IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
* 'cpus4096-for-linus-3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (77 commits)
x86: setup_per_cpu_areas() cleanup
cpumask: fix compile error when CONFIG_NR_CPUS is not defined
cpumask: use alloc_cpumask_var_node where appropriate
cpumask: convert shared_cpu_map in acpi_processor* structs to cpumask_var_t
x86: use cpumask_var_t in acpi/boot.c
x86: cleanup some remaining usages of NR_CPUS where s/b nr_cpu_ids
sched: put back some stack hog changes that were undone in kernel/sched.c
x86: enable cpus display of kernel_max and offlined cpus
ia64: cpumask fix for is_affinity_mask_valid()
cpumask: convert RCU implementations, fix
xtensa: define __fls
mn10300: define __fls
m32r: define __fls
h8300: define __fls
frv: define __fls
cris: define __fls
cpumask: CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS
cpumask: zero extra bits in alloc_cpumask_var_node
cpumask: replace for_each_cpu_mask_nr with for_each_cpu in kernel/time/
cpumask: convert mm/
...
* 'cpus4096-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (66 commits)
x86: export vector_used_by_percpu_irq
x86: use logical apicid in x2apic_cluster's x2apic_cpu_mask_to_apicid_and()
sched: nominate preferred wakeup cpu, fix
x86: fix lguest used_vectors breakage, -v2
x86: fix warning in arch/x86/kernel/io_apic.c
sched: fix warning in kernel/sched.c
sched: move test_sd_parent() to an SMP section of sched.h
sched: add SD_BALANCE_NEWIDLE at MC and CPU level for sched_mc>0
sched: activate active load balancing in new idle cpus
sched: bias task wakeups to preferred semi-idle packages
sched: nominate preferred wakeup cpu
sched: favour lower logical cpu number for sched_mc balance
sched: framework for sched_mc/smt_power_savings=N
sched: convert BALANCE_FOR_xx_POWER to inline functions
x86: use possible_cpus=NUM to extend the possible cpus allowed
x86: fix cpu_mask_to_apicid_and to include cpu_online_mask
x86: update io_apic.c to the new cpumask code
x86: Introduce topology_core_cpumask()/topology_thread_cpumask()
x86: xen: use smp_call_function_many()
x86: use work_on_cpu in x86/kernel/cpu/mcheck/mce_amd_64.c
...
Fixed up trivial conflict in kernel/time/tick-sched.c manually
Impact: cleanup
Simple replacement, now the _nr is redundant.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Impact: Use new APIs
Convert kernel/time functions to use struct cpumask *.
Note the ugly bitmap declarations in tick-broadcast.c. These should
be cpumask_var_t, but there was no obvious initialization function to
put the alloc_cpumask_var() calls in. This was safe.
(Eventually 'struct cpumask' will be undefined for CONFIG_CPUMASK_OFFSTACK,
so we use a bitmap here to show we really mean it).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
The cpu time spent by the idle process actually doing something is
currently accounted as idle time. This is plain wrong, the architectures
that support VIRT_CPU_ACCOUNTING=y can do better: distinguish between the
time spent doing nothing and the time spent by idle doing work. The first
is accounted with account_idle_time and the second with account_system_time.
The architectures that use the account_xxx_time interface directly and not
the account_xxx_ticks interface now need to do the check for the idle
process in their arch code. In particular to improve the system vs true
idle time accounting the arch code needs to measure the true idle time
instead of just testing for the idle process.
To improve the tick based accounting as well we would need an architecture
primitive that can tell us if the pt_regs of the interrupted context
points to the magic instruction that halts the cpu.
In addition idle time is no more added to the stime of the idle process.
This field now contains the system time of the idle process as it should
be. On systems without VIRT_CPU_ACCOUNTING this will always be zero as
every tick that occurs while idle is running will be accounted as idle
time.
This patch contains the necessary common code changes to be able to
distinguish idle system time and true idle time. The architectures with
support for VIRT_CPU_ACCOUNTING need some changes to exploit this.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The utimescaled / stimescaled fields in the task structure and the
global cpustat should be set on all architectures. On s390 the calls
to account_user_time_scaled and account_system_time_scaled never have
been added. In addition system time that is accounted as guest time
to the user time of a process is accounted to the scaled system time
instead of the scaled user time.
To fix the bugs and to prevent future forgetfulness this patch merges
account_system_time_scaled into account_system_time and
account_user_time_scaled into account_user_time.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Michael Neuling <mikey@neuling.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Impact: change calling convention of existing clock_event APIs
struct clock_event_timer's cpumask field gets changed to take pointer,
as does the ->broadcast function.
Another single-patch change. For safety, we BUG_ON() in
clockevents_register_device() if it's not set.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Impact: change existing irq_chip API
Not much point with gentle transition here: the struct irq_chip's
setaffinity method signature needs to change.
