Commit Graph

21 Commits

Author SHA1 Message Date
Willem de Bruijn
b0a0c2615f epoll: wire up syscall epoll_pwait2
Split off from prev patch in the series that implements the syscall.

Link: https://lkml.kernel.org/r/20201121144401.3727659-4-willemdebruijn.kernel@gmail.com
Signed-off-by: Willem de Bruijn <willemb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-19 11:18:38 -08:00
Minchan Kim
ecb8ac8b1f mm/madvise: introduce process_madvise() syscall: an external memory hinting API
There is usecase that System Management Software(SMS) want to give a
memory hint like MADV_[COLD|PAGEEOUT] to other processes and in the
case of Android, it is the ActivityManagerService.

The information required to make the reclaim decision is not known to the
app.  Instead, it is known to the centralized userspace
daemon(ActivityManagerService), and that daemon must be able to initiate
reclaim on its own without any app involvement.

To solve the issue, this patch introduces a new syscall
process_madvise(2).  It uses pidfd of an external process to give the
hint.  It also supports vector address range because Android app has
thousands of vmas due to zygote so it's totally waste of CPU and power if
we should call the syscall one by one for each vma.(With testing 2000-vma
syscall vs 1-vector syscall, it showed 15% performance improvement.  I
think it would be bigger in real practice because the testing ran very
cache friendly environment).

Another potential use case for the vector range is to amortize the cost
ofTLB shootdowns for multiple ranges when using MADV_DONTNEED; this could
benefit users like TCP receive zerocopy and malloc implementations.  In
future, we could find more usecases for other advises so let's make it
happens as API since we introduce a new syscall at this moment.  With
that, existing madvise(2) user could replace it with process_madvise(2)
with their own pid if they want to have batch address ranges support
feature.

ince it could affect other process's address range, only privileged
process(PTRACE_MODE_ATTACH_FSCREDS) or something else(e.g., being the same
UID) gives it the right to ptrace the process could use it successfully.
The flag argument is reserved for future use if we need to extend the API.

I think supporting all hints madvise has/will supported/support to
process_madvise is rather risky.  Because we are not sure all hints make
sense from external process and implementation for the hint may rely on
the caller being in the current context so it could be error-prone.  Thus,
I just limited hints as MADV_[COLD|PAGEOUT] in this patch.

If someone want to add other hints, we could hear the usecase and review
it for each hint.  It's safer for maintenance rather than introducing a
buggy syscall but hard to fix it later.

So finally, the API is as follows,

      ssize_t process_madvise(int pidfd, const struct iovec *iovec,
                unsigned long vlen, int advice, unsigned int flags);

    DESCRIPTION
      The process_madvise() system call is used to give advice or directions
      to the kernel about the address ranges from external process as well as
      local process. It provides the advice to address ranges of process
      described by iovec and vlen. The goal of such advice is to improve
      system or application performance.

      The pidfd selects the process referred to by the PID file descriptor
      specified in pidfd. (See pidofd_open(2) for further information)

      The pointer iovec points to an array of iovec structures, defined in
      <sys/uio.h> as:

        struct iovec {
            void *iov_base;         /* starting address */
            size_t iov_len;         /* number of bytes to be advised */
        };

      The iovec describes address ranges beginning at address(iov_base)
      and with size length of bytes(iov_len).

      The vlen represents the number of elements in iovec.

      The advice is indicated in the advice argument, which is one of the
      following at this moment if the target process specified by pidfd is
      external.

        MADV_COLD
        MADV_PAGEOUT

      Permission to provide a hint to external process is governed by a
      ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

      The process_madvise supports every advice madvise(2) has if target
      process is in same thread group with calling process so user could
      use process_madvise(2) to extend existing madvise(2) to support
      vector address ranges.

    RETURN VALUE
      On success, process_madvise() returns the number of bytes advised.
      This return value may be less than the total number of requested
      bytes, if an error occurred. The caller should check return value
      to determine whether a partial advice occurred.

FAQ:

Q.1 - Why does any external entity have better knowledge?

Quote from Sandeep

"For Android, every application (including the special SystemServer)
are forked from Zygote.  The reason of course is to share as many
libraries and classes between the two as possible to benefit from the
preloading during boot.

