-memory block devices like zram/zswap or total number
of writes limited devices like SSDs, respectively.  To avoid the
problems, the time/size quotas can be configured.  Under the quotas, it
pages out memory regions that didn't accessed longer first.  Also, to
remove the monitoring overhead under peaceful situation, and to fall
back to the LRU-list based page granularity reclamation when it doesn't
make progress, the three watermarks based activation mechanism is used,
with the free memory ratio as the watermark metric.

For convenient configurations, it provides several module parameters.
Using these, sysadmins can enable/disable it, and tune its parameters
including the coldness identification time threshold, the time/size
quotas and the three watermarks.

Evaluation
==========

In short, DAMON_RECLAIM with 50ms/s time quota and regions
prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves
38.58% memory saving with only 1.94% runtime overhead.  For this,
DAMON_RECLAIM consumes only 4.97% of single CPU time.

Setup
-----

We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements
make effect.  For this, we measure DAMON_RECLAIM's CPU consumption,
entire system memory footprint, total number of major page faults, and
runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark
suites on my QEMU/KVM based virtual machine.  The virtual machine runs
on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel
built on latest -mm tree[1] plus this patchset.  It also utilizes a 4
GiB ZRAM swap device.  We repeats the measurement 5 times and use
averages.

[1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55

Detailed Results
----------------

The results are summarized in the below table.

With coldness identification threshold of 5 seconds, DAMON_RECLAIM
without the time quota-based speed limit achieves 47.21% memory saving,
but incur 4.59% runtime slowdown to the workloads on average.  For this,
DAMON_RECLAIM consumes about 11.28% single CPU time.

Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions
prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%,
respectively.  Time quota of 200ms/s (20%) makes no real change compared
to the quota unapplied version, because the quota unapplied version
consumes only 11.28% CPU time.  DAMON_RECLAIM's CPU utilization also
similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time.  That
is, the overhead is proportional to the speed limit.  Nevertheless, it
also reduces the memory saving because it becomes less aggressive.  In
detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving,
respectively.

Applying the regions prioritization (page out regions that not accessed
longer first within the time quota) further reduces the performance
degradation.  Runtime slowdowns and total number of major page faults
increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s),
2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% ->
2.08%/8,781.75% (10ms/s).  The runtime under 10ms/s time quota has
increased with prioritization, but apparently that's under the margin of
error.

    time quota   prioritization  memory_saving  cpu_util  slowdown  pgmajfaults overhead
    N            N               47.21%         11.28%    4.59%     194,802%
    200ms/s      N               48.76%         11.24%    4.89%     218,690%
    50ms/s       N               37.83%         5.51%     2.65%     111,886%
    10ms/s       N               7.85%          2.01%     1.5%      34,793.40%
    200ms/s      Y               50.08%         10.38%    4.39%     166,136%
    50ms/s       Y               38.58%         4.97%     1.94%     59,053%
    10ms/s       Y               3.63%          1.73%     2.08%     8,781.75%

Baseline and Complete Git Trees
===============================

The patches are based on the latest -mm tree
(v5.15-rc5-mmots-2021-10-13-19-55).  You can also clone the complete git tree
from:

    $ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1

The web is also available:
https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1

Sequence Of Patches
===================

The first patch makes DAMOS support the physical address space for the
page out action.  Following five patches (patches 2-6) implement the
time/size quotas.  Next four patches (patches 7-10) implement the memory
regions prioritization within the limit.  Then, three following patches
(patches 11-13) implement the watermarks-based schemes activation.

Finally, the last two patches (patches 14-15) implement and document the
DAMON-based reclamation using the advanced DAMOS.

[1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html
[2] https://research.google/pubs/pub48551/
[3] https://lwn.net/Articles/787611/
[4] https://damonitor.github.io
[5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html
[6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/
[7] https://github.com/awslabs/damoos
[8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
[9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement

This patch (of 15):

This makes the DAMON primitives for physical address space support the
pageout action for DAMON-based Operation Schemes.  With this commit,
hence, users can easily implement system-level data access-aware
reclamations using DAMOS.

[sj@kernel.org: fix missing-prototype build warning]
  Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org

Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
Rongwei Wang
9210622ab8 mm/damon/dbgfs: remove unnecessary variables
In some functions, it's unnecessary to declare 'err' and 'ret' variables
at the same time.  This patch mainly to simplify the issue of such
declarations by reusing one variable.

Link: https://lkml.kernel.org/r/20211014073014.35754-1-sj@kernel.org
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
Rikard Falkeborn
199b50f4c9 mm/damon/vaddr: constify static mm_walk_ops
The only usage of these structs is to pass their addresses to
walk_page_range(), which takes a pointer to const mm_walk_ops as
argument.  Make them const to allow the compiler to put them in
read-only memory.

Link: https://lkml.kernel.org/r/20211014075042.17174-2-rikard.falkeborn@gmail.com
Signed-off-by: Rikard Falkeborn <rikard.falkeborn@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
c026291ab8 mm/damon/dbgfs: support physical memory monitoring
This makes the 'damon-dbgfs' to support the physical memory monitoring,
in addition to the virtual memory monitoring.

