IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull perf fixes from Ingo Molnar:
"This contains:
- a set of fixes found by directed-random perf fuzzing efforts by
Vince Weaver, Alexander Shishkin and Peter Zijlstra
- a cqm driver crash fix
- an AMD uncore driver use after free fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Fix PEBSv3 record drain
perf/x86/intel/bts: Kill a silly warning
perf/x86/intel/bts: Fix BTS PMI detection
perf/x86/intel/bts: Fix confused ordering of PMU callbacks
perf/core: Fix aux_mmap_count vs aux_refcount order
perf/core: Fix a race between mmap_close() and set_output() of AUX events
perf/x86/amd/uncore: Prevent use after free
perf/x86/intel/cqm: Check cqm/mbm enabled state in event init
perf/core: Remove WARN from perf_event_read()
Pull EFI fixes from Ingo Molnar:
"This contains a Xen fix, an arm64 fix and a race condition /
robustization set of fixes related to ExitBootServices() usage and
boundary conditions"
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Use efi_exit_boot_services()
efi/libstub: Use efi_exit_boot_services() in FDT
efi/libstub: Introduce ExitBootServices helper
efi/libstub: Allocate headspace in efi_get_memory_map()
efi: Fix handling error value in fdt_find_uefi_params
efi: Make for_each_efi_memory_desc_in_map() cope with running on Xen
The espfix64 setup code was a bit inscrutible and contained an
unnecessary push of RAX. Remove that push, update all the stack
offsets to match, and document the whole mess.
Reported-By: Borislav Petkov <bp@alien8.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e5459eb10cf1175c8b36b840bc425f210d045f35.1473717910.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
and allow drivers to permanently reserve EFI boot services regions
on x86, as well as ARM/arm64 - Matt Fleming
* Add ARM support for the EFI esrt driver - Ard Biesheuvel
* Make the EFI runtime services and efivar API interruptible by
swapping spinlocks for semaphores - Sylvain Chouleur
* Provide the EFI identity mapping for kexec which allows kexec to
work on SGI/UV platforms with requiring the "noefi" kernel command
line parameter - Alex Thorlton
* Add debugfs node to dump EFI page tables on arm64 - Ard Biesheuvel
* Merge the EFI test driver being carried out of tree until now in
the FWTS project - Ivan Hu
* Expand the list of flags for classifying EFI regions as "RAM" on
arm64 so we align with the UEFI spec - Ard Biesheuvel
* Optimise out the EFI mixed mode if it's unsupported (CONFIG_X86_32)
or disabled (CONFIG_EFI_MIXED=n) and switch the early EFI boot
services function table for direct calls, alleviating us from
having to maintain the custom function table - Lukas Wunner
* Miscellaneous cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQI2BAABCAAgBQJX0tCTGRxtYXR0QGNvZGVibHVlcHJpbnQuY28udWsACgkQLzhZ
wI0jPVWLVBAAn/iM91Vmhggdk3t0wCMJzrNGonw61VJ9TZJVbCUJyiH0qdDUThhj
R4rO+6Vf6yOuyswu+mGmae61tfsjwJHH+IPpB8nRLIGQRwzoxk+aGC7FzmQ0ISVO
wIdv5shsmeWhFAyNB1D4hzlp1NxOZaqcU/0cfUVGe4HmK0Js3tUpWWx8VgJ7yvW+
X1PBbfyChArGqiwV6FJz/mJxRAgByUfhvYMcX9HhQkou6F4U5Y8l3vlhUMbuAZAi
ZfG2LWGYCQ+F4XKxMq2QDAtdUgBzlYWw6W60o55x9WO4cEVSzNVRgedto5o1Zea9
2QGEr94gim+e5cJ/HeDIEmbWZhAqIdcNDqXSSBd1CDVQytp4PNAn6rxk+2S9kxoe
T9Mk523HEabo+AZvDAPPJlzcsnIe83JYy69M1xFvcP25ebk7y2BwQtd1jwWPrPDQ
Q/llzF93aezUFR/guvIw0oHckhQl0ZkNedL9Tq4+UKL0ibp2X4gSX636/x4PkBSP
5+pyfmO1SAqTiiMQGQMnp4+ngPQeQrxkmVnh1P7cKlTNXg1IoS03t46Xn2Pj10cd
3KneVDeN9DKIAOn7wPKuPnjTho+9FH36xbwTaIgbt0cWuFFfu090rmqOQfjAJEDN
foHzsMZ7S6CmeOJnj97NNR8sMQDcc+p9bh1KXpJIHaZAgrKmvqPZpMk=
=G7L6
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into efi/core
Pull EFI updates from Matt Fleming:
"* Refactor the EFI memory map code into architecture neutral files
and allow drivers to permanently reserve EFI boot services regions
on x86, as well as ARM/arm64 - Matt Fleming
* Add ARM support for the EFI esrt driver - Ard Biesheuvel
* Make the EFI runtime services and efivar API interruptible by
swapping spinlocks for semaphores - Sylvain Chouleur
* Provide the EFI identity mapping for kexec which allows kexec to
work on SGI/UV platforms with requiring the "noefi" kernel command
line parameter - Alex Thorlton
* Add debugfs node to dump EFI page tables on arm64 - Ard Biesheuvel
* Merge the EFI test driver being carried out of tree until now in
the FWTS project - Ivan Hu