Fortunately, not widely used code, but hits a few architectures.
Note: In irq_select_affinity() I save a temporary in by mangling
irq_desc[irq].affinity directly. Ingo, does this break anything?
(Folded in fix from KOSAKI Motohiro)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Reviewed-by: Grant Grundler <grundler@parisc-linux.org>
Acked-by: Ingo Molnar <mingo@redhat.com>
Cc: ralf@linux-mips.org
Cc: grundler@parisc-linux.org
Cc: jeremy@xensource.com
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
In my device I get many interrupts from a high speed USB device in a very
short period of time. The system spends a lot of time reprogramming the
hardware timer which is in a slower timing domain as compared to the CPU.
This results in the CPU spending a huge amount of time waiting for the
timer posting to be done. All of this reprogramming is useless as the
wake up time has not changed.
As measured using ETM trace this drops my reprogramming penalty from
almost 60% CPU load down to 15% during high interrupt rate. I can send
traces to show this.
Suppress setting of duplicate timer event when timer already stopped.
Timer programming can be very costly and can result in long cpu stall/wait
times.
[akpm@linux-foundation.org: coding-style fixes]
[tglx@linutronix.de: move the check to the right place and avoid raising
the softirq for nothing]
Signed-off-by: Richard Woodruff <r-woodruff2@ti.com>
Cc: johnstul@us.ibm.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: remove false positive warning
After a cpu was taken down during cpu hotplug (read: disabled for interrupts)
it still might have pending softirqs. However take_cpu_down makes sure
that the idle task will run next instead of ksoftirqd on the taken down cpu.
The idle task will call tick_nohz_stop_sched_tick which might warn about
pending softirqs just before the cpu kills itself completely.
However the pending softirqs on the dead cpu aren't a problem because they
will be moved to an online cpu during CPU_DEAD handling.
So make sure we warn only for online cpus.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix time warp bug
Alex Shi, along with Yanmin Zhang have been noticing occasional time
inconsistencies recently. Through their great diagnosis, they found that
the xtime_nsec value used in update_wall_time was occasionally going
negative. After looking through the code for awhile, I realized we have
the possibility for an underflow when three conditions are met in
update_wall_time():
1) We have accumulated a second's worth of nanoseconds, so we
incremented xtime.tv_sec and appropriately decrement xtime_nsec.
(This doesn't cause xtime_nsec to go negative, but it can cause it
to be small).
2) The remaining offset value is large, but just slightly less then
cycle_interval.
3) clocksource_adjust() is speeding up the clock, causing a
corrective amount (compensating for the increase in the multiplier
being multiplied against the unaccumulated offset value) to be
subtracted from xtime_nsec.
This can cause xtime_nsec to underflow.
Unfortunately, since we notify the NTP subsystem via second_overflow()
whenever we accumulate a full second, and this effects the error
accumulation that has already occured, we cannot simply revert the
accumulated second from xtime nor move the second accumulation to after
the clocksource_adjust call without a change in behavior.
This leaves us with (at least) two options:
1) Simply return from clocksource_adjust() without making a change if we
notice the adjustment would cause xtime_nsec to go negative.
This would work, but I'm concerned that if a large adjustment was needed
(due to the error being large), it may be possible to get stuck with an
ever increasing error that becomes too large to correct (since it may
always force xtime_nsec negative). This may just be paranoia on my part.
2) Catch xtime_nsec if it is negative, then add back the amount its
negative to both xtime_nsec and the error.
This second method is consistent with how we've handled earlier rounding
issues, and also has the benefit that the error being added is always in
the oposite direction also always equal or smaller then the correction
being applied. So the risk of a corner case where things get out of
control is lessened.
This patch fixes bug 11970, as tested by Yanmin Zhang
http://bugzilla.kernel.org/show_bug.cgi?id=11970
Reported-by: alex.shi@intel.com
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Acked-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Tested-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, move all hrtimer processing into hardirq context
This is an attempt at removing some of the hrtimer complexity by
reducing the number of callback modes to 1.
This means that all hrtimer callback functions will be ran from HARD-irq
context.
I went through all the 30 odd hrtimer callback functions in the kernel
and saw only one that I'm not quite sure of, which is the one in
net/can/bcm.c - hence I'm CC-ing the folks responsible for that code.
Furthermore, the hrtimer core now calls callbacks directly with IRQs
disabled in case you try to enqueue an expired timer. If this timer is a
periodic timer (which should use hrtimer_forward() to advance its time)
then it might be possible to end up in an inf. recursive loop due to the
fact that hrtimer_forward() doesn't round up to the next timer
granularity, and therefore keeps on calling the callback - obviously
this needs a fix.
Aside from that, this seems to compile and actually boot on my dual core
test box - although I'm sure there are some bugs in, me not hitting any
makes me certain :-)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: (future) size reduction for large NR_CPUS.
