IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This KUnit update for Linux 5.20-rc1 consists of several fixes and an
important feature to discourage running KUnit tests on production
systems. Running tests on a production system could leave the system
in a bad state. This new feature adds:
- adds a new taint type, TAINT_TEST to signal that a test has been run.
This should discourage people from running these tests on production
systems, and to make it easier to tell if tests have been run
accidentally (by loading the wrong configuration, etc.)
- several documentation and tool enhancements and fixes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPZKym/RZuOCGeA/kCwJExA0NQxwFAmLoOXcACgkQCwJExA0N
Qxy5HQ//QehcBsN0rvNM5enP0HyJjDFxoF9HI7RxhHbwAE3LEkMQTNnFJOViJ7cY
XZgvPipySkekPkvbm9uAnJw160hUSTCM3Oikf7JaxSTKS9Zvfaq9k78miQNrU2rT
C9ljhLBF9y2eXxj9348jwlIHmjBwV5iMn6ncSvUkdUpDAkll2qIvtmmdiSgl33Et
CRhdc07XBwhlz/hBDwj8oK2ZYGPsqjxf2CyrhRMJAOEJtY0wt971COzPj8cDGtmi
nmQXiUhGejXPlzL/7hPYNr83YmYa/xGjecgDPKR3hOf5dVEVRUE2lKQ00F4GrwdZ
KC6CWyXCzhhbtH7tfpWBU4ZoBdmyxhVOMDPFNJdHzuAHVAI3WbHmGjnptgV9jT7o
KqgPVDW2n0fggMMUjmxR4fV2VrKoVy8EvLfhsanx961KhnPmQ6MXxL1cWoMT5BwA
JtwPlNomwaee2lH9534Qgt1brybYZRGx1RDbWn2CW3kJabODptL80sZ62X5XxxRi
I/keCbSjDO1mL3eEeGg/n7AsAhWrZFsxCThxSXH6u6d6jrrvCF3X2Ki5m27D1eGD
Yh40Fy+FhwHSXNyVOav6XHYKhyRzJvPxM/mTGe5DtQ6YnP7G7SnfPchX4irZQOkv
T2soJdtAcshnpG6z38Yd3uWM/8ARtSMaBU891ZAkFD9foniIYWE=
=WzBX
-----END PGP SIGNATURE-----
Merge tag 'linux-kselftest-kunit-5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull KUnit updates from Shuah Khan:
"This consists of several fixes and an important feature to discourage
running KUnit tests on production systems. Running tests on a
production system could leave the system in a bad state.
Summary:
- Add a new taint type, TAINT_TEST to signal that a test has been
run.
This should discourage people from running these tests on
production systems, and to make it easier to tell if tests have
been run accidentally (by loading the wrong configuration, etc)
- Several documentation and tool enhancements and fixes"
* tag 'linux-kselftest-kunit-5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (29 commits)
Documentation: KUnit: Fix example with compilation error
Documentation: kunit: Add CLI args for kunit_tool
kcsan: test: Add a .kunitconfig to run KCSAN tests
kunit: executor: Fix a memory leak on failure in kunit_filter_tests
clk: explicitly disable CONFIG_UML_PCI_OVER_VIRTIO in .kunitconfig
mmc: sdhci-of-aspeed: test: Use kunit_test_suite() macro
nitro_enclaves: test: Use kunit_test_suite() macro
thunderbolt: test: Use kunit_test_suite() macro
kunit: flatten kunit_suite*** to kunit_suite** in .kunit_test_suites
kunit: unify module and builtin suite definitions
selftest: Taint kernel when test module loaded
module: panic: Taint the kernel when selftest modules load
Documentation: kunit: fix example run_kunit func to allow spaces in args
Documentation: kunit: Cleanup run_wrapper, fix x-ref
kunit: test.h: fix a kernel-doc markup
kunit: tool: Enable virtio/PCI by default on UML
kunit: tool: make --kunitconfig repeatable, blindly concat
kunit: add coverage_uml.config to enable GCOV on UML
kunit: tool: refactor internal kconfig handling, allow overriding
kunit: tool: introduce --qemu_args
...
Most in-kernel tests (such as KUnit tests) are not supposed to run on
production systems: they may do deliberately illegal things to trigger
errors, and have security implications (for example, KUnit assertions
will often deliberately leak kernel addresses).
Add a new taint type, TAINT_TEST to signal that a test has been run.
This will be printed as 'N' (originally for kuNit, as every other
sensible letter was taken.)
This should discourage people from running these tests on production
systems, and to make it easier to tell if tests have been run
accidentally (by loading the wrong configuration, etc.)
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: David Gow <davidgow@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
This reverts commit 2bb2b7b57f.
The testing of 5.19 release candidates revealed missing synchronization
between early and regular console functionality.
It would be possible to start the console kthreads later as a workaround.