Users can do the physical memory monitoring by writing a special
keyword, 'paddr' to the 'target_ids' debugfs file.  Then, DAMON will
check the special keyword and configure the monitoring context to run
with the primitives for the physical address space.

Unlike the virtual memory monitoring, the monitoring target region will
not be automatically set.  Therefore, users should also set the
monitoring target address region using the 'init_regions' debugfs file.

Also, note that the physical memory monitoring will not automatically
terminated.  The user should explicitly turn off the monitoring by
writing 'off' to the 'monitor_on' debugfs file.

Link: https://lkml.kernel.org/r/20211012205711.29216-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
a28397beb5 mm/damon: implement primitives for physical address space monitoring
This implements the monitoring primitives for the physical memory
address space.  Internally, it uses the PTE Accessed bit, similar to
that of the virtual address spaces monitoring primitives.  It supports
only user memory pages, as idle pages tracking does.  If the monitoring
target physical memory address range contains non-user memory pages,
access check of the pages will do nothing but simply treat the pages as
not accessed.

Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:45 -07:00
SeongJae Park
46c3a0accd mm/damon/vaddr: separate commonly usable functions
This moves functions in the default virtual address spaces monitoring
primitives that commonly usable from other address spaces like physical
address space into a header file.  Those will be reused by the physical
address space monitoring primitives which will be implemented by the
following commit.

[sj@kernel.org: include 'highmem.h' to fix a build failure]
  Link: https://lkml.kernel.org/r/20211014110848.5204-1-sj@kernel.org

Link: https://lkml.kernel.org/r/20211012205711.29216-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
1c2e11bfa6 mm/damon/dbgfs-test: add a unit test case for 'init_regions'
This adds another test case for the new feature, 'init_regions'.

Link: https://lkml.kernel.org/r/20211012205711.29216-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
90bebce9fc mm/damon/dbgfs: allow users to set initial monitoring target regions
Patch series "DAMON: Support Physical Memory Address Space Monitoring:.

DAMON currently supports only virtual address spaces monitoring.  It can
be easily extended for various use cases and address spaces by
configuring its monitoring primitives layer to use appropriate
primitives implementations, though.  This patchset implements monitoring
primitives for the physical address space monitoring using the
structure.

The first 3 patches allow the user space users manually set the
monitoring regions.  The 1st patch implements the feature in the
'damon-dbgfs'.  Then, patches for adding a unit tests (the 2nd patch)
and updating the documentation (the 3rd patch) follow.

Following 4 patches implement the physical address space monitoring
primitives.  The 4th patch makes some primitive functions for the
virtual address spaces primitives reusable.  The 5th patch implements
the physical address space monitoring primitives.  The 6th patch links
the primitives to the 'damon-dbgfs'.  Finally, 7th patch documents this
new features.

This patch (of 7):

Some 'damon-dbgfs' users would want to monitor only a part of the entire
virtual memory address space.  The program interface users in the kernel
space could use '->before_start()' callback or set the regions inside
the context struct as they want, but 'damon-dbgfs' users cannot.

For that reason, this introduces a new debugfs file called
'init_region'.  'damon-dbgfs' users can specify which initial monitoring
target address regions they want by writing special input to the file.
The input should describe each region in each line in the below form:

    <pid> <start address> <end address>

Note that the regions will be updated to cover entire memory mapped
regions after a 'regions update interval' is passed.  If you want the
regions to not be updated after the initial setting, you could set the
interval as a very long time, say, a few decades.

Link: https://lkml.kernel.org/r/20211012205711.29216-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211012205711.29216-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rienjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
2f0b548c9f mm/damon/schemes: implement statistics feature
To tune the DAMON-based operation schemes, knowing how many and how
large regions are affected by each of the schemes will be helful.  Those
stats could be used for not only the tuning, but also monitoring of the
working set size and the number of regions, if the scheme does not
change the program behavior too much.

For the reason, this implements the statistics for the schemes.  The
total number and size of the regions that each scheme is applied are
exported to users via '->stat_count' and '->stat_sz' of 'struct damos'.
Admins can also check the number by reading 'schemes' debugfs file.  The
last two integers now represents the stats.  To allow collecting the
stats without changing the program behavior, this also adds new scheme
action, 'DAMOS_STAT'.  Note that 'DAMOS_STAT' is not only making no
memory operation actions, but also does not reset the age of regions.

Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
af122dd8f3 mm/damon/dbgfs: support DAMON-based Operation Schemes
This makes 'damon-dbgfs' to support the data access monitoring oriented
memory management schemes.  Users can read and update the schemes using
``<debugfs>/damon/schemes`` file.  The format is::

    <min/max size> <min/max access frequency> <min/max age> <action>

Link: https://lkml.kernel.org/r/20211001125604.29660-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
6dea8add4d mm/damon/vaddr: support DAMON-based Operation Schemes
This makes DAMON's default primitives for virtual address spaces to
support DAMON-based Operation Schemes (DAMOS) by implementing actions
application functions and registering it to the monitoring context.  The
implementation simply links 'madvise()' for related DAMOS actions.  That
is, 'madvise(MADV_WILLNEED)' is called for 'WILLNEED' DAMOS action and
similar for other actions ('COLD', 'PAGEOUT', 'HUGEPAGE', 'NOHUGEPAGE').