Dynamically allocating cpumasks (when CONFIG_CPUMASK_OFFSTACK) saves
space for small nr_cpu_ids but big CONFIG_NR_CPUS. cpumask_var_t
is just a struct cpumask for !CONFIG_CPUMASK_OFFSTACK.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: nohz powersavings and wakeup regression
commit fb02fbc14d17837b4b7b02dbb36142c16a7bf208 (NOHZ: restart tick
device from irq_enter()) causes a serious wakeup regression.
While the patch is correct it does not take into account that spurious
wakeups happen on x86. A fix for this issue is available, but we just
revert to the .27 behaviour and let long running softirqs screw
themself.
Disable it for now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit fb02fbc14d17837b4b7b02dbb36142c16a7bf208 (NOHZ: restart tick
device from irq_enter())
solves the problem of stale jiffies when long running softirqs happen
in a long idle sleep period, but it has a major thinko in it:
When the interrupt which came in _is_ the timer interrupt which should
expire ts->sched_timer then we cancel and rearm the timer _before_ it
gets expired in hrtimer_interrupt() to the next period. That means the
call back function is not called. This game can go on for ever :(
Prevent this by making sure to only rearm the timer when the expiry
time is more than one tick_period away. Otherwise keep it running as
it is either already expired or will expiry at the right point to
update jiffies.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Venkatesch Pallipadi <venkatesh.pallipadi@intel.com>
The base address of a (per cpu) clock base is a useful debug info.
Add it and bump the version number of timer_lists.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The per cpu clock events device output of timer_list lacks an
association of the device to the cpu which is annoying when looking at
the output of /proc/timer_list from a 128 way system.
Add the CPU number info and mark the broadcast device in the device
list printout.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current timer_list output prints the address of the on stack copy
of the active hrtimer instead of the hrtimer itself.
Print the address of the real timer instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We did not restart the tick device from irq_enter() to avoid double
reprogramming and extra events in the return immediate to idle case.
But long lasting softirqs can lead to a situation where jiffies become
stale:
idle()
tick stopped (reprogrammed to next pending timer)
halt()
interrupt
jiffies updated from irq_enter()
interrupt handler
softirq function 1 runs 20ms
softirq function 2 arms a 10ms timer with a stale jiffies value
jiffies updated from irq_exit()
timer wheel has now an already expired timer
(the one added in function 2)
timer fires and timer softirq runs
This was discovered when debugging a timer problem which happend only
when the ath5k driver is active. The debugging proved that there is a
softirq function running for more than 20ms, which is a bug by itself.
To solve this we restart the tick timer right from irq_enter(), but do
not go through the other functions which are necessary to return from
idle when need_resched() is set.
Reported-by: Elias Oltmanns <eo@nebensachen.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Elias Oltmanns <eo@nebensachen.de>
We have two separate nohz function calls in irq_enter() for no good
reason. Just call a single NOHZ function from irq_enter() and call
the bits in the tick code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Using "def_bool n" is pointless, simply using bool here appears more
appropriate.
Further, retaining such options that don't have a prompt and aren't
selected by anything seems also at least questionable.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
export get_cpu_idle_time_us() for it to be used in ondemand governor.
Last update time can be current time when the CPU is currently non-idle,
accounting for the busy time since last idle.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Impact: jiffies increment too fast.
Hugh Dickins noted that with NOHZ=n and HIGHRES=n jiffies get
incremented too fast. The reason is a wrong check in the broadcast
enter/exit code, which keeps the local apic timer in periodic mode
when the switch happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: per CPU hrtimers can be migrated from a dead CPU
The hrtimer code has no knowledge about per CPU timers, but we need to
prevent the migration of such timers and warn when such a timer is
active at migration time.
Explicitely mark the timers as per CPU and use a more understandable
mode descriptor for the interrupts safe unlocked callback mode, which
is used by hrtimer_sleeper and the scheduler code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change PPM_SCALE_INV_SHIFT so that it doesn't throw away any input bits
(19 is the amount of the factor 2 in PPM_SCALE), the output frequency
can then be calculated back to its input value, as the inverse divide
produce a slightly larger value, which is then correctly rounded by the
final shift.
Reported-by: Martin Ziegler <ziegler@uni-freiburg.de>
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Due to a rounding problem during a clock update it's possible for readers
to observe the clock jumping back by 1nsec. The following simplified
example demonstrates the problem:
cycle xtime
0 0
1000 999999.6
2000 1999999.2
3000 2999998.8
...
1500 = 1499999.4
= 0.0 + 1499999.4
= 999999.6 + 499999.8
When reading the clock only the full nanosecond part is used, while
timekeeping internally keeps nanosecond fractions. If the clock is now
updated at cycle 1500 here, a nanosecond is missing due to the truncation.