But it is clear that console lock serialized console drivers between
each other. It opens a big area of possible problems that were not
considered by people involved in the development and review.
printk() is crucial for debugging kernel issues and console output is
very important part of it. The number of consoles is huge and a proper
review would take some time. As a result it need to be reverted for 5.19.
Link: https://lore.kernel.org/r/YrBdjVwBOVgLfHyb@alley
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220623145157.21938-7-pmladek@suse.com
This reverts commit b87f02307d.
The testing of 5.19 release candidates revealed missing synchronization
between early and regular console functionality.
It would be possible to start the console kthreads later as a workaround.
But it is clear that console lock serialized console drivers between
each other. It opens a big area of possible problems that were not
considered by people involved in the development and review.
printk() is crucial for debugging kernel issues and console output is
very important part of it. The number of consoles is huge and a proper
review would take some time. As a result it need to be reverted for 5.19.
Link: https://lore.kernel.org/r/YrBdjVwBOVgLfHyb@alley
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220623145157.21938-2-pmladek@suse.com
There are reports that the console kthreads block the global console
lock when the system is going down, for example, reboot, panic.
First part of the solution was to block kthreads in these problematic
system states so they stopped handling newly added messages.
Second part of the solution is to wait when for the kthreads when
they are actively printing. It solves the problem when a message
was printed before the system entered the problematic state and
the kthreads managed to step in.
A busy waiting has to be used because panic() can be called in any
context and in an unknown state of the scheduler.
There must be a timeout because the kthread might get stuck or sleeping
and never release the lock. The timeout 10s is an arbitrary value
inspired by the softlockup timeout.
Link: https://lore.kernel.org/r/20220610205038.GA3050413@paulmck-ThinkPad-P17-Gen-1
Link: https://lore.kernel.org/r/CAMdYzYpF4FNTBPZsEFeWRuEwSies36QM_As8osPWZSr2q-viEA@mail.gmail.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220615162805.27962-3-pmladek@suse.com
For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and
all this caused merge conflicts with one susbystem or another.
This tree was put together to help try to avoid conflicts with these cleanups
going on different trees at time. So nothing exciting on this pull request,
just cleanups.
I actually had this sysctl-next tree up since v5.18 but I missed sending a
pull request for it on time during the last merge window. And so these changes
have been being soaking up on sysctl-next and so linux-next for a while.
The last change was merged May 4th.
Most of the compile issues were reported by 0day and fixed.
To help avoid a conflict with bpf folks at Daniel Borkmann's request
I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which
moves the BPF sysctls from kernel/sysctl.c to BPF core.
Possible merge conflicts and known resolutions as per linux-next:
bfp:
https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au
rcu:
https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au
powerpc:
https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD
z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB
ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk
chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ
IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz
1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq
y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U
JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1
SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh
JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M
4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X
4ht3M2VP098l
=btwh
-----END PGP SIGNATURE-----
Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of
#ifdefs and all this caused merge conflicts with one susbystem or
another.
This tree was put together to help try to avoid conflicts with these
cleanups going on different trees at time. So nothing exciting on this
pull request, just cleanups.
Thanks a lot to the Uniontech and Huawei folks for doing some of this
nasty work"
* tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits)
sched: Fix build warning without CONFIG_SYSCTL
reboot: Fix build warning without CONFIG_SYSCTL
kernel/kexec_core: move kexec_core sysctls into its own file
sysctl: minor cleanup in new_dir()
ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n
fs/proc: Introduce list_for_each_table_entry for proc sysctl
mm: fix unused variable kernel warning when SYSCTL=n
latencytop: move sysctl to its own file
ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y
ftrace: Fix build warning
ftrace: move sysctl_ftrace_enabled to ftrace.c
kernel/do_mount_initrd: move real_root_dev sysctls to its own file
kernel/delayacct: move delayacct sysctls to its own file
kernel/acct: move acct sysctls to its own file
kernel/panic: move panic sysctls to its own file
kernel/lockdep: move lockdep sysctls to its own file
mm: move page-writeback sysctls to their own file
mm: move oom_kill sysctls to their own file
kernel/reboot: move reboot sysctls to its own file
sched: Move energy_aware sysctls to topology.c
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmKLXH8ACgkQUqAMR0iA
lPIABhAAtAZRmvg9UjUS8dpmS3plXdg/zJU0AbK9o/m/hGzMfs2bgHxwM7mbGa1O
VC0Jczj9tfJXESfrBsV0ZpY5H+iGilEkTF86/ME4sS8lmIeSim9dAxF4sTvM1vw/
IST4llN0IRuNHwrb20GyH44MOG9JwFwEyIgYITwkB8iYK/lo/sP8xkZuC44CmaJf
28ZZAwICigtyR9lF0psQGLgMc4+laT5l3XF/c9OyqEFbB5khBGxT0RwV0WS4ZcPA
mTn5kW6WcDbTNKUVUHW1jzmJBq3ci+0ckh6jLNJWc6Olh5jbGU7selVTst96GQKm
sgWF7uykURls3ZFPzTJSY6E3Gnwrsw75RQYDLtTOSxqB2NlVsBTyZq4jgNtxiR3z
ovA9souDe4t/BPqkHTHZkVEyaFWZlRwNlzJZIwN2Auy/uFjznWnOQxT2t3BYUZt5
8qnUt+JBvtSNyLDvoNtQnyCiCyEZdyrHQ+3RsFWIQz6CnA34Xh6oZPxbK24pnfDy
F5OuIulrpIPfEFufV6ZR30QeB2gLkvCorUfl5pde4QL/Pujxrk6CCikv39QOfL7K
6+X7hq/Moq8vhzMfWl+LEPS6qpAwNJl69JIaQrp18JHVGeKVagS1e6pOmThSOPv7
bDucE08oOK8KTnR6ysfKf24JC6HopB7vFYfhSEa8rgssDLtcGso=
=pN3o
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Offload writing printk() messages on consoles to per-console
kthreads.