So, the kernel space DAMON users can now use the DAMON-based
optimizations with only small amount of code.

Link: https://lkml.kernel.org/r/20211001125604.29660-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
1f366e421c mm/damon/core: implement DAMON-based Operation Schemes (DAMOS)
In many cases, users might use DAMON for simple data access aware memory
management optimizations such as applying an operation scheme to a
memory region of a specific size having a specific access frequency for
a specific time.  For example, "page out a memory region larger than 100
MiB but having a low access frequency more than 10 minutes", or "Use THP
for a memory region larger than 2 MiB having a high access frequency for
more than 2 seconds".

Most simple form of the solution would be doing offline data access
pattern profiling using DAMON and modifying the application source code
or system configuration based on the profiling results.  Or, developing
a daemon constructed with two modules (one for access monitoring and the
other for applying memory management actions via mlock(), madvise(),
sysctl, etc) is imaginable.

To avoid users spending their time for implementation of such simple
data access monitoring-based operation schemes, this makes DAMON to
handle such schemes directly.  With this change, users can simply
specify their desired schemes to DAMON.  Then, DAMON will automatically
apply the schemes to the user-specified target processes.

Each of the schemes is composed with conditions for filtering of the
target memory regions and desired memory management action for the
target.  Specifically, the format is::

    <min/max size> <min/max access frequency> <min/max age> <action>

The filtering conditions are size of memory region, number of accesses
to the region monitored by DAMON, and the age of the region.  The age of
region is incremented periodically but reset when its addresses or
access frequency has significantly changed or the action of a scheme was
applied.  For the action, current implementation supports a few of
madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``,
and ``NOHUGEPAGE``.

Because DAMON supports various address spaces and application of the
actions to a monitoring target region is dependent to the type of the
target address space, the application code should be implemented by each
primitives and registered to the framework.  Note that this only
implements the framework part.  Following commit will implement the
action applications for virtual address spaces primitives.

Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
fda504fade mm/damon/core: account age of target regions
Patch series "Implement Data Access Monitoring-based Memory Operation Schemes".

Introduction
============

DAMON[1] can be used as a primitive for data access aware memory
management optimizations.  For that, users who want such optimizations
should run DAMON, read the monitoring results, analyze it, plan a new
memory management scheme, and apply the new scheme by themselves.  Such
efforts will be inevitable for some complicated optimizations.

However, in many other cases, the users would simply want the system to
apply a memory management action to a memory region of a specific size
having a specific access frequency for a specific time.  For example,
"page out a memory region larger than 100 MiB keeping only rare accesses
more than 2 minutes", or "Do not use THP for a memory region larger than
2 MiB rarely accessed for more than 1 seconds".

To make the works easier and non-redundant, this patchset implements a
new feature of DAMON, which is called Data Access Monitoring-based
Operation Schemes (DAMOS).  Using the feature, users can describe the
normal schemes in a simple way and ask DAMON to execute those on its
own.

[1] https://damonitor.github.io

Evaluations
===========

DAMOS is accurate and useful for memory management optimizations.  An
experimental DAMON-based operation scheme for THP, 'ethp', removes
76.15% of THP memory overheads while preserving 51.25% of THP speedup.
Another experimental DAMON-based 'proactive reclamation' implementation,
'prcl', reduces 93.38% of residential sets and 23.63% of system memory
footprint while incurring only 1.22% runtime overhead in the best case
(parsec3/freqmine).

NOTE that the experimental THP optimization and proactive reclamation
are not for production but only for proof of concepts.

Please refer to the showcase web site's evaluation document[1] for
detailed evaluation setup and results.

[1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html

Long-term Support Trees
-----------------------

For people who want to test DAMON but using LTS kernels, there are
another couple of trees based on two latest LTS kernels respectively and
containing the 'damon/master' backports.

- For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y
- For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y

Sequence Of Patches
===================

The 1st patch accounts age of each region.  The 2nd patch implements the
core of the DAMON-based operation schemes feature.  The 3rd patch makes
the default monitoring primitives for virtual address spaces to support
the schemes.  From this point, the kernel space users can use DAMOS.
The 4th patch exports the feature to the user space via the debugfs
interface.  The 5th patch implements schemes statistics feature for
easier tuning of the schemes and runtime access pattern analysis, and
the 6th patch adds selftests for these changes.  Finally, the 7th patch
documents this new feature.

This patch (of 7):

DAMON can be used for data access pattern aware memory management
optimizations.  For that, users should run DAMON, read the monitoring
results, analyze it, plan a new memory management scheme, and apply the
new scheme by themselves.  It would not be too hard, but still require
some level of effort.  For complicated cases, this effort is inevitable.

That said, in many cases, users would simply want to apply an actions to
a memory region of a specific size having a specific access frequency
for a specific time.  For example, "page out a memory region larger than
100 MiB but having a low access frequency more than 10 minutes", or "Use
THP for a memory region larger than 2 MiB having a high access frequency
for more than 2 seconds".

