IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Apply frequency scaling correction factor to per-entity load tracking to
make it frequency invariant. Currently, load appears bigger when the CPU
is running slower which affects load-balancing decisions.
Each segment of the sched_avg.load_sum geometric series is now scaled by
the current frequency so that the sched_avg.load_avg of each sched entity
will be invariant from frequency scaling.
Moreover, cfs_rq.runnable_load_sum is scaled by the current frequency as
well.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org
Cc: mturquette@baylibre.com
Cc: pang.xunlei@zte.com.cn
Cc: rjw@rjwysocki.net
Cc: sgurrappadi@nvidia.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1439569394-11974-2-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness")
sets sched feature NUMA to true. However this can enable NUMA hinting
faults on a UMA system.
This commit ensures that NUMA hinting faults occur only on a NUMA system
by setting/resetting sched_numa_balancing.
This commit:
- Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and
!CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG.
- Checks for sched_numa_balancing instead of sched_feat(NUMA).
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
d4573c3e1c99 ("sched: Improve load balancing in the presence of idle CPUs")
the ILB CPU starts with the idle load balancing of other idle CPUs and
finishes with itself in order to speed up the spread of tasks in all
idle CPUs.
The this_rq->next_balance is still used in nohz_idle_balance() as an
intermediate step to gather the shortest next balance before updating
nohz.next_balance. But the former has not been updated yet and is likely to
be set with the current jiffies. As a result, the nohz.next_balance will be
set with current jiffies instead of the real next balance date. This
generates spurious kicks of nohz ilde balance.
nohz_idle_balance() must set the nohz.next_balance without taking into
account this_rq->next_balance which is not updated yet. Then, this_rq will
update nohz.next_update with its next_balance once updated and if necessary.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1438595750-20455-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous patches made the second argument go unused, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By observing that switched_from_fair() detaches from a runqueue, and
switched_to_fair() attaches to a runqueue, we can see that
task_move_group_fair() is one followed by the other with flipping the
runqueue in between.
Therefore extract all the common bits and implement all three
functions in terms of them.
This should fix a few corner cases wrt. vruntime normalization; where,
when we take a task off of a runqueue we convert to an approximation
of lag by subtracting min_vruntime, and when placing a task on the a
runqueue to the reverse.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[peterz: Changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-6-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case there are problems with the aging on attach, provide a debug
knob to turn it off.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Where switched_from_fair() will remove the entity's load from the
runqueue, switched_to_fair() does not currently add it back. This
means that when a task leaves the fair class for a short duration; say
because of PI; we loose its load contribution.
This can ripple forward and disturb the load tracking because other
operations (enqueue, dequeue) assume its factored in. Only once the
runqueue empties will the load tracking recover.
When we add it back in, age the per entity average to match up with
the runqueue age. This has the obvious problem that if the task leaves
the fair class for a significant time, the load will age to 0.
Employ the normal migration rule for inter-runqueue moves in
task_move_group_fair(). Again, there is the obvious problem of the
task migrating while not in the fair class.
The alternative solution would be to to omit the chunk in
attach_entity_load_avg(), which would effectively reset the timestamp
and use whatever avg there was.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog and comments. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-5-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since we attach the entity load to the new runqueue, we should also
detatch the entity load from the old runqueue, otherwise load can
accumulate.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-4-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we conditionally add the entity load to the rq when moving
the task between cgroups.
This doesn't make sense as we always 'migrate' the task between
cgroups, so we should always migrate the load too.
[ The history here is that we used to only migrate the blocked load
which was only meaningfull when !queued. ]
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we open-code the addition/subtraction of the per entity load
to/from the runqueue, factor this out into helper functions.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Rewrote the changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1440069720-27038-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code ensures that a task has a normalized vruntime when switching away
from the fair class, but it does not ensure the task has a non-normalized
vruntime when switching back to the fair class.
This is an example breaking this consistency:
1. a task is in fair class and !queued
2. changes its class to RT class (still !queued)
3. changes its class to fair class again (still !queued)
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439197375-27927-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cfs_rq's load_avg is composed of runnable_load_avg and blocked_load_avg.
Before this series, sometimes the runnable_load_avg is used, and sometimes
the load_avg is used. Completely replacing all uses of runnable_load_avg
with load_avg may be too big a leap, i.e., the blocked_load_avg is concerned
to result in overrated load. Therefore, we get runnable_load_avg back.