The simple fix is to round up the xtime value during the update, this also
changes the distance to the reference time, but the adjustment will
automatically take care that it stays under control.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is a change that makes the 11-minute RTC update be run in the process
context. This is so that update_persistent_clock() can sleep, which may
be required for certain types of RTC hardware -- most notably I2C devices.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Brownell <david-b@pacbell.net>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kernel/time/tick-common.c: In function ‘tick_setup_periodic’:
kernel/time/tick-common.c:113: error: implicit declaration of function ‘tick_broadcast_oneshot_active’
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: timer hang on CPU online observed on AMD C1E systems
When a CPU is brought online then the broadcast machinery can
be in the one shot state already. Check this and setup the timer
device of the new CPU in one shot mode so the broadcast code
can pick up the next_event value correctly.
Another AMD C1E oddity, as we switch to broadcast immediately and
not after the full bring up via the ACPI cpu idle code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: Possible hang on CPU online observed on AMD C1E machines.
The broadcast setup code looks at the mode of the tick device to
determine whether it needs to be shut down or setup. This is wrong
when the broadcast mode is set to one shot already. This can happen
when a CPU is brought online as it goes through the periodic setup
first.
The problem went unnoticed as sane systems do not call into that code
before the switch to one shot for the clock event device happens.
The AMD C1E idle routine switches over immediately and thereby shuts
down the just setup device before the first interrupt happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: possible hang on CPU onlining in timer one shot mode.
The tick_next_period variable is only used during boot on nohz/highres
enabled systems, but for CPU onlining it needs to be maintained when
the per cpu clock events device operates in one shot mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: rare hang which can be triggered on CPU online.
tick_do_timer_cpu keeps track of the CPU which updates jiffies
via do_timer. The value -1 is used to signal, that currently no
CPU is doing this. There are two cases, where the variable can
have this state:
boot:
necessary for systems where the boot cpu id can be != 0
nohz long idle sleep:
When the CPU which did the jiffies update last goes into
a long idle sleep it drops the update jiffies duty so
another CPU which is not idle can pick it up and keep
jiffies going.
Using the same value for both situations is wrong, as the CPU online
code can see the -1 state when the timer of the newly onlined CPU is
setup. The setup for a newly onlined CPU goes through periodic mode
and can pick up the do_timer duty without being aware of the nohz /
highres mode of the already running system.
Use two separate states and make them constants to avoid magic
numbers confusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The device shut down does not cleanup the next_event variable of the
clock event device. So when the device is reactivated the possible
stale next_event value can prevent the device to be reprogrammed as it
claims to wait on a event already.
This is the root cause of the resurfacing suspend/resume problem,
where systems need key press to come back to life.
Fix this by setting next_event to KTIME_MAX when the device is shut
down. Use a separate function for shutdown which takes care of that
and only keep the direct set mode call in the broadcast code, where we
can not touch the next_event value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The issue of the endless reprogramming loop due to a too small
min_delta_ns was fixed with the previous updates of the clock events
code, but we had no information about the spread of this problem. I
added a WARN_ON to get automated information via kerneloops.org and to
get some direct reports, which allowed me to analyse the affected
machines.
The WARN_ON has served its purpose and would be annoying for a release
kernel. Remove it and just keep the information about the increase of
the min_delta_ns value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
to help debugging and visibility of timer ranges, show them
in the existing timer list in /proc/timer_list
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
We have a bug in the calculation of the next jiffie to trigger the RTC
synchronisation. The aim here is to run sync_cmos_clock() as close as
possible to the middle of a second. Which means we want this function to
be called less than or equal to half a jiffie away from when now.tv_nsec
equals 5e8 (500000000).
If this is not the case for a given call to the function, for this purpose
instead of updating the RTC we calculate the offset in nanoseconds to the
next point in time where now.tv_nsec will be equal 5e8. The calculated
offset is then converted to jiffies as these are the unit used by the
timer.
Hovewer timespec_to_jiffies() used here uses a ceil()-type rounding mode,
where the resulting value is rounded up. As a result the range of
now.tv_nsec when the timer will trigger is from 5e8 to 5e8 + TICK_NSEC
rather than the desired 5e8 - TICK_NSEC / 2 to 5e8 + TICK_NSEC / 2.
As a result if for example sync_cmos_clock() happens to be called at the
time when now.tv_nsec is between 5e8 + TICK_NSEC / 2 and 5e8 to 5e8 +
TICK_NSEC, it will simply be rescheduled HZ jiffies later, falling in the
same range of now.tv_nsec again. Similarly for cases offsetted by an
integer multiple of TICK_NSEC.
This change addresses the problem by subtracting TICK_NSEC / 2 from the
nanosecond offset to the next point in time where now.tv_nsec will be
equal 5e8, effectively shifting the following rounding in
timespec_to_jiffies() so that it produces a rounded-to-nearest result.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>