For such optimizations, users will need to first account the age of each
region themselves.  To reduce such efforts, this implements a simple age
account of each region in DAMON.  For each aggregation step, DAMON
compares the access frequency with that from last aggregation and reset
the age of the region if the change is significant.  Else, the age is
incremented.  Also, in case of the merge of regions, the region
size-weighted average of the ages is set as the age of merged new
region.

Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rienjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
Colin Ian King
7ec1992b89 mm/damon/core: nullify pointer ctx->kdamond with a NULL
Currently a plain integer is being used to nullify the pointer
ctx->kdamond.  Use NULL instead.  Cleans up sparse warning:

  mm/damon/core.c:317:40: warning: Using plain integer as NULL pointer

Link: https://lkml.kernel.org/r/20210925215908.181226-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
Changbin Du
42e4cef5fe mm/damon: needn't hold kdamond_lock to print pid of kdamond
Just get the pid by 'current->pid'.  Meanwhile, to be symmetrical make
the 'starts' and 'finishes' logs both use debug level.

Link: https://lkml.kernel.org/r/20210927232432.17750-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
Changbin Du
5f7fe2b9b8 mm/damon: remove unnecessary do_exit() from kdamond
Just return from the kthread function.

Link: https://lkml.kernel.org/r/20210927232421.17694-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
SeongJae Park
704571f997 mm/damon/core: print kdamond start log in debug mode only
Logging of kdamond startup is using 'pr_info()' unnecessarily.  This
makes it to use 'pr_debug()' instead.

Link: https://lkml.kernel.org/r/20210917123958.3819-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:44 -07:00
Geert Uytterhoeven
f24b062607 mm/damon: grammar s/works/work/
Correct a singular versus plural grammar mistake in the help text for
the DAMON_VADDR config symbol.

Link: https://lkml.kernel.org/r/20210914073451.3883834-1-geert@linux-m68k.org
Fixes: 3f49584b262cf8f4 ("mm/damon: implement primitives for the virtual memory address spaces")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
07e8481d3c kfence: always use static branches to guard kfence_alloc()
Regardless of KFENCE mode (CONFIG_KFENCE_STATIC_KEYS: either using
static keys to gate allocations, or using a simple dynamic branch),
always use a static branch to avoid the dynamic branch in kfence_alloc()
if KFENCE was disabled at boot.

For CONFIG_KFENCE_STATIC_KEYS=n, this now avoids the dynamic branch if
KFENCE was disabled at boot.

To simplify, also unifies the location where kfence_allocation_gate is
read-checked to just be inline in kfence_alloc().

Link: https://lkml.kernel.org/r/20211019102524.2807208-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
4933295622 kfence: shorten critical sections of alloc/free
Initializing memory and setting/checking the canary bytes is relatively
expensive, and doing so in the meta->lock critical sections extends the
duration with preemption and interrupts disabled unnecessarily.

Any reads to meta->addr and meta->size in kfence_guarded_alloc() and
kfence_guarded_free() don't require locking meta->lock as long as the
object is removed from the freelist: only kfence_guarded_alloc() sets
meta->addr and meta->size after removing it from the freelist, which
requires a preceding kfence_guarded_free() returning it to the list or
the initial state.

Therefore move reads to meta->addr and meta->size, including expensive
memory initialization using them, out of meta->lock critical sections.

Link: https://lkml.kernel.org/r/20210930153706.2105471-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
f51733e2fc kfence: test: use kunit_skip() to skip tests
Use the new kunit_skip() to skip tests if requirements were not met.  It
makes it easier to see in KUnit's summary if there were skipped tests.

Link: https://lkml.kernel.org/r/20210922182541.1372400-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: David Gow <davidgow@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
08f6b10630 kfence: limit currently covered allocations when pool nearly full
One of KFENCE's main design principles is that with increasing uptime,
allocation coverage increases sufficiently to detect previously
undetected bugs.

We have observed that frequent long-lived allocations of the same source
(e.g.  pagecache) tend to permanently fill up the KFENCE pool with
increasing system uptime, thus breaking the above requirement.  The
workaround thus far had been increasing the sample interval and/or
increasing the KFENCE pool size, but is no reliable solution.

To ensure diverse coverage of allocations, limit currently covered
allocations of the same source once pool utilization reaches 75%
(configurable via `kfence.skip_covered_thresh`) or above.  The effect is
retaining reasonable allocation coverage when the pool is close to full.

A side-effect is that this also limits frequent long-lived allocations
of the same source filling up the pool permanently.

Uniqueness of an allocation for coverage purposes is based on its
(partial) allocation stack trace (the source).  A Counting Bloom filter
is used to check if an allocation is covered; if the allocation is
currently covered, the allocation is skipped by KFENCE.

Testing was done using:

	(a) a synthetic workload that performs frequent long-lived
	    allocations (default config values; sample_interval=1;
	    num_objects=63), and

	(b) normal desktop workloads on an otherwise idle machine where
	    the problem was first reported after a few days of uptime
	    (default config values).

In both test cases the sampled allocation rate no longer drops to zero
at any point.  In the case of (b) we observe (after 2 days uptime) 15%
unique allocations in the pool, 77% pool utilization, with 20% "skipped
allocations (covered)".

