Commit Graph

9 Commits

Author SHA1 Message Date
Alexander Popov
45d9a1e3cc gcc-plugins: Clean up the cgraph_create_edge* macros
Drop useless redefinitions of cgraph_create_edge* macros. Drop the unused
nest argument. Also support gcc-8, which doesn't have freq argument.

Signed-off-by: Alexander Popov <alex.popov@linux.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-07-24 16:14:06 -07:00
valdis.kletnieks@vt.edu
80d1724316 gcc-plugins: Add include required by GCC release 8
GCC requires another #include to get the gcc-plugins to build cleanly.

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-02-05 17:10:10 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Kees Cook
313dd1b629 gcc-plugins: Add the randstruct plugin
This randstruct plugin is modified from Brad Spengler/PaX Team's code
in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.

The randstruct GCC plugin randomizes the layout of selected structures
at compile time, as a probabilistic defense against attacks that need to
know the layout of structures within the kernel. This is most useful for
"in-house" kernel builds where neither the randomization seed nor other
build artifacts are made available to an attacker. While less useful for
distribution kernels (where the randomization seed must be exposed for
third party kernel module builds), it still has some value there since now
all kernel builds would need to be tracked by an attacker.

In more performance sensitive scenarios, GCC_PLUGIN_RANDSTRUCT_PERFORMANCE
can be selected to make a best effort to restrict randomization to
cacheline-sized groups of elements, and will not randomize bitfields. This
comes at the cost of reduced randomization.

Two annotations are defined,__randomize_layout and __no_randomize_layout,
which respectively tell the plugin to either randomize or not to
randomize instances of the struct in question. Follow-on patches enable
the auto-detection logic for selecting structures for randomization
that contain only function pointers. It is disabled here to assist with
bisection.

Since any randomized structs must be initialized using designated
initializers, __randomize_layout includes the __designated_init annotation
even when the plugin is disabled so that all builds will require
the needed initialization. (With the plugin enabled, annotations for
automatically chosen structures are marked as well.)

The main differences between this implemenation and grsecurity are:
- disable automatic struct selection (to be enabled in follow-up patch)
- add designated_init attribute at runtime and for manual marking
- clarify debugging output to differentiate bad cast warnings
- add whitelisting infrastructure
- support gcc 7's DECL_ALIGN and DECL_MODE changes (Laura Abbott)
- raise minimum required GCC version to 4.7

Earlier versions of this patch series were ported by Michael Leibowitz.

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-06-22 16:15:45 -07:00
Kees Cook
1132e1e448 gcc-plugins: Detail c-common.h location for GCC 4.6
The c-common.h file moved in stock gcc 4.7, not gcc 4.6. However, most
people building plugins with gcc 4.6 are using the Debian or Ubuntu
version, which includes a patch to move the headers to the 4.7 location.
In case anyone trips over this with a stock gcc 4.6, add a pointer to the
patch used by Debian/Ubuntu.

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-05-28 10:23:02 -07:00
Kees Cook
8d4973a1c0 gcc-plugins: add PASS_INFO and build_const_char_string()
This updates the GCC plugins gcc-common.h from PaX Team to include
more helpers and header files, specifically adds the PASS_INFO()
macro to make plugin declarations nicer and a helper for proper
const string building.

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-01-10 16:50:57 -08:00
Kees Cook
81d873a871 gcc-plugins: update gcc-common.h for gcc-7
This updates gcc-common.h from Emese Revfy for gcc 7. This fixes issues seen
by Kugan and Arnd. Build tested with gcc 5.4 and 7 snapshot.

Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
2017-01-03 12:08:59 -08:00
Kees Cook
da7389ac6c gcc-plugins: Export symbols needed by gcc
This explicitly exports symbols that gcc expects from plugins.

Based on code from Emese Revfy.

Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-31 10:40:13 -07:00
Emese Revfy
6b90bd4ba4 GCC plugin infrastructure
This patch allows to build the whole kernel with GCC plugins. It was ported from
grsecurity/PaX. The infrastructure supports building out-of-tree modules and
building in a separate directory. Cross-compilation is supported too.
Currently the x86, arm, arm64 and uml architectures enable plugins.

The directory of the gcc plugins is scripts/gcc-plugins. You can use a file or a directory
there. The plugins compile with these options:
 * -fno-rtti: gcc is compiled with this option so the plugins must use it too
 * -fno-exceptions: this is inherited from gcc too
 * -fasynchronous-unwind-tables: this is inherited from gcc too
 * -ggdb: it is useful for debugging a plugin (better backtrace on internal
    errors)
 * -Wno-narrowing: to suppress warnings from gcc headers (ipa-utils.h)
 * -Wno-unused-variable: to suppress warnings from gcc headers (gcc_version
    variable, plugin-version.h)

The infrastructure introduces a new Makefile target called gcc-plugins. It
supports all gcc versions from 4.5 to 6.0. The scripts/gcc-plugin.sh script
chooses the proper host compiler (gcc-4.7 can be built by either gcc or g++).
This script also checks the availability of the included headers in
scripts/gcc-plugins/gcc-common.h.

The gcc-common.h header contains frequently included headers for GCC plugins
and it has a compatibility layer for the supported gcc versions.

The gcc-generate-*-pass.h headers automatically generate the registration
structures for GIMPLE, SIMPLE_IPA, IPA and RTL passes.

Note that 'make clean' keeps the *.so files (only the distclean or mrproper
targets clean all) because they are needed for out-of-tree modules.

Based on work created by the PaX Team.

Signed-off-by: Emese Revfy <re.emese@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Michal Marek <mmarek@suse.com>
2016-06-07 22:57:10 +02:00