It prevents soft-lockups when an extensive amount of messages is
printed. It was observed, for example, during boot of large systems
with a lot of peripherals like disks or network interfaces.
It prevents live-lockups that were observed, for example, when
messages about allocation failures were reported and a CPU handled
consoles instead of reclaiming the memory. It was hard to solve even
with rate limiting because it would need to take into account the
amount of messages and the speed of all consoles.
It is a must to have for real time. Otherwise, any printk() might
break latency guarantees.
The per-console kthreads allow to handle each console on its own
speed. Slow consoles do not longer slow down faster ones. And
printk() does not longer unpredictably slows down various code paths.
There are situations when the kthreads are either not available or
not reliable, for example, early boot, suspend, or panic. In these
situations, printk() uses the legacy mode and tries to handle
consoles immediately.
- Add documentation for the printk index.
* tag 'printk-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
printk, tracing: fix console tracepoint
printk: remove @console_locked
printk: extend console_lock for per-console locking
printk: add kthread console printers
printk: add functions to prefer direct printing
printk: add pr_flush()
printk: move buffer definitions into console_emit_next_record() caller
printk: refactor and rework printing logic
printk: add con_printk() macro for console details
printk: call boot_delay_msec() in printk_delay()
printk: get caller_id/timestamp after migration disable
printk: wake waiters for safe and NMI contexts
printk: wake up all waiters
printk: add missing memory barrier to wake_up_klogd()
printk: cpu sync always disable interrupts
printk: rename cpulock functions
printk/index: Printk index feature documentation
MAINTAINERS: Add printk indexing maintainers on mention of printk_index
In preparation for Clang supporting randstruct, reorganize the Kconfigs,
move the attribute macros, and generalize the feature to be named
CONFIG_RANDSTRUCT for on/off, CONFIG_RANDSTRUCT_FULL for the full
randomization mode, and CONFIG_RANDSTRUCT_PERFORMANCE for the cache-line
sized mode.
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220503205503.3054173-4-keescook@chromium.org
Once kthread printing is available, console printing will no longer
occur in the context of the printk caller. However, there are some
special contexts where it is desirable for the printk caller to
directly print out kernel messages. Using pr_flush() to wait for
threaded printers is only possible if the caller is in a sleepable
context and the kthreads are active. That is not always the case.
Introduce printk_prefer_direct_enter() and printk_prefer_direct_exit()
functions to explicitly (and globally) activate/deactivate preferred
direct console printing. The term "direct console printing" refers to
printing to all enabled consoles from the context of the printk
caller. The term "prefer" is used because this type of printing is
only best effort. If the console is currently locked or other
printers are already actively printing, the printk caller will need
to rely on the other contexts to handle the printing.
This preferred direct printing is how all printing has been handled
until now (unless it was explicitly deferred).
When kthread printing is introduced, there may be some unanticipated
problems due to kthreads being unable to flush important messages.
In order to minimize such risks, preferred direct printing is
activated for the primary important messages when the system
experiences general types of major errors. These are:
- emergency reboot/shutdown
- cpu and rcu stalls
- hard and soft lockups
- hung tasks
- warn
- sysrq
Note that since kthread printing does not yet exist, no behavior
changes result from this commit. This is only implementing the
counter and marking the various places where preferred direct
printing is active.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org> # for RCU
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-13-john.ogness@linutronix.de
kernel/sysctl.c is a kitchen sink where everyone leaves their dirty
dishes, this makes it very difficult to maintain.
To help with this maintenance let's start by moving sysctls to places
where they actually belong. The proc sysctl maintainers do not want to
know what sysctl knobs you wish to add for your own piece of code, we
just care about the core logic.
All filesystem syctls now get reviewed by fs folks. This commit
follows the commit of fs, move the oops_all_cpu_backtrace sysctl to
its own file, kernel/panic.c.