[elver@google.com: simplify and just use hash_32(), use more random stack_hash_seed]
  Link: https://lkml.kernel.org/r/YU3MRGaCaJiYht5g@elver.google.com
[elver@google.com: fix 32 bit]

Link: https://lkml.kernel.org/r/20210923104803.2620285-4-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
a9ab52bbcb kfence: move saving stack trace of allocations into __kfence_alloc()
Move the saving of the stack trace of allocations into __kfence_alloc(),
so that the stack entries array can be used outside of
kfence_guarded_alloc() and we avoid potentially unwinding the stack
multiple times.

Link: https://lkml.kernel.org/r/20210923104803.2620285-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Marco Elver
9a19aeb566 kfence: count unexpectedly skipped allocations
Maintain a counter to count allocations that are skipped due to being
incompatible (oversized, incompatible gfp flags) or no capacity.

This is to compute the fraction of allocations that could not be
serviced by KFENCE, which we expect to be rare.

Link: https://lkml.kernel.org/r/20210923104803.2620285-2-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Stephen Kitt
53944f171a mm: remove HARDENED_USERCOPY_FALLBACK
This has served its purpose and is no longer used.  All usercopy
violations appear to have been handled by now, any remaining instances
(or new bugs) will cause copies to be rejected.

This isn't a direct revert of commit 2d891fbc3bb6 ("usercopy: Allow
strict enforcement of whitelists"); since usercopy_fallback is
effectively 0, the fallback handling is removed too.

This also removes the usercopy_fallback module parameter on slab_common.

Link: https://github.com/KSPP/linux/issues/153
Link: https://lkml.kernel.org/r/20210921061149.1091163-1-steve@sk2.org
Signed-off-by: Stephen Kitt <steve@sk2.org>
Suggested-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>	[defconfig change]
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E . Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Ira Weiny
d2c20e51e3 mm/highmem: remove deprecated kmap_atomic
kmap_atomic() is being deprecated in favor of kmap_local_page().

Replace the uses of kmap_atomic() within the highmem code.

On profiling clear_huge_page() using ftrace an improvement of 62% was
observed on the below setup.

Setup:-
Below data has been collected on Qualcomm's SM7250 SoC THP enabled
(kernel v4.19.113) with only CPU-0(Cortex-A55) and CPU-7(Cortex-A76)
switched on and set to max frequency, also DDR set to perf governor.

FTRACE Data:-

Base data:-
Number of iterations: 48
Mean of allocation time: 349.5 us
std deviation: 74.5 us

v4 data:-
Number of iterations: 48
Mean of allocation time: 131 us
std deviation: 32.7 us

The following simple userspace experiment to allocate
100MB(BUF_SZ) of pages and writing to it gave us a good insight,
we observed an improvement of 42% in allocation and writing timings.
-------------------------------------------------------------
Test code snippet
-------------------------------------------------------------
      clock_start();
      buf = malloc(BUF_SZ); /* Allocate 100 MB of memory */

        for(i=0; i < BUF_SZ_PAGES; i++)
        {
                *((int *)(buf + (i*PAGE_SIZE))) = 1;
        }
      clock_end();
-------------------------------------------------------------

Malloc test timings for 100MB anon allocation:-

Base data:-
Number of iterations: 100
Mean of allocation time: 31831 us
std deviation: 4286 us

v4 data:-
Number of iterations: 100
Mean of allocation time: 18193 us
std deviation: 4915 us

[willy@infradead.org: fix zero_user_segments()]
  Link: https://lkml.kernel.org/r/YYVhHCJcm2DM2G9u@casper.infradead.org

Link: https://lkml.kernel.org/r/20210204073255.20769-2-prathu.baronia@oneplus.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Prathu Baronia <prathu.baronia@oneplus.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Miaohe Lin
afe8605ca4 mm/zsmalloc.c: close race window between zs_pool_dec_isolated() and zs_unregister_migration()
There is one possible race window between zs_pool_dec_isolated() and
zs_unregister_migration() because wait_for_isolated_drain() checks the
isolated count without holding class->lock and there is no order inside
zs_pool_dec_isolated().  Thus the below race window could be possible:

  zs_pool_dec_isolated		zs_unregister_migration
    check pool->destroying != 0
				  pool->destroying = true;
				  smp_mb();
				  wait_for_isolated_drain()
				    wait for pool->isolated_pages == 0
    atomic_long_dec(&pool->isolated_pages);
    atomic_long_read(&pool->isolated_pages) == 0

Since we observe the pool->destroying (false) before atomic_long_dec()
for pool->isolated_pages, waking pool->migration_wait up is missed.

Fix this by ensure checking pool->destroying happens after the
atomic_long_dec(&pool->isolated_pages).

Link: https://lkml.kernel.org/r/20210708115027.7557-1-linmiaohe@huawei.com
Fixes: 701d678599d0 ("mm/zsmalloc.c: fix race condition in zs_destroy_pool")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Henry Burns <henryburns@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Alistair Popple
3d88705c10 mm/rmap.c: avoid double faults migrating device private pages
During migration special page table entries are installed for each page
being migrated.  These entries store the pfn and associated permissions
of ptes mapping the page being migarted.

Device-private pages use special swap pte entries to distinguish
read-only vs.  writeable pages which the migration code checks when
creating migration entries.  Normally this follows a fast path in
migrate_vma_collect_pmd() which correctly copies the permissions of
device-private pages over to migration entries when migrating pages back
to the CPU.