* Expand the list of flags for classifying EFI regions as "RAM" on
arm64 so we align with the UEFI spec - Ard Biesheuvel
* Optimise out the EFI mixed mode if it's unsupported (CONFIG_X86_32)
or disabled (CONFIG_EFI_MIXED=n) and switch the early EFI boot
services function table for direct calls, alleviating us from
having to maintain the custom function table - Lukas Wunner
* Miscellaneous cleanups and fixes"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In particular:
arch/x86/ras/mce_amd_inj.c: In function ‘prepare_msrs’:
arch/x86/ras/mce_amd_inj.c:249:13: warning: declaration of ‘i_mce’ shadows a global declaration [-Wshadow]
struct mce i_mce = *(struct mce *)info;
^~~~~
arch/x86/ras/mce_amd_inj.c: In function ‘init_mce_inject’:
arch/x86/ras/mce_amd_inj.c:453:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (i = 0; i < ARRAY_SIZE(dfs_fls); i++) {
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20160912075941.24699-16-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Bank 4 is reserved on family 0x17 and shouldn't generate any MCE
records. However, broken hardware and software is not something unheard
of so warn about bank 4 errors. They shouldn't be coming from bank 4
naturally but users can still use mce_amd_inj to simulate errors from it
for testing purposed.
Also, avoid special handling in the injector mce_amd_inj like it is
being done on the older families.
[ bp: Rewrite commit message and merge into one patch. Use boot_cpu_data. ]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Link: http://lkml.kernel.org/r/1473384591-5323-1-git-send-email-Yazen.Ghannam@amd.com
Link: http://lkml.kernel.org/r/1473384591-5323-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_ADDR registers on Scalable MCA systems contain the ErrorAddr
in bits [55:0] and the least significant bit of the address in bits
[61:56]. We should extract the valid ErrorAddr bits from the MCA_ADDR
register rather than saving the raw value to struct mce.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1473275643-1721-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_SYND and MCA_IPID registers contain valuable information and
should be included in MCE output. The MCA_SYND register contains
syndrome and other error information, and the MCA_IPID register will
uniquely identify the MCA bank's type without having to rely on system
software.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_IPID register uniquely identifies a bank's type and instance
on Scalable MCA systems. We should save the value of this register
in struct mce along with the other relevant error information. This
ensures that we can decode errors without relying on system software to
correlate the bank to the type.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The Deferred Error Interrupt Type is set per bank on Scalable MCA
systems. This is done in a bitfield in the MCA_CONFIG register of each
bank. We should set its type to APIC-based interrupt and not assume BIOS
has set it for us.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472737486-1720-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Define a bank's sysfs filename based on its IP type and InstanceId.
Credits go to Aravind for:
* The general idea and proto- get_name().
* Defining smca_umc_block_names[] and buf_mcatype[].
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Link: http://lkml.kernel.org/r/1473193490-3291-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Scalable MCA defines a number of IP types. An MCA bank on an SMCA
system is defined as one of these IP types. A bank's type is uniquely
identified by the combination of the HWID and MCATYPE values read from
its MCA_IPID register.
Add the required tables in order to be able to lookup error descriptions
based on a bank's type and the error's extended error code.
[ bp: Align comments, simplify a bit. ]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472741832-1690-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Scalable MCA systems allow non-core MCA banks to only be accessible by
certain CPUs. The MSRs for these banks are Read-as-Zero on other CPUs.
During allocate_threshold_blocks(), get_block_address() can be scheduled
on CPUs other than the one allocating the block. This causes the MSRs to
be read on the wrong CPU and results in incorrect behavior.