Signed-off-by: tangmeng <tangmeng@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The panic_print setting allows users to collect more information in a
panic event, like memory stats, tasks, CPUs backtraces, etc. This is an
interesting debug mechanism, but currently the print event happens *after*
kmsg_dump(), meaning that pstore, for example, cannot collect a dmesg with
the panic_print extra information.
This patch changes that in 2 steps:
(a) The panic_print setting allows to replay the existing kernel log
buffer to the console (bit 5), besides the extra information dump.
This functionality makes sense only at the end of the panic()
function. So, we hereby allow to distinguish the two situations by a
new boolean parameter in the function panic_print_sys_info().
(b) With the above change, we can safely call panic_print_sys_info()
before kmsg_dump(), allowing to dump the extra information when using
pstore or other kmsg dumpers.
The additional messages from panic_print could overwrite the oldest
messages when the buffer is full. The only reasonable solution is to use
a large enough log buffer, hence we added an advice into the kernel
parameters documentation about that.
Link: https://lkml.kernel.org/r/20220214141308.841525-1-gpiccoli@igalia.com
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Acked-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the "panic_print" parameter/sysctl allows some interesting debug
information to be printed during a panic event. This is useful for
example in cases the user cannot kdump due to resource limits, or if the
user collects panic logs in a serial output (or pstore) and prefers a fast
reboot instead of a kdump.
Happens that currently there's no way to see all CPUs backtraces in a
panic using "panic_print" on architectures that support that. We do have
"oops_all_cpu_backtrace" sysctl, but although partially overlapping in the
functionality, they are orthogonal in nature: "panic_print" is a panic
tuning (and we have panics without oopses, like direct calls to panic() or
maybe other paths that don't go through oops_enter() function), and the
original purpose of "oops_all_cpu_backtrace" is to provide more
information on oopses for cases in which the users desire to continue
running the kernel even after an oops, i.e., used in non-panic scenarios.
So, we hereby introduce an additional bit for "panic_print" to allow
dumping the CPUs backtraces during a panic event.
Link: https://lkml.kernel.org/r/20211109202848.610874-3-gpiccoli@igalia.com
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Samuel Iglesias Gonsalvez <siglesias@igalia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current code, the following three places need to unset
panic_on_warn before calling panic() to avoid recursive panics:
kernel/kcsan/report.c: print_report()
kernel/sched/core.c: __schedule_bug()
mm/kfence/report.c: kfence_report_error()
In order to avoid copy-pasting "panic_on_warn = 0" all over the places,
it is better to move it inside panic() and then remove it from the other
places.
Link: https://lkml.kernel.org/r/1644324666-15947-4-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oops id has been added as part of the end of trace marker for the
kerneloops.org project. The id is used to automatically identify
duplicate submissions of the same report. Identical looking reports
with different a id can be considered as the same oops occurred again.
The early initialisation of the oops_id can create a warning if the
random core is not yet fully initialized. On PREEMPT_RT it is
problematic if the id is initialized on demand from non preemptible
context.
The kernel oops project is not available since 2017. Remove the oops_id
and use 0 in the output in case parser rely on it.
Link: https://bugs.debian.org/953172
Link: https://lkml.kernel.org/r/Ybdi16aP2NEugWHq@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce the error detector "warning" to the error_report event and use
the error_report_end tracepoint at the end of a warning report.
This allows in-kernel tests but also userspace to more easily determine
if a warning occurred without polling kernel logs.
[akpm@linux-foundation.org: add comma to enum list, per Andy]
Link: https://lkml.kernel.org/r/20211115085630.1756817-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Alexander Popov <alex.popov@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With @logbuf_lock removed, the high level printk functions for
storing messages are lockless. Messages can be stored from any
context, so there is no need for the NMI and safe buffers anymore.
Remove the NMI and safe buffers.
Although the safe buffers are removed, the NMI and safe context
tracking is still in place. In these contexts, store the message
immediately but still use irq_work to defer the console printing.
Since printk recursion tracking is in place, safe context tracking
for most of printk is not needed. Remove it. Only safe context
tracking relating to the console and console_owner locks is left
in place. This is because the console and console_owner locks are
needed for the actual printing.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20210715193359.25946-4-john.ogness@linutronix.de
kernel.h is being used as a dump for all kinds of stuff for a long time.
Here is the attempt to start cleaning it up by splitting out panic and
oops helpers.
There are several purposes of doing this:
- dropping dependency in bug.h
- dropping a loop by moving out panic_notifier.h
- unload kernel.h from something which has its own domain
At the same time convert users tree-wide to use new headers, although for
the time being include new header back to kernel.h to avoid twisted
indirected includes for existing users.