After applications start, (almost) all of the APIs end up calling into
this SystemServer process over IPC (binder) and back to the
application.

In a fully running system, the SystemServer monitors every single
process periodically to calculate their PSS / RSS and also decides
which process is "important" to the user for interactivity.

So, because of how these processes start _and_ the fact that the
SystemServer is looping to monitor each process, it does tend to *know*
which address range of the application is not used / useful.

Besides, we can never rely on applications to clean things up
themselves.  We've had the "hey app1, the system is low on memory,
please trim your memory usage down" notifications for a long time[1].
They rely on applications honoring the broadcasts and very few do.

So, if we want to avoid the inevitable killing of the application and
restarting it, some way to be able to tell the OS about unimportant
memory in these applications will be useful.

- ssp

Q.2 - How to guarantee the race(i.e., object validation) between when
giving a hint from an external process and get the hint from the target
process?

process_madvise operates on the target process's address space as it
exists at the instant that process_madvise is called.  If the space
target process can run between the time the process_madvise process
inspects the target process address space and the time that
process_madvise is actually called, process_madvise may operate on
memory regions that the calling process does not expect.  It's the
responsibility of the process calling process_madvise to close this
race condition.  For example, the calling process can suspend the
target process with ptrace, SIGSTOP, or the freezer cgroup so that it
doesn't have an opportunity to change its own address space before
process_madvise is called.  Another option is to operate on memory
regions that the caller knows a priori will be unchanged in the target
process.  Yet another option is to accept the race for certain
process_madvise calls after reasoning that mistargeting will do no
harm.  The suggested API itself does not provide synchronization.  It
also apply other APIs like move_pages, process_vm_write.

The race isn't really a problem though.  Why is it so wrong to require
that callers do their own synchronization in some manner?  Nobody
objects to write(2) merely because it's possible for two processes to
open the same file and clobber each other's writes --- instead, we tell
people to use flock or something.  Think about mmap.  It never
guarantees newly allocated address space is still valid when the user
tries to access it because other threads could unmap the memory right
before.  That's where we need synchronization by using other API or
design from userside.  It shouldn't be part of API itself.  If someone
needs more fine-grained synchronization rather than process level,
there were two ideas suggested - cookie[2] and anon-fd[3].  Both are
applicable via using last reserved argument of the API but I don't
think it's necessary right now since we have already ways to prevent
the race so don't want to add additional complexity with more
fine-grained optimization model.

To make the API extend, it reserved an unsigned long as last argument
so we could support it in future if someone really needs it.

Q.3 - Why doesn't ptrace work?

Injecting an madvise in the target process using ptrace would not work
for us because such injected madvise would have to be executed by the
target process, which means that process would have to be runnable and
that creates the risk of the abovementioned race and hinting a wrong
VMA.  Furthermore, we want to act the hint in caller's context, not the
callee's, because the callee is usually limited in cpuset/cgroups or
even freezed state so they can't act by themselves quick enough, which
causes more thrashing/kill.  It doesn't work if the target process are
ptraced(e.g., strace, debugger, minidump) because a process can have at
most one ptracer.

[1] https://developer.android.com/topic/performance/memory"

[2] process_getinfo for getting the cookie which is updated whenever
    vma of process address layout are changed - Daniel Colascione -
    https://lore.kernel.org/lkml/20190520035254.57579-1-minchan@kernel.org/T/#m7694416fd179b2066a2c62b5b139b14e3894e224

[3] anonymous fd which is used for the object(i.e., address range)
    validation - Michal Hocko -
    https://lore.kernel.org/lkml/20200120112722.GY18451@dhcp22.suse.cz/