Add a @cpu parameter to get_block_address() and pass this in to ensure
that the MSRs are only read on the CPU that is allocating the block.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472673994-12235-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a debugfs file which holds the error syndrome (written into
MCA_SYND) of an injected error. Only write it on SMCA systems. Update
README file, while at it.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-3-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Syndrome information is no longer contained in MCA_STATUS for SMCA
systems but in a new register - MCA_SYND.
Add a synd field to struct mce to hold MCA_SYND register value. Add it
to the end of struct mce to maintain compatibility with old versions of
mcelog. Also, add it to the respective tracepoint.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change MSR_IA32_MCx_MISC() macro to msr_ops.misc() because SMCA machines
define a different set of MSRs and msr_ops will give you the correct
MISC register.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1468269447-8808-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Paul Mackerras writes:
The highlights are:
* Reduced latency for interrupts from PCI pass-through devices, from
Suresh Warrier and me.
* Halt-polling implementation from Suraj Jitindar Singh.
* 64-bit VCPU statistics, also from Suraj.
* Various other minor fixes and improvements.
This patch has no functional change; it is purely cosmetic, though
it does make it a wee bit easier to understand the code. Before, the
count of LAPICs was being stored in the variable 'x2count' and the
count of X2APICs was being stored in the variable 'count'. This
patch swaps that so that the routine acpi_parse_madt_lapic_entries()
will now consistently use x2count to refer to X2APIC info, and count
to refer to LAPIC info.
Signed-off-by: Al Stone <ahs3@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull libnvdimm fixes from Dan Williams:
"nvdimm fixes for v4.8, two of them are tagged for -stable:
- Fix devm_memremap_pages() to use track_pfn_insert(). Otherwise,
DAX pmd mappings end up with an uncached pgprot, and unusable
performance for the device-dax interface. The device-dax interface
appeared in 4.7 so this is tagged for -stable.
- Fix a couple VM_BUG_ON() checks in the show_smaps() path to
understand DAX pmd entries. This fix is tagged for -stable.
- Fix a mis-merge of the nfit machine-check handler to flip the
polarity of an if() to match the final version of the patch that
Vishal sent for 4.8-rc1. Without this the nfit machine check
handler never detects / inserts new 'badblocks' entries which
applications use to identify lost portions of files.
- For test purposes, fix the nvdimm_clear_poison() path to operate on
legacy / simulated nvdimm memory ranges. Without this fix a test
can set badblocks, but never clear them on these ranges.
- Fix the range checking done by dax_dev_pmd_fault(). This is not
tagged for -stable since this problem is mitigated by specifying
aligned resources at device-dax setup time.
These patches have appeared in a next release over the past week. The
recent rebase you can see in the timestamps was to drop an invalid fix
as identified by the updated device-dax unit tests [1]. The -mm
touches have an ack from Andrew"
[1]: "[ndctl PATCH 0/3] device-dax test for recent kernel bugs"
https://lists.01.org/pipermail/linux-nvdimm/2016-September/006855.html
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm: allow legacy (e820) pmem region to clear bad blocks
nfit, mce: Fix SPA matching logic in MCE handler
mm: fix cache mode of dax pmd mappings
mm: fix show_smap() for zone_device-pmd ranges
dax: fix mapping size check
This patch implements the uncore monitoring driver for Skylake server.
The uncore subsystem in Skylake server is similar to previous
server. There are some differences in config register encoding and pci
device IDs. Besides, Skylake introduces many new boxes to reflect the
MESH architecture changes.
The control registers for IIO and UPI have been extended to 64 bit. This
patch also introduces event_mask_ext to handle the high 32 bit mask.
The CHA box number could vary for different machines. This patch gets
the CHA box number by counting the CHA register space during
initialization at runtime.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1471378190-17276-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch enables RAPL counters (energy consumption counters)
support for Intel Apollo Lake (Goldmont) processors (Model 92):
RAPL of Goldmont, unlikes ESU increment of Silvermont/Airmont,
it likes the Haswell microarchitecture in 1/2^ESU joules and
supports power domains in PP0/PP1/PKG/RAM.
ESU and power domains refer to Intel Software Developers' Manual,
Vol. 3C, Order No. 325384, Table 35-12.