[akpm@linux-foundation.org: thread_info.h needs limits.h]
[andriy.shevchenko@linux.intel.com: ia64 fix]
Link: https://lkml.kernel.org/r/20210520130557.55277-1-andriy.shevchenko@linux.intel.com
Link: https://lkml.kernel.org/r/20210511074137.33666-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Co-developed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Sebastian Reichel <sre@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we print stack and registers for ordinary warnings but we do not
for panic_on_warn which looks as oversight - panic() will reboot the
machine but won't print registers.
This moves printing of registers and modules earlier.
This does not move the stack dumping as panic() dumps it.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Link: https://lkml.kernel.org/r/20200804095054.68724-1-aik@ozlabs.ru
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since print_oops_end_marker() is not used externally, also remove it in
kernel.h at the same time.
Signed-off-by: Yue Hu <huyue2@yulong.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20200724011516.12756-1-zbestahu@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value of oops_may_print() is true or false, so change its type
to reflect that.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Xuefeng Li <lixuefeng@loongson.cn>
Link: http://lkml.kernel.org/r/1591103358-32087-1-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Warnings, bugs and stack protection fails from noinstr sections, e.g. low
level and early entry code, are likely to be fatal.
Mark them as "safe" to be invoked from noinstr protected code to avoid
annotating all usage sites. Getting the information out is important.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.376598577@linutronix.de
Usually when the kernel reaches an oops condition, it's a point of no
return; in case not enough debug information is available in the kernel
splat, one of the last resorts would be to collect a kernel crash dump
and analyze it. The problem with this approach is that in order to
collect the dump, a panic is required (to kexec-load the crash kernel).
When in an environment of multiple virtual machines, users may prefer to
try living with the oops, at least until being able to properly shutdown
their VMs / finish their important tasks.
This patch implements a way to collect a bit more debug details when an
oops event is reached, by printing all the CPUs backtraces through the
usage of NMIs (on architectures that support that). The sysctl added
(and documented) here was called "oops_all_cpu_backtrace", and when set
will (as the name suggests) dump all CPUs backtraces.
Far from ideal, this may be the last option though for users that for
some reason cannot panic on oops. Most of times oopses are clear enough
to indicate the kernel portion that must be investigated, but in virtual
environments it's possible to observe hypervisor/KVM issues that could
lead to oopses shown in other guests CPUs (like virtual APIC crashes).
This patch hence aims to help debug such complex issues without
resorting to kdump.
Signed-off-by: Guilherme G. Piccoli <gpiccoli@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200327224116.21030-1-gpiccoli@canonical.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Analogously to the introduction of panic_on_warn, this patch introduces
a kernel option named panic_on_taint in order to provide a simple and
generic way to stop execution and catch a coredump when the kernel gets
tainted by any given flag.
This is useful for debugging sessions as it avoids having to rebuild the
kernel to explicitly add calls to panic() into the code sites that
introduce the taint flags of interest.
For instance, if one is interested in proceeding with a post-mortem
analysis at the point a given code path is hitting a bad page (i.e.
unaccount_page_cache_page(), or slab_bug()), a coredump can be collected
by rebooting the kernel with 'panic_on_taint=0x20' amended to the
command line.
Another, perhaps less frequent, use for this option would be as a means
for assuring a security policy case where only a subset of taints, or no
single taint (in paranoid mode), is allowed for the running system. The
optional switch 'nousertaint' is handy in this particular scenario, as
it will avoid userspace induced crashes by writes to sysctl interface
/proc/sys/kernel/tainted causing false positive hits for such policies.
[akpm@linux-foundation.org: tweak kernel-parameters.txt wording]
Suggested-by: Qian Cai <cai@lca.pw>
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Dave Young <dyoung@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Takashi Iwai <tiwai@suse.de>
Link: http://lkml.kernel.org/r/20200515175502.146720-1-aquini@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling 'panic()' on a kernel with CONFIG_PREEMPT=y can leave the
calling CPU in an infinite loop, but with interrupts and preemption
enabled. From this state, userspace can continue to be scheduled,
despite the system being "dead" as far as the kernel is concerned.
This is easily reproducible on arm64 when booting with "nosmp" on the
command line; a couple of shell scripts print out a periodic "Ping"
message whilst another triggers a crash by writing to
/proc/sysrq-trigger:
| sysrq: Trigger a crash
| Kernel panic - not syncing: sysrq triggered crash
| CPU: 0 PID: 1 Comm: init Not tainted 5.2.15 #1
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0x0/0x148
| show_stack+0x14/0x20
| dump_stack+0xa0/0xc4
| panic+0x140/0x32c
| sysrq_handle_reboot+0x0/0x20
| __handle_sysrq+0x124/0x190
| write_sysrq_trigger+0x64/0x88
| proc_reg_write+0x60/0xa8
| __vfs_write+0x18/0x40
| vfs_write+0xa4/0x1b8
| ksys_write+0x64/0xf0
| __arm64_sys_write+0x14/0x20
| el0_svc_common.constprop.0+0xb0/0x168
| el0_svc_handler+0x28/0x78
| el0_svc+0x8/0xc
| Kernel Offset: disabled
| CPU features: 0x0002,24002004
| Memory Limit: none
| ---[ end Kernel panic - not syncing: sysrq triggered crash ]---
| Ping 2!
| Ping 1!
| Ping 1!
| Ping 2!