[minchan@kernel.org: fix process_madvise build break for arm64]
  Link: http://lkml.kernel.org/r/20200303145756.GA219683@google.com
[minchan@kernel.org: fix build error for mips of process_madvise]
  Link: http://lkml.kernel.org/r/20200508052517.GA197378@google.com
[akpm@linux-foundation.org: fix patch ordering issue]
[akpm@linux-foundation.org: fix arm64 whoops]
[minchan@kernel.org: make process_madvise() vlen arg have type size_t, per Florian]
[akpm@linux-foundation.org: fix i386 build]
[sfr@canb.auug.org.au: fix syscall numbering]
  Link: https://lkml.kernel.org/r/20200905142639.49fc3f1a@canb.auug.org.au
[sfr@canb.auug.org.au: madvise.c needs compat.h]
  Link: https://lkml.kernel.org/r/20200908204547.285646b4@canb.auug.org.au
[minchan@kernel.org: fix mips build]
  Link: https://lkml.kernel.org/r/20200909173655.GC2435453@google.com
[yuehaibing@huawei.com: remove duplicate header which is included twice]
  Link: https://lkml.kernel.org/r/20200915121550.30584-1-yuehaibing@huawei.com
[minchan@kernel.org: do not use helper functions for process_madvise]
  Link: https://lkml.kernel.org/r/20200921175539.GB387368@google.com
[akpm@linux-foundation.org: pidfd_get_pid() gained an argument]
[sfr@canb.auug.org.au: fix up for "iov_iter: transparently handle compat iovecs in import_iovec"]
  Link: https://lkml.kernel.org/r/20200928212542.468e1fef@canb.auug.org.au

Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <christian@brauner.io>
Cc: Daniel Colascione <dancol@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Dias <joaodias@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fw@deneb.enyo.de>
Cc: <linux-man@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200302193630.68771-3-minchan@kernel.org
Link: http://lkml.kernel.org/r/20200508183320.GA125527@google.com
Link: http://lkml.kernel.org/r/20200622192900.22757-4-minchan@kernel.org
Link: https://lkml.kernel.org/r/20200901000633.1920247-4-minchan@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:10 -07:00
Xiaoming Ni
88db0aa242 all arch: remove system call sys_sysctl
Since commit 61a47c1ad3 ("sysctl: Remove the sysctl system call"),
sys_sysctl is actually unavailable: any input can only return an error.

We have been warning about people using the sysctl system call for years
and believe there are no more users.  Even if there are users of this
interface if they have not complained or fixed their code by now they
probably are not going to, so there is no point in warning them any
longer.

So completely remove sys_sysctl on all architectures.

[nixiaoming@huawei.com: s390: fix build error for sys_call_table_emu]
 Link: http://lkml.kernel.org/r/20200618141426.16884-1-nixiaoming@huawei.com

Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Will Deacon <will@kernel.org>		[arm/arm64]
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bin Meng <bin.meng@windriver.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: chenzefeng <chenzefeng2@huawei.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christian Brauner <christian@brauner.io>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Diego Elio Pettenò <flameeyes@flameeyes.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kars de Jong <jongk@linux-m68k.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Paul Burton <paulburton@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Sven Schnelle <svens@stackframe.org>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zhou Yanjie <zhouyanjie@wanyeetech.com>
Link: http://lkml.kernel.org/r/20200616030734.87257-1-nixiaoming@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Christian Brauner
9b4feb630e
arch: wire-up close_range()
This wires up the close_range() syscall into all arches at once.

Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Jann Horn <jannh@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Dmitry V. Levin <ldv@altlinux.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: linux-api@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
2020-06-17 00:07:38 +02:00
Miklos Szeredi
c8ffd8bcdd vfs: add faccessat2 syscall
POSIX defines faccessat() as having a fourth "flags" argument, while the
linux syscall doesn't have it.  Glibc tries to emulate AT_EACCESS and
AT_SYMLINK_NOFOLLOW, but AT_EACCESS emulation is broken.

Add a new faccessat(2) syscall with the added flags argument and implement
both flags.

The value of AT_EACCESS is defined in glibc headers to be the same as
AT_REMOVEDIR.  Use this value for the kernel interface as well, together
with the explanatory comment.