Usage example:
$ perf list
$ perf stat -a -e power/energy-cores/,power/energy-pkg/ sleep 10
Signed-off-by: Harry Pan <harry.pan@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Cc: gs0622@gmail.com
Cc: hpa@zytor.com
Cc: srinivas.pandruvada@linux.intel.com
Link: http://lkml.kernel.org/r/1473325738-730-1-git-send-email-harry.pan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Alexander hit the WARN_ON_ONCE(!event) on his Skylake while running
the perf fuzzer.
This means the PEBSv3 record included a status bit for an inactive
event, something that _should_ not happen.
Move the code that filters the status bits against our known PEBS
events up a spot to guarantee we only deal with events we know about.
Further add "continue" statements to the WARN_ON_ONCE()s such that
we'll not die nor generate silly events in case we ever do hit them
again.
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vince@deater.net>
Cc: stable@vger.kernel.org
Fixes: a3d86542de88 ("perf/x86/intel/pebs: Add PEBSv3 decoding")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At the moment, intel_bts will WARN() out if there is more than one
event writing to the same ring buffer, via SET_OUTPUT, and will only
send data from one event to a buffer.
There is no reason to have this warning in, so kill it.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-6-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since BTS doesn't have a dedicated PMI status bit, the driver needs to
take extra care to check for the condition that triggers it to avoid
spurious NMI warnings.
Regardless of the local BTS context state, the only way of knowing that
the NMI is ours is to compare the write pointer against the interrupt
threshold.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-5-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The intel_bts driver is using a CPU-local 'started' variable to order
callbacks and PMIs and make sure that AUX transactions don't get messed
up. However, the ordering rules in regard to this variable is a complete
mess, which recently resulted in perf_fuzzer-triggered warnings and
panics.
The general ordering rule that is patch is enforcing is that this
cpu-local variable be set only when the cpu-local AUX transaction is
active; consequently, this variable is to be checked before the AUX
related bits can be touched.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
track_pfn_insert() in vmf_insert_pfn_pmd() is marking dax mappings as
uncacheable rendering them impractical for application usage. DAX-pte
mappings are cached and the goal of establishing DAX-pmd mappings is to
attain more performance, not dramatically less (3 orders of magnitude).
track_pfn_insert() relies on a previous call to reserve_memtype() to
establish the expected page_cache_mode for the range. While memremap()
arranges for reserve_memtype() to be called, devm_memremap_pages() does
not. So, teach track_pfn_insert() and untrack_pfn() how to handle
tracking without a vma, and arrange for devm_memremap_pages() to
establish the write-back-cache reservation in the memtype tree.
Cc: <stable@vger.kernel.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Reported-by: Kai Zhang <kai.ka.zhang@oracle.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The resent conversion of the cpu hotplug support in the uncore driver
introduced a regression due to the way the callbacks are invoked at
initialization time.
The old code called the prepare/starting/online function on each online cpu
as a block. The new code registers the hotplug callbacks in the core for
each state. The core invokes the callbacks at each registration on all
online cpus.
The code implicitely relied on the prepare/starting/online callbacks being
called as combo on a particular cpu, which was not obvious and completely
undocumented.
The resulting subtle wreckage happens due to the way how the uncore code
manages shared data structures for cpus which share an uncore resource in
hardware. The sharing is determined in the cpu starting callback, but the
prepare callback allocates per cpu data for the upcoming cpu because
potential sharing is unknown at this point. If the starting callback finds
a online cpu which shares the hardware resource it takes a refcount on the
percpu data of that cpu and puts the own data structure into a
'free_at_online' pointer of that shared data structure. The online callback
frees that.
With the old model this worked because in a starting callback only one non
unused structure (the one of the starting cpu) was available. The new code
allocates the data structures for all cpus when the prepare callback is
registered.
Now the starting function iterates through all online cpus and looks for a
data structure (skipping its own) which has a matching hardware id. The id
member of the data structure is initialized to 0, but the hardware id can
be 0 as well. The resulting wreckage is:
CPU0 finds a matching id on CPU1, takes a refcount on CPU1 data and puts
its own data structure into CPU1s data structure to be freed.
CPU1 skips CPU0 because the data structure is its allegedly unsued own.
It finds a matching id on CPU2, takes a refcount on CPU1 data and puts
its own data structure into CPU2s data structure to be freed.
....
Now the online callbacks are invoked.
CPU0 has a pointer to CPU1s data and frees the original CPU0 data. So
far so good.
CPU1 has a pointer to CPU2s data and frees the original CPU1 data, which
is still referenced by CPU0 ---> Booom
So there are two issues to be solved here:
1) The id field must be initialized at allocation time to a value which
cannot be a valid hardware id, i.e. -1
This prevents the above scenario, but now CPU1 and CPU2 both stick their
own data structure into the free_at_online pointer of CPU0. So we leak
CPU1s data structure.