However the slow-path falls back to using try_to_migrate() which
unconditionally creates read-only migration entries for device-private
pages.  This leads to unnecessary double faults on the CPU as the new
pages are always mapped read-only even when they could be mapped
writeable.  Fix this by correctly copying device-private permissions in
try_to_migrate_one().

Link: https://lkml.kernel.org/r/20211018045247.3128058-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reported-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
David Hildenbrand
32befe9e27 mm/memory_hotplug: indicate MEMBLOCK_DRIVER_MANAGED with IORESOURCE_SYSRAM_DRIVER_MANAGED
Let's communicate driver-managed regions to memblock, to properly teach
kexec_file with CONFIG_ARCH_KEEP_MEMBLOCK to not place images on these
memory regions.

Link: https://lkml.kernel.org/r/20211004093605.5830-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jianyong Wu <Jianyong.Wu@arm.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shahab Vahedi <shahab@synopsys.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
f7892d8e28 memblock: add MEMBLOCK_DRIVER_MANAGED to mimic IORESOURCE_SYSRAM_DRIVER_MANAGED
Let's add a flag that corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED,
indicating that we're dealing with a memory region that is never
indicated in the firmware-provided memory map, but always detected and
added by a driver.

Similar to MEMBLOCK_HOTPLUG, most infrastructure has to treat such
memory regions like ordinary MEMBLOCK_NONE memory regions -- for
example, when selecting memory regions to add to the vmcore for dumping
in the crashkernel via for_each_mem_range().

However, especially kexec_file is not supposed to select such memblocks
via for_each_free_mem_range() / for_each_free_mem_range_reverse() to
place kexec images, similar to how we handle
IORESOURCE_SYSRAM_DRIVER_MANAGED without CONFIG_ARCH_KEEP_MEMBLOCK.

We'll make sure that memory hotplug code sets the flag where applicable
(IORESOURCE_SYSRAM_DRIVER_MANAGED) next.  This prepares architectures
that need CONFIG_ARCH_KEEP_MEMBLOCK, such as arm64, for virtio-mem
support.

Note that kexec *must not* indicate this memory to the second kernel and
*must not* place kexec-images on this memory.  Let's add a comment to
kexec_walk_memblock(), documenting how we handle MEMBLOCK_DRIVER_MANAGED
now just like using IORESOURCE_SYSRAM_DRIVER_MANAGED in
locate_mem_hole_callback() for kexec_walk_resources().

Also note that MEMBLOCK_HOTPLUG cannot be reused due to different
semantics:
	MEMBLOCK_HOTPLUG: memory is indicated as "System RAM" in the
	firmware-provided memory map and added to the system early during
	boot; kexec *has to* indicate this memory to the second kernel and
	can place kexec-images on this memory. After memory hotunplug,
	kexec has to be re-armed. We mostly ignore this flag when
	"movable_node" is not set on the kernel command line, because
	then we're told to not care about hotunpluggability of such
	memory regions.

	MEMBLOCK_DRIVER_MANAGED: memory is not indicated as "System RAM" in
	the firmware-provided memory map; this memory is always detected
	and added to the system by a driver; memory might not actually be
	physically hotunpluggable. kexec *must not* indicate this memory to
	the second kernel and *must not* place kexec-images on this memory.

Link: https://lkml.kernel.org/r/20211004093605.5830-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jianyong Wu <Jianyong.Wu@arm.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shahab Vahedi <shahab@synopsys.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
952eea9b01 memblock: allow to specify flags with memblock_add_node()
We want to specify flags when hotplugging memory.  Let's prepare to pass
flags to memblock_add_node() by adjusting all existing users.

Note that when hotplugging memory the system is already up and running
and we might have concurrent memblock users: for example, while we're
hotplugging memory, kexec_file code might search for suitable memory
regions to place kexec images.  It's important to add the memory
directly to memblock via a single call with the right flags, instead of
adding the memory first and apply flags later: otherwise, concurrent
memblock users might temporarily stumble over memblocks with wrong
flags, which will be important in a follow-up patch that introduces a
new flag to properly handle add_memory_driver_managed().

Link: https://lkml.kernel.org/r/20211004093605.5830-4-david@redhat.com
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Shahab Vahedi <shahab@synopsys.com>	[arch/arc]
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jianyong Wu <Jianyong.Wu@arm.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
53d38316ab mm/memory_hotplug: handle memblock_add_node() failures in add_memory_resource()
Patch series "mm/memory_hotplug: full support for add_memory_driver_managed() with CONFIG_ARCH_KEEP_MEMBLOCK", v2.

Architectures that require CONFIG_ARCH_KEEP_MEMBLOCK=y, such as arm64,
don't cleanly support add_memory_driver_managed() yet.  Most
prominently, kexec_file can still end up placing kexec images on such
driver-managed memory, resulting in undesired behavior, for example,
having kexec images located on memory not part of the firmware-provided
memory map.

Teaching kexec to not place images on driver-managed memory is
especially relevant for virtio-mem.  Details can be found in commit
7b7b27214bba ("mm/memory_hotplug: introduce
add_memory_driver_managed()").