Also add AT_EMPTY_PATH support, which is not documented by POSIX, but can
be useful and is trivial to implement.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-05-14 16:44:25 +02:00
Linus Torvalds
83fa805bcb threads-v5.6
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXjFo8wAKCRCRxhvAZXjc
 omaGAQDVwCHQekqxp2eC8EJH4Pkt+Bn1BLrA25stlTo93YBPHgEAsPVUCRNcrZAl
 VncYmxCfpt3Yu0S/MTVXu5xrRiIXPQk=
 =uqTN
 -----END PGP SIGNATURE-----

Merge tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull thread management updates from Christian Brauner:
 "Sargun Dhillon over the last cycle has worked on the pidfd_getfd()
  syscall.

  This syscall allows for the retrieval of file descriptors of a process
  based on its pidfd. A task needs to have ptrace_may_access()
  permissions with PTRACE_MODE_ATTACH_REALCREDS (suggested by Oleg and
  Andy) on the target.

  One of the main use-cases is in combination with seccomp's user
  notification feature. As a reminder, seccomp's user notification
  feature was made available in v5.0. It allows a task to retrieve a
  file descriptor for its seccomp filter. The file descriptor is usually
  handed of to a more privileged supervising process. The supervisor can
  then listen for syscall events caught by the seccomp filter of the
  supervisee and perform actions in lieu of the supervisee, usually
  emulating syscalls. pidfd_getfd() is needed to expand its uses.

  There are currently two major users that wait on pidfd_getfd() and one
  future user:

   - Netflix, Sargun said, is working on a service mesh where users
     should be able to connect to a dns-based VIP. When a user connects
     to e.g. 1.2.3.4:80 that runs e.g. service "foo" they will be
     redirected to an envoy process. This service mesh uses seccomp user
     notifications and pidfd to intercept all connect calls and instead
     of connecting them to 1.2.3.4:80 connects them to e.g.
     127.0.0.1:8080.

   - LXD uses the seccomp notifier heavily to intercept and emulate
     mknod() and mount() syscalls for unprivileged containers/processes.
     With pidfd_getfd() more uses-cases e.g. bridging socket connections
     will be possible.

   - The patchset has also seen some interest from the browser corner.
     Right now, Firefox is using a SECCOMP_RET_TRAP sandbox managed by a
     broker process. In the future glibc will start blocking all signals
     during dlopen() rendering this type of sandbox impossible. Hence,
     in the future Firefox will switch to a seccomp-user-nofication
     based sandbox which also makes use of file descriptor retrieval.
     The thread for this can be found at
     https://sourceware.org/ml/libc-alpha/2019-12/msg00079.html

  With pidfd_getfd() it is e.g. possible to bridge socket connections
  for the supervisee (binding to a privileged port) and taking actions
  on file descriptors on behalf of the supervisee in general.

  Sargun's first version was using an ioctl on pidfds but various people
  pushed for it to be a proper syscall which he duely implemented as
  well over various review cycles. Selftests are of course included.
  I've also added instructions how to deal with merge conflicts below.

  There's also a small fix coming from the kernel mentee project to
  correctly annotate struct sighand_struct with __rcu to fix various
  sparse warnings. We've received a few more such fixes and even though
  they are mostly trivial I've decided to postpone them until after -rc1
  since they came in rather late and I don't want to risk introducing
  build warnings.

  Finally, there's a new prctl() command PR_{G,S}ET_IO_FLUSHER which is
  needed to avoid allocation recursions triggerable by storage drivers
  that have userspace parts that run in the IO path (e.g. dm-multipath,
  iscsi, etc). These allocation recursions deadlock the device.

  The new prctl() allows such privileged userspace components to avoid
  allocation recursions by setting the PF_MEMALLOC_NOIO and
  PF_LESS_THROTTLE flags. The patch carries the necessary acks from the
  relevant maintainers and is routed here as part of prctl()
  thread-management."

* tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim
  sched.h: Annotate sighand_struct with __rcu
  test: Add test for pidfd getfd
  arch: wire up pidfd_getfd syscall
  pid: Implement pidfd_getfd syscall
  vfs, fdtable: Add fget_task helper
2020-01-29 19:38:34 -08:00
Linus Torvalds
6aee4badd8 Merge branch 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull openat2 support from Al Viro:
 "This is the openat2() series from Aleksa Sarai.