2) Fix the memory leak described in #1
Instead of having a single pointer, use a hlist to enqueue the
superflous data structures which are then freed by the first cpu
invoking the online callback.
Ideally we should know the sharing _before_ invoking the prepare callback,
but that's way beyond the scope of this bug fix.
[ tglx: Rewrote changelog ]
Fixes: 96b2bd3866a0 ("perf/x86/amd/uncore: Convert to hotplug state machine")
Reported-and-tested-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20160909160822.lowgmkdwms2dheyv@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We currently allow invocation of 8 boot services with efi_call_early().
Not included are LocateHandleBuffer and LocateProtocol in particular.
For graphics output or to retrieve PCI ROMs and Apple device properties,
we're thus forced to use the LocateHandle + AllocatePool + LocateHandle
combo, which is cumbersome and needs more code.
The ARM folks allow invocation of the full set of boot services but are
restricted to our 8 boot services in functions shared across arches.
Thus, rather than adding just LocateHandleBuffer and LocateProtocol to
struct efi_config, let's rework efi_call_early() to allow invocation of
arbitrary boot services by selecting the 64 bit vs 32 bit code path in
the macro itself.
When compiling for 32 bit or for 64 bit without mixed mode, the unused
code path is optimized away and the binary code is the same as before.
But on 64 bit with mixed mode enabled, this commit adds one compare
instruction to each invocation of a boot service and, depending on the
code path selected, two jump instructions. (Most of the time gcc
arranges the jumps in the 32 bit code path.) The result is a minuscule
performance penalty and the binary code becomes slightly larger and more
difficult to read when disassembled. This isn't a hot path, so these
drawbacks are arguably outweighed by the attainable simplification of
the C code. We have some overhead anyway for thunking or conversion
between calling conventions.
The 8 boot services can consequently be removed from struct efi_config.
No functional change intended (for now).
Example -- invocation of free_pool before (64 bit code path):
0x2d4 movq %ds:efi_early, %rdx ; efi_early
0x2db movq %ss:arg_0-0x20(%rsp), %rsi
0x2e0 xorl %eax, %eax
0x2e2 movq %ds:0x28(%rdx), %rdi ; efi_early->free_pool
0x2e6 callq *%ds:0x58(%rdx) ; efi_early->call()
Example -- invocation of free_pool after (64 / 32 bit mixed code path):
0x0dc movq %ds:efi_early, %rax ; efi_early
0x0e3 cmpb $0, %ds:0x28(%rax) ; !efi_early->is64 ?
0x0e7 movq %ds:0x20(%rax), %rdx ; efi_early->call()
0x0eb movq %ds:0x10(%rax), %rax ; efi_early->boot_services
0x0ef je $0x150
0x0f1 movq %ds:0x48(%rax), %rdi ; free_pool (64 bit)
0x0f5 xorl %eax, %eax
0x0f7 callq *%rdx
...
0x150 movl %ds:0x30(%rax), %edi ; free_pool (32 bit)
0x153 jmp $0x0f5
Size of eboot.o text section:
CONFIG_X86_32: 6464 before, 6318 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 7670 before, 7573 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 7670 before, 8319 after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Commit 2c23b73c2d02 ("x86/efi: Prepare GOP handling code for reuse
as generic code") introduced an efi_is_64bit() macro to x86 which
previously only existed for arm arches. The macro is used to
choose between the 64 bit or 32 bit code path in gop.c at runtime.
However the code path that's going to be taken is known at compile
time when compiling for x86_32 or for x86_64 with mixed mode disabled.
Amend the macro to eliminate the unused code path in those cases.
Size of gop.o text section:
CONFIG_X86_32: 1758 before, 1299 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 2201 before, 1406 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 2201 before and after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
* A multiplication for the size determination of a memory allocation
indicated that an array data structure should be processed.
Thus reuse the corresponding function "kmalloc_array".
This issue was detected by using the Coccinelle software.
* Replace the specification of a data type by a pointer dereference
to make the corresponding size determination a bit safer according to
the Linux coding style convention.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Commit 7b02d53e7852 ("efi: Allow drivers to reserve boot services forever")
introduced a new efi_mem_reserve to reserve the boot services memory
regions forever. This reservation involves allocating a new EFI memory
range descriptor. However, allocation can only succeed if there is memory
available for the allocation. Otherwise, error such as the following may
occur:
esrt: Reserving ESRT space from 0x000000003dd6a000 to 0x000000003dd6a010.
Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0 bytes below \
0x0.
CPU: 0 PID: 0 Comm: swapper Not tainted 4.7.0-rc5+ #503
0000000000000000 ffffffff81e03ce0 ffffffff8131dae8 ffffffff81bb6c50
ffffffff81e03d70 ffffffff81e03d60 ffffffff8111f4df 0000000000000018
ffffffff81e03d70 ffffffff81e03d08 00000000000009f0 00000000000009f0
Call Trace:
[<ffffffff8131dae8>] dump_stack+0x4d/0x65
[<ffffffff8111f4df>] panic+0xc5/0x206
[<ffffffff81f7c6d3>] memblock_alloc_base+0x29/0x2e
[<ffffffff81f7c6e3>] memblock_alloc+0xb/0xd
[<ffffffff81f6c86d>] efi_arch_mem_reserve+0xbc/0x134
[<ffffffff81fa3280>] efi_mem_reserve+0x2c/0x31
[<ffffffff81fa3280>] ? efi_mem_reserve+0x2c/0x31
[<ffffffff81fa40d3>] efi_esrt_init+0x19e/0x1b4
[<ffffffff81f6d2dd>] efi_init+0x398/0x44a
[<ffffffff81f5c782>] setup_arch+0x415/0xc30
[<ffffffff81f55af1>] start_kernel+0x5b/0x3ef
[<ffffffff81f55434>] x86_64_start_reservations+0x2f/0x31
[<ffffffff81f55520>] x86_64_start_kernel+0xea/0xed
---[ end Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0
bytes below 0x0.
An inspection of the memblock configuration reveals that there is no memory
available for the allocation:
MEMBLOCK configuration:
memory size = 0x0 reserved size = 0x4f339c0
memory.cnt = 0x1
memory[0x0] [0x00000000000000-0xffffffffffffffff], 0x0 bytes on node 0\
flags: 0x0
reserved.cnt = 0x4
reserved[0x0] [0x0000000008c000-0x0000000008c9bf], 0x9c0 bytes flags: 0x0
reserved[0x1] [0x0000000009f000-0x000000000fffff], 0x61000 bytes\
flags: 0x0
reserved[0x2] [0x00000002800000-0x0000000394bfff], 0x114c000 bytes\
flags: 0x0
reserved[0x3] [0x000000304e4000-0x00000034269fff], 0x3d86000 bytes\
flags: 0x0
This situation can be avoided if we call efi_esrt_init after memblock has
memory regions for the allocation.
Also, the EFI ESRT driver makes use of early_memremap'pings. Therfore, we
do not want to defer efi_esrt_init for too long. We must call such function
while calls to early_memremap are still valid.
A good place to meet the two aforementioned conditions is right after
memblock_x86_fill, grouped with other EFI-related functions.
Reported-by: Scott Lawson <scott.lawson@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
This is a simple change to add in the physical mappings as well as the
virtual mappings in efi_map_region_fixed. The motivation here is to
get access to EFI runtime code that is only available via the 1:1
mappings on a kexec'd kernel.
The added call is essentially the kexec analog of the first __map_region
that Boris put in efi_map_region in commit d2f7cbe7b26a ("x86/efi:
Runtime services virtual mapping").
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Although very unlikey, if size is too small or zero, then we end up with
status not being set and returning garbage. Instead, initializing status to
EFI_INVALID_PARAMETER to indicate that size is invalid in the calls to
setup_uga32 and setup_uga64.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
efi_mem_reserve() allows us to permanently mark EFI boot services
regions as reserved, which means we no longer need to copy the image
data out and into a separate buffer.
Leaving the data in the original boot services region has the added
benefit that BGRT images can now be passed across kexec reboot.
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Môshe van der Sterre <me@moshe.nl>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Now that efi.memmap is available all of the time there's no need to
allocate and build a separate copy of the EFI memory map.
Furthermore, efi.memmap contains boot services regions but only those
regions that have been reserved via efi_mem_reserve(). Using
efi.memmap allows us to pass boot services across kexec reboot so that
the ESRT and BGRT drivers will now work.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Today, it is not possible for drivers to reserve EFI boot services for
access after efi_free_boot_services() has been called on x86. For
ARM/arm64 it can be done simply by calling memblock_reserve().