The issue can also be triggered on x86 kernels if CONFIG_SMP=n,
otherwise local interrupts are disabled in 'smp_send_stop()'.
Disable preemption in 'panic()' before re-enabling interrupts.
Link: http://lkml.kernel.org/r/20191002123538.22609-1-will@kernel.org
Link: https://lore.kernel.org/r/BX1W47JXPMR8.58IYW53H6M5N@dragonstone
Signed-off-by: Will Deacon <will@kernel.org>
Reported-by: Xogium <contact@xogium.me>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for cleaning up "cut here", move the "cut here" logic up
out of __warn() and into callers that pass non-NULL args. For anyone
looking closely, there are two callers that pass NULL args: one already
explicitly prints "cut here". The remaining case is covered by how a WARN
is built, which will be cleaned up in the next patch.
Link: http://lkml.kernel.org/r/20190819234111.9019-5-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Drew Davenport <ddavenport@chromium.org>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Clean up WARN() "cut here" handling", v2.
Christophe Leroy noticed that the fix for missing "cut here" in the WARN()
case was adding explicit printk() calls instead of teaching the exception
handler to add it. This refactors the bug/warn infrastructure to pass
this information as a new BUGFLAG.
Longer details repeated from the last patch in the series:
bug: move WARN_ON() "cut here" into exception handler
The original cleanup of "cut here" missed the WARN_ON() case (that does
not have a printk message), which was fixed recently by adding an explicit
printk of "cut here". This had the downside of adding a printk() to every
WARN_ON() caller, which reduces the utility of using an instruction
exception to streamline the resulting code. By making this a new BUGFLAG,
all of these can be removed and "cut here" can be handled by the exception
handler.
This was very pronounced on PowerPC, but the effect can be seen on x86 as
well. The resulting text size of a defconfig build shows some small
savings from this patch:
text data bss dec hex filename
19691167 5134320 1646664 26472151 193eed7 vmlinux.before
19676362 5134260 1663048 26473670 193f4c6 vmlinux.after
This change also opens the door for creating something like BUG_MSG(),
where a custom printk() before issuing BUG(), without confusing the "cut
here" line.
This patch (of 7):
There's no reason to have specialized helpers for passing the warn taint
down to __warn(). Consolidate and refactor helper macros, removing
__WARN_printf() and warn_slowpath_fmt_taint().
Link: http://lkml.kernel.org/r/20190819234111.9019-2-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Drew Davenport <ddavenport@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now kgdb/kdb hooks up to debug panics by registering for the panic
notifier. This works OK except that it means that kgdb/kdb gets called
_after_ the CPUs in the system are taken offline. That means that if
anything important was happening on those CPUs (like something that might
have contributed to the panic) you can't debug them.
Specifically I ran into a case where I got a panic because a task was
"blocked for more than 120 seconds" which was detected on CPU 2. I nicely
got shown stack traces in the kernel log for all CPUs including CPU 0,
which was running 'PID: 111 Comm: kworker/0:1H' and was in the middle of
__mmc_switch().
I then ended up at the kdb prompt where switched over to kgdb to try to
look at local variables of the process on CPU 0. I found that I couldn't.
Digging more, I found that I had no info on any tasks running on CPUs
other than CPU 2 and that asking kdb for help showed me "Error: no saved
data for this cpu". This was because all the CPUs were offline.
Let's move the entry of kdb/kgdb to a direct call from panic() and stop
using the generic notifier. Putting a direct call in allows us to order
things more properly and it also doesn't seem like we're breaking any
abstractions by calling into the debugger from the panic function.
Daniel said:
: This patch changes the way kdump and kgdb interact with each other.
: However it would seem rather odd to have both tools simultaneously armed
: and, even if they were, the user still has the option to use panic_timeout
: to force a kdump to happen. Thus I think the change of order is
: acceptable.
Link: http://lkml.kernel.org/r/20190703170354.217312-1-dianders@chromium.org
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Feng Tang <feng.tang@intel.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stuff under sysctl describes /sys interface from userspace
point of view. So, add it to the admin-guide and remove the
:orphan: from its index file.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Rename the /proc/sys/ documentation files to ReST, using the
README file as a template for an index.rst, adding the other
files there via TOC markup.
Despite being written on different times with different
styles, try to make them somewhat coherent with a similar
look and feel, ensuring that they'll look nice as both
raw text file and as via the html output produced by the
Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently on panic, kernel will lower the loglevel and print out pending
printk msg only with console_flush_on_panic().
Add an option for users to configure the "panic_print" to replay all
dmesg in buffer, some of which they may have never seen due to the
loglevel setting, which will help panic debugging .