  I'm afraid that the rest of namei stuff will have to wait - it got
  zero review the last time I'd posted #work.namei, and there had been a
  leak in the posted series I'd caught only last weekend. I was going to
  repost it on Monday, but the window opened and the odds of getting any
  review during that... Oh, well.

  Anyway, openat2 part should be ready; that _did_ get sane amount of
  review and public testing, so here it comes"

From Aleksa's description of the series:
 "For a very long time, extending openat(2) with new features has been
  incredibly frustrating. This stems from the fact that openat(2) is
  possibly the most famous counter-example to the mantra "don't silently
  accept garbage from userspace" -- it doesn't check whether unknown
  flags are present[1].

  This means that (generally) the addition of new flags to openat(2) has
  been fraught with backwards-compatibility issues (O_TMPFILE has to be
  defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
  kernels gave errors, since it's insecure to silently ignore the
  flag[2]). All new security-related flags therefore have a tough road
  to being added to openat(2).

  Furthermore, the need for some sort of control over VFS's path
  resolution (to avoid malicious paths resulting in inadvertent
  breakouts) has been a very long-standing desire of many userspace
  applications.

  This patchset is a revival of Al Viro's old AT_NO_JUMPS[3] patchset
  (which was a variant of David Drysdale's O_BENEATH patchset[4] which
  was a spin-off of the Capsicum project[5]) with a few additions and
  changes made based on the previous discussion within [6] as well as
  others I felt were useful.

  In line with the conclusions of the original discussion of
  AT_NO_JUMPS, the flag has been split up into separate flags. However,
  instead of being an openat(2) flag it is provided through a new
  syscall openat2(2) which provides several other improvements to the
  openat(2) interface (see the patch description for more details). The
  following new LOOKUP_* flags are added:

  LOOKUP_NO_XDEV:

     Blocks all mountpoint crossings (upwards, downwards, or through
     absolute links). Absolute pathnames alone in openat(2) do not
     trigger this. Magic-link traversal which implies a vfsmount jump is
     also blocked (though magic-link jumps on the same vfsmount are
     permitted).

  LOOKUP_NO_MAGICLINKS:

     Blocks resolution through /proc/$pid/fd-style links. This is done
     by blocking the usage of nd_jump_link() during resolution in a
     filesystem. The term "magic-links" is used to match with the only
     reference to these links in Documentation/, but I'm happy to change
     the name.

     It should be noted that this is different to the scope of
     ~LOOKUP_FOLLOW in that it applies to all path components. However,
     you can do openat2(NO_FOLLOW|NO_MAGICLINKS) on a magic-link and it
     will *not* fail (assuming that no parent component was a
     magic-link), and you will have an fd for the magic-link.

     In order to correctly detect magic-links, the introduction of a new
     LOOKUP_MAGICLINK_JUMPED state flag was required.

  LOOKUP_BENEATH:

     Disallows escapes to outside the starting dirfd's
     tree, using techniques such as ".." or absolute links. Absolute
     paths in openat(2) are also disallowed.

     Conceptually this flag is to ensure you "stay below" a certain
     point in the filesystem tree -- but this requires some additional
     to protect against various races that would allow escape using
     "..".

     Currently LOOKUP_BENEATH implies LOOKUP_NO_MAGICLINKS, because it
     can trivially beam you around the filesystem (breaking the
     protection). In future, there might be similar safety checks done
     as in LOOKUP_IN_ROOT, but that requires more discussion.

  In addition, two new flags are added that expand on the above ideas:

  LOOKUP_NO_SYMLINKS:

     Does what it says on the tin. No symlink resolution is allowed at
     all, including magic-links. Just as with LOOKUP_NO_MAGICLINKS this
     can still be used with NOFOLLOW to open an fd for the symlink as
     long as no parent path had a symlink component.

  LOOKUP_IN_ROOT:

     This is an extension of LOOKUP_BENEATH that, rather than blocking
     attempts to move past the root, forces all such movements to be
     scoped to the starting point. This provides chroot(2)-like
     protection but without the cost of a chroot(2) for each filesystem
     operation, as well as being safe against race attacks that
     chroot(2) is not.

     If a race is detected (as with LOOKUP_BENEATH) then an error is
     generated, and similar to LOOKUP_BENEATH it is not permitted to
     cross magic-links with LOOKUP_IN_ROOT.