The new cfs_rq's runnable_load_avg is improved to be updated with all of the
runnable sched_eneities at the same time, so the one sched_entity updated and
the others stale problem is solved.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-7-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The idea of runnable load average (let runnable time contribute to weight)
was proposed by Paul Turner and Ben Segall, and it is still followed by
this rewrite. This rewrite aims to solve the following issues:
1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is
updated at the granularity of an entity at a time, which results in the
cfs_rq's load average is stale or partially updated: at any time, only
one entity is up to date, all other entities are effectively lagging
behind. This is undesirable.
To illustrate, if we have n runnable entities in the cfs_rq, as time
elapses, they certainly become outdated:
t0: cfs_rq { e1_old, e2_old, ..., en_old }
and when we update:
t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old }
t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old }
...
We solve this by combining all runnable entities' load averages together
in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based
on the fact that if we regard the update as a function, then:
w * update(e) = update(w * e) and
update(e1) + update(e2) = update(e1 + e2), then
w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2)
therefore, by this rewrite, we have an entirely updated cfs_rq at the
time we update it:
t1: update cfs_rq { e1_new, e2_new, ..., en_new }
t2: update cfs_rq { e1_new, e2_new, ..., en_new }
...
2. cfs_rq's load average is different between top rq->cfs_rq and other
task_group's per CPU cfs_rqs in whether or not blocked_load_average
contributes to the load.
The basic idea behind runnable load average (the same for utilization)
is that the blocked state is taken into account as opposed to only
accounting for the currently runnable state. Therefore, the average
should include both the runnable/running and blocked load averages.
This rewrite does that.
In addition, we also combine runnable/running and blocked averages
of all entities into the cfs_rq's average, and update it together at
once. This is based on the fact that:
update(runnable) + update(blocked) = update(runnable + blocked)
This significantly reduces the code as we don't need to separately
maintain/update runnable/running load and blocked load.
3. How task_group entities' share is calculated is complex and imprecise.
We reduce the complexity in this rewrite to allow a very simple rule:
the task_group's load_avg is aggregated from its per CPU cfs_rqs's
load_avgs. Then group entity's weight is simply proportional to its
own cfs_rq's load_avg / task_group's load_avg. To illustrate,
if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then,
task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then
cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share
To sum up, this rewrite in principle is equivalent to the current one, but
fixes the issues described above. Turns out, it significantly reduces the
code complexity and hence increases clarity and efficiency. In addition,
the new averages are more smooth/continuous (no spurious spikes and valleys)
and updated more consistently and quickly to reflect the load dynamics.
As a result, we have less load tracking overhead, better performance,
and especially better power efficiency due to more balanced load.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Josef Bacik reported that Facebook sees better performance with their
1:N load (1 dispatch/node, N workers/node) when carrying an old patch
to try very hard to wake to an idle CPU. While looking at wake_wide(),
I noticed that it doesn't pay attention to the wakeup of a many partner
waker, returning 1 only when waking one of its many partners.
Correct that, letting explicit domain flags override the heuristic.
While at it, adjust task_struct bits, we don't need a 64-bit counter.
Tested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
[ Tidy things up. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team<Kernel-team@fb.com>
Cc: morten.rasmussen@arm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1436888390.7983.49.camel@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In idle balancing where a CPU going idle pulls tasks from another CPU,
a livelock may happen if the CPU pulls all tasks from another, makes
it idle, and this iterates. So just avoid this.
Reported-by: Rabin Vincent <rabin.vincent@axis.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150705221151.GF5197@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_cfs_rq_load_contribution() was changed to
__update_cfs_rq_tg_load_contrib() - sync up the commit in
calc_tg_weight() too.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436187062-19658-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
4bf0b77158 ("sched: remove do_div() from __sched_slice()")
... the logic of __sched_period() can be implemented as a single if-else
without any local variables, so this patch cleans it up with an if-else
statement, which expresses the function's logic straightforwardly.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435847152-29543-1-git-send-email-boqun.feng@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is consistent with all other load balancing instances where we
absorb unfairness upto env->imbalance_pct. Absorbing unfairness upto
env->imbalance_pct allows to pull and retain task to their preferred
nodes.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1434455762-30857-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current load balancer may not try to prevent a task from moving
out of a preferred node to a less preferred node. The reason for this
being:
- Since sched features NUMA and NUMA_RESIST_LOWER are disabled by
default, migrate_degrades_locality() always returns false.