[feng.tang@intel.com: keep the original console_flush_on_panic() inside panic()]
Link: http://lkml.kernel.org/r/1556199137-14163-1-git-send-email-feng.tang@intel.com
[feng.tang@intel.com: use logbuf lock to protect the console log index]
Link: http://lkml.kernel.org/r/1556269868-22654-1-git-send-email-feng.tang@intel.com
Link: http://lkml.kernel.org/r/1556095872-36838-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Aaro Koskinen <aaro.koskinen@nokia.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow specifying reboot_mode for panic only. This is needed on systems
where ramoops is used to store panic logs, and user wants to use warm
reset to preserve those, while still having cold reset on normal
reboots.
Link: http://lkml.kernel.org/r/20190322004735.27702-1-aaro.koskinen@iki.fi
Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kernel panic happens, it will first print the panic call stack,
then the ending msg like:
[ 35.743249] ---[ end Kernel panic - not syncing: Fatal exception
[ 35.749975] ------------[ cut here ]------------
The above message are very useful for debugging.
But if system is configured to not reboot on panic, say the
"panic_timeout" parameter equals 0, it will likely print out many noisy
message like WARN() call stack for each and every CPU except the panic
one, messages like below:
WARNING: CPU: 1 PID: 280 at kernel/sched/core.c:1198 set_task_cpu+0x183/0x190
Call Trace:
<IRQ>
try_to_wake_up
default_wake_function
autoremove_wake_function
__wake_up_common
__wake_up_common_lock
__wake_up
wake_up_klogd_work_func
irq_work_run_list
irq_work_tick
update_process_times
tick_sched_timer
__hrtimer_run_queues
hrtimer_interrupt
smp_apic_timer_interrupt
apic_timer_interrupt
For people working in console mode, the screen will first show the panic
call stack, but immediately overridden by these noisy extra messages,
which makes debugging much more difficult, as the original context gets
lost on screen.
Also these noisy messages will confuse some users, as I have seen many bug
reporters posted the noisy message into bugzilla, instead of the real
panic call stack and context.
Adding a flag "suppress_printk" which gets set in panic() to avoid those
noisy messages, without changing current kernel behavior that both panic
blinking and sysrq magic key can work as is, suggested by Petr Mladek.
To verify this, make sure kernel is not configured to reboot on panic and
in console
# echo c > /proc/sysrq-trigger
to see if console only prints out the panic call stack.
Link: http://lkml.kernel.org/r/1551430186-24169-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The disabled_wait() function uses its argument as the PSW address when
it stops the CPU with a wait PSW that is disabled for interrupts.
The different callers sometimes use a specific number like 0xdeadbeef
to indicate a specific failure, the early boot code uses 0 and some
other calls sites use __builtin_return_address(0).
At the time a dump is created the current PSW and the registers of a
CPU are written to lowcore to make them avaiable to the dump analysis
tool. For a CPU stopped with disabled_wait the PSW and the registers
do not really make sense together, the PSW address does not point to
the function the registers belong to.
Simplify disabled_wait() by using _THIS_IP_ for the PSW address and
drop the argument to the function.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use DEFINE_DEBUGFS_ATTRIBUTE rather than DEFINE_SIMPLE_ATTRIBUTE for
debugfs files.
Semantic patch information:
Rationale: DEFINE_SIMPLE_ATTRIBUTE + debugfs_create_file()
imposes some significant overhead as compared to
DEFINE_DEBUGFS_ATTRIBUTE + debugfs_create_file_unsafe().
Generated by: scripts/coccinelle/api/debugfs/debugfs_simple_attr.cocci
The _unsafe() part suggests that some of them "safeness
responsibilities" are now panic.c responsibilities. The patch is OK
since panic's clear_warn_once_fops struct file_operations is safe
against removal, so we don't have to use otherwise necessary
debugfs_file_get()/debugfs_file_put().
[sergey.senozhatsky.work@gmail.com: changelog addition]
Link: http://lkml.kernel.org/r/1545990861-158097-1-git-send-email-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Petr Mladek <pmladek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
So that we can also runtime chose to print out the needed system info
for panic, other than setting the kernel cmdline.
Link: http://lkml.kernel.org/r/1543398842-19295-3-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel panic issues are always painful to debug, partially because it's
not easy to get enough information of the context when panic happens.
And we have ramoops and kdump for that, while this commit tries to
provide a easier way to show the system info by adding a cmdline
parameter, referring some idea from sysrq handler.