     The primary need for this is from container runtimes, which
     currently need to do symlink scoping in userspace[7] when opening
     paths in a potentially malicious container.

     There is a long list of CVEs that could have bene mitigated by
     having RESOLVE_THIS_ROOT (such as CVE-2017-1002101,
     CVE-2017-1002102, CVE-2018-15664, and CVE-2019-5736, just to name a
     few).

  In order to make all of the above more usable, I'm working on
  libpathrs[8] which is a C-friendly library for safe path resolution.
  It features a userspace-emulated backend if the kernel doesn't support
  openat2(2). Hopefully we can get userspace to switch to using it, and
  thus get openat2(2) support for free once it's ready.

  Future work would include implementing things like
  RESOLVE_NO_AUTOMOUNT and possibly a RESOLVE_NO_REMOTE (to allow
  programs to be sure they don't hit DoSes though stale NFS handles)"

* 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  Documentation: path-lookup: include new LOOKUP flags
  selftests: add openat2(2) selftests
  open: introduce openat2(2) syscall
  namei: LOOKUP_{IN_ROOT,BENEATH}: permit limited ".." resolution
  namei: LOOKUP_IN_ROOT: chroot-like scoped resolution
  namei: LOOKUP_BENEATH: O_BENEATH-like scoped resolution
  namei: LOOKUP_NO_XDEV: block mountpoint crossing
  namei: LOOKUP_NO_MAGICLINKS: block magic-link resolution
  namei: LOOKUP_NO_SYMLINKS: block symlink resolution
  namei: allow set_root() to produce errors
  namei: allow nd_jump_link() to produce errors
  nsfs: clean-up ns_get_path() signature to return int
  namei: only return -ECHILD from follow_dotdot_rcu()
2020-01-29 11:20:24 -08:00
Aleksa Sarai
fddb5d430a open: introduce openat2(2) syscall
/* Background. */
For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown flags
are present[1].

This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road to
being added to openat(2).

Userspace also has a hard time figuring out whether a particular flag is
supported on a particular kernel. While it is now possible with
contemporary kernels (thanks to [3]), older kernels will expose unknown
flag bits through fcntl(F_GETFL). Giving a clear -EINVAL during
openat(2) time matches modern syscall designs and is far more
fool-proof.

In addition, the newly-added path resolution restriction LOOKUP flags
(which we would like to expose to user-space) don't feel related to the
pre-existing O_* flag set -- they affect all components of path lookup.
We'd therefore like to add a new flag argument.

Adding a new syscall allows us to finally fix the flag-ignoring problem,
and we can make it extensible enough so that we will hopefully never
need an openat3(2).

/* Syscall Prototype. */
  /*
   * open_how is an extensible structure (similar in interface to
   * clone3(2) or sched_setattr(2)). The size parameter must be set to
   * sizeof(struct open_how), to allow for future extensions. All future
   * extensions will be appended to open_how, with their zero value
   * acting as a no-op default.
   */
  struct open_how { /* ... */ };

  int openat2(int dfd, const char *pathname,
              struct open_how *how, size_t size);

/* Description. */
The initial version of 'struct open_how' contains the following fields:

  flags
    Used to specify openat(2)-style flags. However, any unknown flag
    bits or otherwise incorrect flag combinations (like O_PATH|O_RDWR)
    will result in -EINVAL. In addition, this field is 64-bits wide to
    allow for more O_ flags than currently permitted with openat(2).

  mode
    The file mode for O_CREAT or O_TMPFILE.

    Must be set to zero if flags does not contain O_CREAT or O_TMPFILE.

  resolve
    Restrict path resolution (in contrast to O_* flags they affect all
    path components). The current set of flags are as follows (at the
    moment, all of the RESOLVE_ flags are implemented as just passing
    the corresponding LOOKUP_ flag).