- Even if NUMA_RESIST_LOWER were to be enabled, if its cache hot,
migrate_degrades_locality() never gets called.
The above behaviour can mean that tasks can move out of their
preferred node but they may be eventually be brought back to their
preferred node by numa balancer (due to higher numa faults).
To avoid the above, this commit merges migrate_degrades_locality() and
migrate_improves_locality(). It also replaces 3 sched features NUMA,
NUMA_FAVOUR_HIGHER and NUMA_RESIST_LOWER by a single sched feature
NUMA.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/1434455762-30857-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
migrate_improves_locality checked sched_feat(NUMA_FAVOUR_HIGHER) but not
sched_feat(NUMA), so disabling just the NUMA feature would leave it
working off of old data.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/xm26si9rtqbm.fsf@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to the comments, we need to test if this is
the first throttled task, however, list_empty() tests on
the entry cfs_rq->throttled_list, not the head, this is wrong.
This is a bug because we don't re-init the list entry after
removing it from the list, so list_empty() could return false
even if the list is really empty.
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Cong Wang <cwang@twopensource.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435174907-432-1-git-send-email-xiyou.wangcong@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"Debug info and other statistics fixes and related enhancements"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix numa balancing stats in /proc/pid/sched
sched/numa: Show numa_group ID in /proc/sched_debug task listings
sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
sched/stat: Simplify the sched_info accounting dependency
Commit 44dba3d5d6a1 ("sched: Refactor task_struct to use
numa_faults instead of numa_* pointers") modified the way
tsk->numa_faults stats are accounted.
However that commit never touched show_numa_stats() that is displayed
in /proc/pid/sched and thus the numbers displayed in /proc/pid/sched
don't match the actual numbers.
Fix it by making sure that /proc/pid/sched reflects the task
fault numbers. Also add group fault stats too.
Also couple of more modifications are added here:
1. Format changes:
- Previously we would list two entries per node, one for private
and one for shared. Also the home node info was listed in each entry.
- Now preferred node, total_faults and current node are
displayed separately.
- Now there is one entry per node, that lists private,shared task and
group faults.
2. Unit changes:
- p->numa_pages_migrated was getting reset after every read of
/proc/pid/sched. It's more useful to have absolute numbers since
differential migrations between two accesses can be more easily
calculated.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Iulia Manda <iulia.manda21@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435252903-1081-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Thomas Gleixner:
"This series of scheduler updates depends on sched/core and timers/core
branches, which are already in your tree:
- Scheduler balancing overhaul to plug a hard to trigger race which
causes an oops in the balancer (Peter Zijlstra)
- Lockdep updates which are related to the balancing updates (Peter
Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched,lockdep: Employ lock pinning
lockdep: Implement lock pinning
lockdep: Simplify lock_release()
sched: Streamline the task migration locking a little
sched: Move code around
sched,dl: Fix sched class hopping CBS hole
sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
sched,dl: Remove return value from pull_dl_task()
sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
sched,rt: Remove return value from pull_rt_task()
sched: Allow balance callbacks for check_class_changed()
sched: Use replace normalize_task() with __sched_setscheduler()
sched: Replace post_schedule with a balance callback list
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a46 ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Jovi Zhangwei reported the following problem
Below kernel vm bug can be triggered by tcpdump which mmaped a lot of pages
with GFP_COMP flag.
[Mon May 25 05:29:33 2015] page:ffffea0015414000 count:66 mapcount:1 mapping: (null) index:0x0
[Mon May 25 05:29:33 2015] flags: 0x20047580004000(head)
[Mon May 25 05:29:33 2015] page dumped because: VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page))
[Mon May 25 05:29:33 2015] ------------[ cut here ]------------
[Mon May 25 05:29:33 2015] kernel BUG at mm/migrate.c:1661!