Link: http://lkml.kernel.org/r/1543398842-19295-2-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJcG5XBAAoJEFKgDEdIgJTyoV8QAJGJtlSLXJewMaJyLom8fb2I
YvdNo2gq+uLeNAwNoOio/pcMZypfjoISYq7T4etfElXay42c7MgZftMoo/cmtlhs
FU9WUVYUXWLuaMgibP7nl9fsNUtRt/ySY7PfOj3nu6A/E4dqqNWnoC7V9rLp2h70
Np7L1JEnUr0daRhY6sBm2V6VwQKxjXHY/sdC3xw88R8CVA1wMAxCxouz8qHopvn3
4Anfhu4o6e4PGCw8YxFIwKS7K5MtDP/WESOF/80/EB+tZkJzH63B3ozqxMirlHMt
zilw6FPwZRX1NRJ1gDJJmZjt0rwC9oCr0u93QUdUx9j179THs8TBf3DaJEIx87zZ
fwy+PpN+8OXnS+6qAQOhSaMtms6pPE73Kr2vTukvNmhEoHc0lGIXbKQeWdVl248a
y9nTlJiOCEiA/nssNGpUVM7uncziKOmJOoQfyaSI9OOo/u3tAwZXrAe7f3GPKeWo
o6RaIKfTx1LJhco1vxbc93pKCK4ItXU0aQxjRbpBBRjhlFJG8C8alKRagx4LXRpe
5bFd7L+amtN6BzpeI1uGMKEeRBwn0zjlPrc12bTe6MjiRLr3wtthspELY2ubcIxk
ghe7ARzb05X9O206EkF6Mir/fn3oudrouuAGyJjNQyAi/OjijRB92l7dLkn/Pe1o
hNTPMDU/po0y3ulDwaVx
=FeVC
-----END PGP SIGNATURE-----
Merge tag 'printk-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Keep spinlocks busted until the end of panic()
- Fix races between calculating number of messages that would fit into
user space buffers, filling the buffers, and switching printk.time
parameter
- Some code clean up
* tag 'printk-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
printk: Remove print_prefix() calls with NULL buffer.
printk: fix printk_time race.
printk: Make printk_emit() local function.
panic: avoid deadlocks in re-entrant console drivers
From printk()/serial console point of view panic() is special, because
it may force CPU to re-enter printk() or/and serial console driver.
Therefore, some of serial consoles drivers are re-entrant. E.g. 8250:
serial8250_console_write()
{
if (port->sysrq)
locked = 0;
else if (oops_in_progress)
locked = spin_trylock_irqsave(&port->lock, flags);
else
spin_lock_irqsave(&port->lock, flags);
...
}
panic() does set oops_in_progress via bust_spinlocks(1), so in theory
we should be able to re-enter serial console driver from panic():
CPU0
<NMI>
uart_console_write()
serial8250_console_write() // if (oops_in_progress)
// spin_trylock_irqsave()
call_console_drivers()
console_unlock()
console_flush_on_panic()
bust_spinlocks(1) // oops_in_progress++
panic()
<NMI/>
spin_lock_irqsave(&port->lock, flags) // spin_lock_irqsave()
serial8250_console_write()
call_console_drivers()
console_unlock()
printk()
...
However, this does not happen and we deadlock in serial console on
port->lock spinlock. And the problem is that console_flush_on_panic()
called after bust_spinlocks(0):
void panic(const char *fmt, ...)
{
bust_spinlocks(1);
...
bust_spinlocks(0);
console_flush_on_panic();
...
}
bust_spinlocks(0) decrements oops_in_progress, so oops_in_progress
can go back to zero. Thus even re-entrant console drivers will simply
spin on port->lock spinlock. Given that port->lock may already be
locked either by a stopped CPU, or by the very same CPU we execute
panic() on (for instance, NMI panic() on printing CPU) the system
deadlocks and does not reboot.
Fix this by removing bust_spinlocks(0), so oops_in_progress is always
set in panic() now and, thus, re-entrant console drivers will trylock
the port->lock instead of spinning on it forever, when we call them
from console_flush_on_panic().
Link: http://lkml.kernel.org/r/20181025101036.6823-1-sergey.senozhatsky@gmail.com
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Daniel Wang <wonderfly@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: linux-serial@vger.kernel.org
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
If a call to panic() terminates the string with a \n , the result puts the
closing brace ']---' on a newline because panic() itself adds \n too.
Now, if one goes and removes the newline chars from all panic()
invocations - and the stats right now look like this:
~300 calls with a \n
~500 calls without a \n
one is destined to a neverending game of whack-a-mole because the usual
thing to do is add a newline at the end of a string a function is supposed
to print.
Therefore, simply zap any \n at the end of the panic string to avoid
touching so many places in the kernel.
Link: http://lkml.kernel.org/r/20181009205019.2786-1-bp@alien8.de
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the randstruct plugin can intentionally produce extremely unusual
kernel structure layouts (even performance pathological ones), some
maintainers want to be able to trivially determine if an Oops is coming
from a randstruct-built kernel, so as to keep their sanity when
debugging. This adds the new flag and initializes taint_mask
immediately when built with randstruct.
Link: http://lkml.kernel.org/r/1519084390-43867-4-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>