Having this ability for all three architectures is desirable for a
couple of reasons,
1) It saves drivers copying data out of those regions
2) kexec reboot can now make use of things like ESRT
Instead of using the standard memblock_reserve() which is insufficient
to reserve the region on x86 (see efi_reserve_boot_services()), a new
API is introduced in this patch; efi_mem_reserve().
efi.memmap now always represents which EFI memory regions are
available. On x86 the EFI boot services regions that have not been
reserved via efi_mem_reserve() will be removed from efi.memmap during
efi_free_boot_services().
This has implications for kexec, since it is not possible for a newly
kexec'd kernel to access the same boot services regions that the
initial boot kernel had access to unless they are reserved by every
kexec kernel in the chain.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Drivers need a way to access the EFI memory map at runtime. ARM and
arm64 currently provide this by remapping the EFI memory map into the
vmalloc space before setting up the EFI virtual mappings.
x86 does not provide this functionality which has resulted in the code
in efi_mem_desc_lookup() where it will manually map individual EFI
memmap entries if the memmap has already been torn down on x86,
/*
* If a driver calls this after efi_free_boot_services,
* ->map will be NULL, and the target may also not be mapped.
* So just always get our own virtual map on the CPU.
*
*/
md = early_memremap(p, sizeof (*md));
There isn't a good reason for not providing a permanent EFI memory map
for runtime queries, especially since the EFI regions are not mapped
into the standard kernel page tables.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Every EFI architecture apart from ia64 needs to setup the EFI memory
map at efi.memmap, and the code for doing that is essentially the same
across all implementations. Therefore, it makes sense to factor this
out into the common code under drivers/firmware/efi/.
The only slight variation is the data structure out of which we pull
the initial memory map information, such as physical address, memory
descriptor size and version, etc. We can address this by passing a
generic data structure (struct efi_memory_map_data) as the argument to
efi_memmap_init_early() which contains the minimum info required for
initialising the memory map.
In the process, this patch also fixes a few undesirable implementation
differences:
- ARM and arm64 were failing to clear the EFI_MEMMAP bit when
unmapping the early EFI memory map. EFI_MEMMAP indicates whether
the EFI memory map is mapped (not the regions contained within) and
can be traversed. It's more correct to set the bit as soon as we
memremap() the passed in EFI memmap.
- Rename efi_unmmap_memmap() to efi_memmap_unmap() to adhere to the
regular naming scheme.
This patch also uses a read-write mapping for the memory map instead
of the read-only mapping currently used on ARM and arm64. x86 needs
the ability to update the memory map in-place when assigning virtual
addresses to regions (efi_map_region()) and tagging regions when
reserving boot services (efi_reserve_boot_services()).
There's no way for the generic fake_mem code to know which mapping to
use without introducing some arch-specific constant/hook, so just use
read-write since read-only is of dubious value for the EFI memory map.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
EFI regions are currently mapped in two separate places. The bulk of
the work is done in efi_map_regions() but when CONFIG_EFI_MIXED is
enabled the additional regions that are required when operating in
mixed mode are mapping in efi_setup_page_tables().
Pull everything into efi_map_regions() and refactor the test for
which regions should be mapped into a should_map_region() function.
Generously sprinkle comments to clarify the different cases.
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Both efi_find_mirror() and efi_fake_memmap() really want to know
whether the EFI memory map is available, not just whether the machine
was booted using EFI. efi_fake_memmap() even has a check for
EFI_MEMMAP at the start of the function.
Since we've already got other code that has this dependency, merge
everything under one if() conditional, and remove the now superfluous
check from efi_fake_memmap().
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
On a large system with many CPUs, using HPET as the clock source can
have a significant impact on the overall system performance because
of the following reasons:
1) There is a single HPET counter shared by all the CPUs.
2) HPET counter reading is a very slow operation.
Using HPET as the default clock source may happen when, for example,
the TSC clock calibration exceeds the allowable tolerance. Something
the performance slowdown can be so severe that the system may crash
because of a NMI watchdog soft lockup, for example.