Extend memblock with a new flag and set it from memory hotplug code when
applicable.  This is required to fully support virtio-mem on arm64,
making also kexec_file behave like on x86-64.

This patch (of 2):

If memblock_add_node() fails, we're most probably running out of memory.
While this is unlikely to happen, it can happen and having memory added
without a memblock can be problematic for architectures that use
memblock to detect valid memory.  Let's fail in a nice way instead of
silently ignoring the error.

Link: https://lkml.kernel.org/r/20211004093605.5830-1-david@redhat.com
Link: https://lkml.kernel.org/r/20211004093605.5830-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Jianyong Wu <Jianyong.Wu@arm.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Shahab Vahedi <shahab@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
6b740c6c3a mm/memory_hotplug: remove HIGHMEM leftovers
We don't support CONFIG_MEMORY_HOTPLUG on 32 bit and consequently not
HIGHMEM.  Let's remove any leftover code -- including the unused
"status_change_nid_high" field part of the memory notifier.

Link: https://lkml.kernel.org/r/20210929143600.49379-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
7ec58a2b94 mm/memory_hotplug: restrict CONFIG_MEMORY_HOTPLUG to 64 bit
32 bit support is broken in various ways: for example, we can online
memory that should actually go to ZONE_HIGHMEM to ZONE_MOVABLE or in
some cases even to one of the other kernel zones.

We marked it BROKEN in commit b59d02ed0869 ("mm/memory_hotplug: disable
the functionality for 32b") almost one year ago.  According to that
commit it might be broken at least since 2017.  Further, there is hardly
a sane use case nowadays.

Let's just depend completely on 64bit, dropping the "BROKEN" dependency
to make clear that we are not going to support it again.  Next, we'll
remove some HIGHMEM leftovers from memory hotplug code to clean up.

Link: https://lkml.kernel.org/r/20210929143600.49379-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
50f9481ed9 mm/memory_hotplug: remove CONFIG_MEMORY_HOTPLUG_SPARSE
CONFIG_MEMORY_HOTPLUG depends on CONFIG_SPARSEMEM, so there is no need for
CONFIG_MEMORY_HOTPLUG_SPARSE anymore; adjust all instances to use
CONFIG_MEMORY_HOTPLUG and remove CONFIG_MEMORY_HOTPLUG_SPARSE.

Link: https://lkml.kernel.org/r/20210929143600.49379-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>	[kselftest]
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Alex Shi <alexs@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
David Hildenbrand
71b6f2dda8 mm/memory_hotplug: remove CONFIG_X86_64_ACPI_NUMA dependency from CONFIG_MEMORY_HOTPLUG
Patch series "mm/memory_hotplug: Kconfig and 32 bit cleanups".

Some cleanups around CONFIG_MEMORY_HOTPLUG, including removing 32 bit
leftovers of memory hotplug support.

This patch (of 6):

SPARSEMEM is the only possible memory model for x86-64, FLATMEM is not
possible:

	config ARCH_FLATMEM_ENABLE
		def_bool y
		depends on X86_32 && !NUMA

And X86_64_ACPI_NUMA (obviously) only supports x86-64:

	config X86_64_ACPI_NUMA
		def_bool y
		depends on X86_64 && NUMA && ACPI && PCI

Let's just remove the CONFIG_X86_64_ACPI_NUMA dependency, as it does no
longer make sense.

Link: https://lkml.kernel.org/r/20210929143600.49379-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Alex Shi <alexs@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
Tang Yizhou
ac62554ba7 mm/memory_hotplug: add static qualifier for online_policy_to_str()
online_policy_to_str is only used in memory_hotplug.c and should be
defined as static.

Link: https://lkml.kernel.org/r/20210913024534.26161-1-tangyizhou@huawei.com
Signed-off-by: Tang Yizhou <tangyizhou@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
Lin Feng
a997058679 mm: vmstat.c: make extfrag_index show more pretty
fragmentation_index may return -1000 and the corresponding formated
value showed by seq_printf will take a negative signatrue, but other
positive formated values don't take a positive signatrue, so the output
becomes unaligned.

before:
  Node 0, zone      DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone    DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone   Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999

after this patch:
  Node 0, zone      DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone    DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone   Normal -1.000 -1.000 -1.000 -1.000  0.931  0.966  0.983  0.992  0.996  0.998  0.999

Link: https://lkml.kernel.org/r/20211019103241.134797-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
Liu Shixin
af1c31acc8 mm/vmstat: annotate data race for zone->free_area[order].nr_free
KCSAN reports a data-race on v5.10 which also exists on mainline:

  BUG: KCSAN: data-race in extfrag_for_order+0x33/0x2d0

  race at unknown origin, with read to 0xffff9ee9bfffab48 of 8 bytes by task 34 on cpu 1:
   extfrag_for_order+0x33/0x2d0
   kcompactd+0x5f0/0xce0
   kthread+0x1f9/0x220
   ret_from_fork+0x22/0x30

  Reported by Kernel Concurrency Sanitizer on:
  CPU: 1 PID: 34 Comm: kcompactd0 Not tainted 5.10.0+ #2
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014

Access to zone->free_area[order].nr_free in extfrag_for_order() and
frag_show_print() is lockless.  That's intentional and the stats are a
rough estimate anyway.  Annotate them with data_race().