[Mon May 25 05:29:33 2015] invalid opcode: 0000 [#1] SMP
In this case it was triggered by running tcpdump but it's not necessary
reproducible on all systems.
sudo tcpdump -i bond0.100 'tcp port 4242' -c 100000000000 -w 4242.pcap
Compound pages cannot be migrated and it was not expected that such pages
be marked for NUMA balancing. This did not take into account that drivers
such as net/packet/af_packet.c may insert compound pages into userspace
with vm_insert_page. This patch tells the NUMA balancing protection
scanner to skip all VM_MIXEDMAP mappings which avoids the possibility that
compound pages are marked for migration.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Jovi Zhangwei <jovi@cloudflare.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changeset a43455a1d572 ("sched/numa: Ensure task_numa_migrate() checks
the preferred node") fixes an issue where workloads would never
converge on a fully loaded (or overloaded) system.
However, it introduces a regression on less than fully loaded systems,
where workloads converge on a few NUMA nodes, instead of properly
staying spread out across the whole system. This leads to a reduction
in available memory bandwidth, and usable CPU cache, with predictable
performance problems.
The root cause appears to be an interaction between the load balancer
and NUMA balancing, where the short term load represented by the load
balancer differs from the long term load the NUMA balancing code would
like to base its decisions on.
Simply reverting a43455a1d572 would re-introduce the non-convergence
of workloads on fully loaded systems, so that is not a good option. As
an aside, the check done before a43455a1d572 only applied to a task's
preferred node, not to other candidate nodes in the system, so the
converge-on-too-few-nodes problem still happens, just to a lesser
degree.
Instead, try to compensate for the impedance mismatch between the load
balancer and NUMA balancing by only ever considering a lesser loaded
node as a destination for NUMA balancing, regardless of whether the
task is trying to move to the preferred node, or to another node.
This patch also addresses the issue that a system with a single
runnable thread would never migrate that thread to near its memory,
introduced by 095bebf61a46 ("sched/numa: Do not move past the balance
point if unbalanced").
A test where the main thread creates a large memory area, and spawns a
worker thread to iterate over the memory (placed on another node by
select_task_rq_fair), after which the main thread goes to sleep and
waits for the worker thread to loop over all the memory now sees the
worker thread migrated to where the memory is, instead of having all
the memory migrated over like before.
Jirka has run a number of performance tests on several systems: single
instance SpecJBB 2005 performance is 7-15% higher on a 4 node system,
with higher gains on systems with more cores per socket.
Multi-instance SpecJBB 2005 (one per node), linpack, and stream see
little or no changes with the revert of 095bebf61a46 and this patch.
Reported-by: Artem Bityutski <dedekind1@gmail.com>
Reported-by: Jirka Hladky <jhladky@redhat.com>
Tested-by: Jirka Hladky <jhladky@redhat.com>
Tested-by: Artem Bityutskiy <dedekind1@gmail.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150528095249.3083ade0@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 095bebf61a46 ("sched/numa: Do not move past the balance point
if unbalanced") broke convergence of workloads with just one runnable
thread, by making it impossible for the one runnable thread on the
system to move from one NUMA node to another.
Instead, the thread would remain where it was, and pull all the memory
across to its location, which is much slower than just migrating the
thread to where the memory is.
The next patch has a better fix for the issue that 095bebf61a46 tried
to address.
Reported-by: Jirka Hladky <jhladky@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1432753468-7785-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The optimized task selection logic optimistically selects a new task
to run without first doing a full put_prev_task(). This is so that we
can avoid a put/set on the common ancestors of the old and new task.
Similarly, we should only call check_cfs_rq_runtime() to throttle
eligible groups if they're part of the common ancestry, otherwise it
is possible to end up with no eligible task in the simple task
selection.
Imagine:
/root
/prev /next
/A /B
If our optimistic selection ends up throttling /next, we goto simple
and our put_prev_task() ends up throttling /prev, after which we're
going to bug out in set_next_entity() because there aren't any tasks
left.
Avoid this scenario by only throttling common ancestors.
Reported-by: Mohammed Naser <mnaser@vexxhost.com>
Reported-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Ben Segall <bsegall@google.com>
[ munged Changelog ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pjt@google.com
Fixes: 678d5718d8d0 ("sched/fair: Optimize cgroup pick_next_task_fair()")
Link: http://lkml.kernel.org/r/xm26wq1oswoq.fsf@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is possible for fbq_classify_rq() to indicate that a CPU has tasks that
should be moved to another NUMA node, but for migrate_improves_locality
and migrate_degrades_locality to not identify those tasks.