    RESOLVE_NO_XDEV       => LOOKUP_NO_XDEV
    RESOLVE_NO_SYMLINKS   => LOOKUP_NO_SYMLINKS
    RESOLVE_NO_MAGICLINKS => LOOKUP_NO_MAGICLINKS
    RESOLVE_BENEATH       => LOOKUP_BENEATH
    RESOLVE_IN_ROOT       => LOOKUP_IN_ROOT

open_how does not contain an embedded size field, because it is of
little benefit (userspace can figure out the kernel open_how size at
runtime fairly easily without it). It also only contains u64s (even
though ->mode arguably should be a u16) to avoid having padding fields
which are never used in the future.

Note that as a result of the new how->flags handling, O_PATH|O_TMPFILE
is no longer permitted for openat(2). As far as I can tell, this has
always been a bug and appears to not be used by userspace (and I've not
seen any problems on my machines by disallowing it). If it turns out
this breaks something, we can special-case it and only permit it for
openat(2) but not openat2(2).

After input from Florian Weimer, the new open_how and flag definitions
are inside a separate header from uapi/linux/fcntl.h, to avoid problems
that glibc has with importing that header.

/* Testing. */
In a follow-up patch there are over 200 selftests which ensure that this
syscall has the correct semantics and will correctly handle several
attack scenarios.

In addition, I've written a userspace library[4] which provides
convenient wrappers around openat2(RESOLVE_IN_ROOT) (this is necessary
because no other syscalls support RESOLVE_IN_ROOT, and thus lots of care
must be taken when using RESOLVE_IN_ROOT'd file descriptors with other
syscalls). During the development of this patch, I've run numerous
verification tests using libpathrs (showing that the API is reasonably
usable by userspace).

/* Future Work. */
Additional RESOLVE_ flags have been suggested during the review period.
These can be easily implemented separately (such as blocking auto-mount
during resolution).

Furthermore, there are some other proposed changes to the openat(2)
interface (the most obvious example is magic-link hardening[5]) which
would be a good opportunity to add a way for userspace to restrict how
O_PATH file descriptors can be re-opened.

Another possible avenue of future work would be some kind of
CHECK_FIELDS[6] flag which causes the kernel to indicate to userspace
which openat2(2) flags and fields are supported by the current kernel
(to avoid userspace having to go through several guesses to figure it
out).

[1]: https://lwn.net/Articles/588444/
[2]: https://lore.kernel.org/lkml/CA+55aFyyxJL1LyXZeBsf2ypriraj5ut1XkNDsunRBqgVjZU_6Q@mail.gmail.com
[3]: commit 629e014bb8 ("fs: completely ignore unknown open flags")
[4]: https://sourceware.org/bugzilla/show_bug.cgi?id=17523
[5]: https://lore.kernel.org/lkml/20190930183316.10190-2-cyphar@cyphar.com/
[6]: https://youtu.be/ggD-eb3yPVs

Suggested-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-01-18 09:19:18 -05:00
Sargun Dhillon
9a2cef09c8
arch: wire up pidfd_getfd syscall
This wires up the pidfd_getfd syscall for all architectures.

Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20200107175927.4558-4-sargun@sargun.me
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-01-13 21:49:47 +01:00
Kars de Jong
e8bb2a2a1d m68k: Wire up clone3() syscall
Wire up the clone3() syscall for m68k. The special entry point is done in
assembler as was done for clone() as well. This is needed because all
registers need to be saved. The C wrapper then calls the generic
sys_clone3() with the correct arguments.

Tested on A1200 using the simple test program from:

  https://lore.kernel.org/lkml/20190716130631.tohj4ub54md25dys@brauner.io/

Signed-off-by: Kars de Jong <jongk@linux-m68k.org>
Link: https://lore.kernel.org/r/20191124195225.31230-1-jongk@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2020-01-12 16:49:20 +01:00
Christian Brauner
1a271a68e0
arch: mark syscall number 435 reserved for clone3
A while ago Arnd made it possible to give new system calls the same
syscall number on all architectures (except alpha). To not break this
nice new feature let's mark 435 for clone3 as reserved on all
architectures that do not yet implement it.
Even if an architecture does not plan to implement it this ensures that
new system calls coming after clone3 will have the same number on all
architectures.