[liushixin2@huawei.com: add comments]
  Link: https://lkml.kernel.org/r/20210918084655.2696522-1-liushixin2@huawei.com

Link: https://lkml.kernel.org/r/20210908015606.3999871-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Kefeng Wang
916caa127c mm: nommu: kill arch_get_unmapped_area()
When nommu, the arch_get_unmapped_area() will not be called, just kill
it.

Link: https://lkml.kernel.org/r/20210910061906.36299-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Lin Feng
fb25a77dde mm/readahead.c: fix incorrect comments for get_init_ra_size
In fact, formated values returned by get_init_ra_size are not that
intuitive.  This patch make the comments reflect its truth.

Link: https://lkml.kernel.org/r/20211019104812.135602-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Yang Shi
20f9ba4f99 mm: migrate: make demotion knob depend on migration
The memory demotion needs to call migrate_pages() to do the jobs.  And
it is controlled by a knob, however, the knob doesn't depend on
CONFIG_MIGRATION.  The knob could be truned on even though MIGRATION is
disabled, this will not cause any crash since migrate_pages() would just
return -ENOSYS.  But it is definitely not optimal to go through demotion
path then retry regular swap every time.

And it doesn't make too much sense to have the knob visible to the users
when !MIGRATION.  Move the related code from mempolicy.[h|c] to
migrate.[h|c].

Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
John Hubbard
8eb42beac8 mm/migrate: de-duplicate migrate_reason strings
In order to remove the need to manually keep three different files in
synch, provide a common definition of the mapping between enum
migrate_reason, and the associated strings for each enum item.

1. Use the tracing system's mapping of enums to strings, by redefining
   and reusing the MIGRATE_REASON and supporting macros, and using that
   to populate the string array in mm/debug.c.

2. Move enum migrate_reason to migrate_mode.h. This is not strictly
   necessary for this patch, but migrate mode and migrate reason go
   together, so this will slightly clarify things.

Link: https://lkml.kernel.org/r/20210922041755.141817-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Weizhao Ouyang <o451686892@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Zhenguo Yao
b5389086ad hugetlbfs: extend the definition of hugepages parameter to support node allocation
We can specify the number of hugepages to allocate at boot.  But the
hugepages is balanced in all nodes at present.  In some scenarios, we
only need hugepages in one node.  For example: DPDK needs hugepages
which are in the same node as NIC.

If DPDK needs four hugepages of 1G size in node1 and system has 16 numa
nodes we must reserve 64 hugepages on the kernel cmdline.  But only four
hugepages are used.  The others should be free after boot.  If the
system memory is low(for example: 64G), it will be an impossible task.

So extend the hugepages parameter to support specifying hugepages on a
specific node.  For example add following parameter:

  hugepagesz=1G hugepages=0:1,1:3

It will allocate 1 hugepage in node0 and 3 hugepages in node1.

Link: https://lkml.kernel.org/r/20211005054729.86457-1-yaozhenguo1@gmail.com
Signed-off-by: Zhenguo Yao <yaozhenguo1@gmail.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zhenguo Yao <yaozhenguo1@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Sultan Alsawaf
3723929eb0 mm: mark the OOM reaper thread as freezable
The OOM reaper alters user address space which might theoretically alter
the snapshot if reaping is allowed to happen after the freezer quiescent
state.  To this end, the reaper kthread uses wait_event_freezable()
while waiting for any work so that it cannot run while the system
freezes.

However, the current implementation doesn't respect the freezer because
all kernel threads are created with the PF_NOFREEZE flag, so they are
automatically excluded from freezing operations.  This means that the
OOM reaper can race with system snapshotting if it has work to do while
the system is being frozen.

Fix this by adding a set_freezable() call which will clear the
PF_NOFREEZE flag and thus make the OOM reaper visible to the freezer.

Please note that the OOM reaper altering the snapshot this way is mostly
a theoretical concern and has not been observed in practice.

Link: https://lkml.kernel.org/r/20210921165758.6154-1-sultan@kerneltoast.com
Link: https://lkml.kernel.org/r/20210918233920.9174-1-sultan@kerneltoast.com
Fixes: aac453635549 ("mm, oom: introduce oom reaper")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Mike Rapoport
4421cca0a3 memblock: use memblock_free for freeing virtual pointers
Rename memblock_free_ptr() to memblock_free() and use memblock_free()
when freeing a virtual pointer so that memblock_free() will be a
counterpart of memblock_alloc()

The callers are updated with the below semantic patch and manual
addition of (void *) casting to pointers that are represented by
unsigned long variables.

    @@
    identifier vaddr;
    expression size;
    @@
    (
    - memblock_phys_free(__pa(vaddr), size);
    + memblock_free(vaddr, size);
    |
    - memblock_free_ptr(vaddr, size);
    + memblock_free(vaddr, size);
    )

[sfr@canb.auug.org.au: fixup]
  Link: https://lkml.kernel.org/r/20211018192940.3d1d532f@canb.auug.org.au

Link: https://lkml.kernel.org/r/20210930185031.18648-7-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00