This patch always gives preference to preferred node evaluations, and
only checks the number of faults when evaluating moves between two
non-preferred nodes on a larger NUMA system.
On a two node system, the number of faults is never evaluated. Either
a task is about to be pulled off its preferred node, or migrated onto
it.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20150514225936.35b91717@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.
Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.
The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.
Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.
Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.
The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.
Fixes: 272325c4821f ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9a1 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
static code checking was unhappy with:
./kernel/sched/fair.c:162 WARNING: return of wrong type
int != unsigned int
get_update_sysctl_factor() is declared to return int but is
currently returning an unsigned int. The first few preprocessed
lines are:
static int get_update_sysctl_factor(void)
{
unsigned int cpus = ({ int __min1 = (cpumask_weight(cpu_online_mask));
int __min2 = (8); __min1 < __min2 ? __min1: __min2; });
unsigned int factor;
The type used by min_t() should be 'unsigned int' and the return type
of get_update_sysctl_factor() should also be 'unsigned int' as its
call-site update_sysctl() is expecting 'unsigned int' and the values
utilizing:
'factor'
'sysctl_sched_min_granularity'
'sched_nr_latency'
'sysctl_sched_wakeup_granularity'
... are also all 'unsigned int', plus cpumask_weight() is also
returning 'unsigned int'.
So the natural type to use around here is 'unsigned int'.
( Patch was compile tested with x86_64_defconfig +
CONFIG_SCHED_DEBUG=y and the changed sections in
kernel/sched/fair.i were reviewed. )
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
[ Improved the changelog a bit. ]
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431716742-11077-1-git-send-email-hofrat@osadl.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The p->mm->numa_scan_seq is accessed using READ_ONCE/WRITE_ONCE
and modified without exclusive access. It is not clear why it is
accessed this way. This patch provides some documentation on that.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <waiman.long@hp.com>
Link: http://lkml.kernel.org/r/1430440094.2475.61.camel@j-VirtualBox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).
Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().
The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.
Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.
So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.
It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.
Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.
Update the rt bandwidth timer to match.
This effectively reverts: 09dc4ab03936 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").
Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer_start() now enforces a timer interrupt when an already expired
timer is enqueued.
Get rid of the __hrtimer_start_range_ns() invocations and the loops
around it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.531131739@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull scheduler changes from Ingo Molnar:
"Major changes:
- Reworked CPU capacity code, for better SMP load balancing on
systems with assymetric CPUs. (Vincent Guittot, Morten Rasmussen)
- Reworked RT task SMP balancing to be push based instead of pull
based, to reduce latencies on large CPU count systems. (Steven
Rostedt)
- SCHED_DEADLINE support updates and fixes. (Juri Lelli)
- SCHED_DEADLINE task migration support during CPU hotplug. (Wanpeng Li)
- x86 mwait-idle optimizations and fixes. (Mike Galbraith, Len Brown)
- sched/numa improvements. (Rik van Riel)
- various cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/core: Drop debugging leftover trace_printk call
sched/deadline: Support DL task migration during CPU hotplug
sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()
sched/deadline: Always enqueue on previous rq when dl_task_timer() fires
sched/core: Remove unused argument from init_[rt|dl]_rq()
sched/deadline: Fix rt runtime corruption when dl fails its global constraints
sched/deadline: Avoid a superfluous check
sched: Improve load balancing in the presence of idle CPUs
sched: Optimize freq invariant accounting
sched: Move CFS tasks to CPUs with higher capacity
sched: Add SD_PREFER_SIBLING for SMT level
sched: Remove unused struct sched_group_capacity::capacity_orig
sched: Replace capacity_factor by usage
sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
sched: Add struct rq::cpu_capacity_orig
sched: Make scale_rt invariant with frequency
sched: Make sched entity usage tracking scale-invariant
sched: Remove frequency scaling from cpu_capacity
sched: Track group sched_entity usage contributions
sched: Add sched_avg::utilization_avg_contrib
...
Currently when a process accesses a hugetlb range protected with
PROTNONE, unexpected COWs are triggered, which finally puts the hugetlb
subsystem into a broken/uncontrollable state, where for example
h->resv_huge_pages is subtracted too much and wraps around to a very
large number, and the free hugepage pool is no longer maintainable.
This patch simply stops changing protection for vma(VM_HUGETLB) to fix
the problem. And this also allows us to avoid useless overhead of minor
faults.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>