Signed-off-by: Christian Brauner <christian@brauner.io>
Cc: linux-arch@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Link: https://lore.kernel.org/r/20190714192205.27190-2-christian@brauner.io
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Christian Brauner <christian@brauner.io>
2019-07-15 00:39:33 +02:00
Christian Brauner
7615d9e178
arch: wire-up pidfd_open()
This wires up the pidfd_open() syscall into all arches at once.

Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-mips@vger.kernel.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
2019-06-28 12:17:55 +02:00
David Howells
d8076bdb56 uapi: Wire up the mount API syscalls on non-x86 arches [ver #2]
Wire up the mount API syscalls on non-x86 arches.

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-16 12:23:45 -04:00
Arnd Bergmann
39036cd272 arch: add pidfd and io_uring syscalls everywhere
Add the io_uring and pidfd_send_signal system calls to all architectures.

These system calls are designed to handle both native and compat tasks,
so all entries are the same across architectures, only arm-compat and
the generic tale still use an old format.

Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> (s390)
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-04-15 16:31:17 +02:00
Arnd Bergmann
48166e6ea4 y2038: add 64-bit time_t syscalls to all 32-bit architectures
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.

This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.

In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
d33c577ccc y2038: rename old time and utime syscalls
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.

However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.

Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.

This is only a cleanup patch and it should not change any behavior.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
00bf25d693 y2038: use time32 syscall names on 32-bit
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.

The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.

It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.

Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-02-07 00:13:28 +01:00
Arnd Bergmann
b41c51c8e1 arch: add pkey and rseq syscall numbers everywhere
Most architectures define system call numbers for the rseq and pkey system
calls, even when they don't support the features, and perhaps never will.

Only a few architectures are missing these, so just define them anyway
for consistency. If we decide to add them later to one of these, the
system call numbers won't get out of sync then.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
2019-01-25 17:22:50 +01:00
Arnd Bergmann
0d6040d468 arch: add split IPC system calls where needed
The IPC system call handling is highly inconsistent across architectures,
some use sys_ipc, some use separate calls, and some use both.  We also
have some architectures that require passing IPC_64 in the flags, and
others that set it implicitly.

For the addition of a y2038 safe semtimedop() system call, I chose to only
support the separate entry points, but that requires first supporting
the regular ones with their own syscall numbers.

The IPC_64 is now implied by the new semctl/shmctl/msgctl system
calls even on the architectures that require passing it with the ipc()
multiplexer.

I'm not adding the new semtimedop() or semop() on 32-bit architectures,
those will get implemented using the new semtimedop_time64() version
that gets added along with the other time64 calls.
Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop().

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2019-01-25 17:22:50 +01:00
Arnd Bergmann
09ac12603b m68k: assign syscall number for seccomp
Most architectures have assigned a numbers for the seccomp syscall
even when they do not implement it.

m68k is an exception here, so for consistency lets add the number.
Unless CONFIG_SECCOMP is implemented, the system call just
returns -ENOSYS.

Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-25 17:22:50 +01:00
Firoz Khan
fd81414666 m68k: Add system call table generation support
The system call tables are in different format in all
architecture and it will be difficult to manually add,
modify or delete the syscall table entries in the res-
pective files. To make it easy by keeping a script and
which will generate the uapi header and syscall table
file. This change will also help to unify the implemen-
tation across all architectures.

The system call table generation script is added in
kernel/syscalls directory which contain the scripts to
generate both uapi header file and system call table
files. The syscall.tbl will be input for the scripts.

syscall.tbl contains the list of available system calls
along with system call number and corresponding entry
point. Add a new system call in this architecture will
be possible by adding new entry in the syscall.tbl file.

Adding a new table entry consisting of:
  	- System call number.
	- ABI.
	- System call name.
	- Entry point name.

syscallhdr.sh and syscalltbl.sh will generate uapi header
unistd_32.h and syscall_table.h files respectively. Both
.sh files will parse the content syscall.tbl to generate
the header and table files. unistd_32.h will be included
by uapi/asm/unistd.h and syscall_table.h is included by
kernel/syscall_table.S - the real system call table.

ARM, s390 and x86 architecuture does have similar support.
I leverage their implementation to come up with a generic
solution.

Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2018-12-04 09:47:53 +01:00