During the TSC clock calibration process, the default clock source
will be set temporarily to HPET. For systems with many CPUs, it is
possible that NMI watchdog soft lockup may occur occasionally during
that short time period where HPET clocking is active as is shown in
the kernel log below:
[ 71.646504] hpet0: 8 comparators, 64-bit 14.318180 MHz counter
[ 71.655313] Switching to clocksource hpet
[ 95.679135] BUG: soft lockup - CPU#144 stuck for 23s! [swapper/144:0]
[ 95.693363] BUG: soft lockup - CPU#145 stuck for 23s! [swapper/145:0]
[ 95.695580] BUG: soft lockup - CPU#582 stuck for 23s! [swapper/582:0]
[ 95.698128] BUG: soft lockup - CPU#357 stuck for 23s! [swapper/357:0]
This patch addresses the above issues by reducing HPET read contention
using the fact that if more than one CPUs are trying to access HPET at
the same time, it will be more efficient when only one CPU in the group
reads the HPET counter and shares it with the rest of the group instead
of each group member trying to read the HPET counter individually.
This is done by using a combination quadword that contains a 32-bit
stored HPET value and a 32-bit spinlock. The CPU that gets the lock
will be responsible for reading the HPET counter and storing it in
the quadword. The others will monitor the change in HPET value and
lock status and grab the latest stored HPET value accordingly. This
change is only enabled on 64-bit SMP configuration.
On a 4-socket Haswell-EX box with 144 threads (HT on), running the
AIM7 compute workload (1500 users) on a 4.8-rc1 kernel (HZ=1000)
with and without the patch has the following performance numbers
(with HPET or TSC as clock source):
TSC = 1042431 jobs/min
HPET w/o patch = 798068 jobs/min
HPET with patch = 1029445 jobs/min
The perf profile showed a reduction of the %CPU time consumed by
read_hpet from 11.19% without patch to 1.24% with patch.
[ tglx: It's really sad that we need to have such hacks just to deal with
the fact that cpu vendors have not managed to fix the TSC wreckage
within 15+ years. Were They Forgetting? ]
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Randy Wright <rwright@hpe.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1473182530-29175-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The CPPC registers can also be accessed via functional fixed hardware
addresse(FFH) in X86. Add support by modifying cpc_read and cpc_write to
be able to read/write MSRs on x86 platform on per cpu basis.
Also with this change, acpi_cppc_processor_probe doesn't bail out if
address space id is not equal to PCC or memory address space and FFH
is supported on the system.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When booting a kvm guest on AMD with the latest kernel the following
messages are displayed in the boot log:
tsc: Unable to calibrate against PIT
tsc: HPET/PMTIMER calibration failed
aa297292d708 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
introduced a change to account for a difference in cpu and tsc frequencies for
Intel SKL processors. Before this change the native tsc set
x86_platform.calibrate_tsc to native_calibrate_tsc() which is a hardware
calibration of the tsc, and in tsc_init() executed
tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;
The kvm code changed x86_platform.calibrate_tsc to kvm_get_tsc_khz() and
executed the same tsc_init() function. This meant that KVM guests did not
execute the native hardware calibration function.
After aa297292d708, there are separate native calibrations for cpu_khz and
tsc_khz. The code sets x86_platform.calibrate_tsc to native_calibrate_tsc()
which is now an Intel specific calibration function, and
x86_platform.calibrate_cpu to native_calibrate_cpu() which is the "old"
native_calibrate_tsc() function (ie, the native hardware calibration
function).
tsc_init() now does
cpu_khz = x86_platform.calibrate_cpu();
tsc_khz = x86_platform.calibrate_tsc();
if (tsc_khz == 0)
tsc_khz = cpu_khz;
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
cpu_khz = tsc_khz;
The kvm code should not call the hardware initialization in
native_calibrate_cpu(), as it isn't applicable for kvm and it didn't do that
prior to aa297292d708.
This patch resolves this issue by setting x86_platform.calibrate_cpu to
kvm_get_tsc_khz().
v2: I had originally set x86_platform.calibrate_cpu to
cpu_khz_from_cpuid(), however, pbonzini pointed out that the CPUID leaf
in that function is not available in KVM. I have changed the function
pointer to kvm_get_tsc_khz().
Fixes: aa297292d708 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Len Brown <len.brown@intel.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: "Christopher S. Hall" <christopher.s.hall@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups/fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJX0VHHAAoJEBF7vIC1phx88QwP/ir7L15bHPLUtdqwQn95yjzK
wlMTSekOrvbXImEKMh7nizMN76WI2nee1NvRe3pNf6Uc0Ntwiyzr7d2wQwX6L8Fn
D+28Crx3v/X3wGSLWdCf/17tuOUjVVMLhRHAIX4K+bl88L6NoMN2lsuXSAq7Fp7I
/CiXTGjHnF2eVL41e6p5oIRJvNaIfX3DlvRgfYc3TVrJum4tXcfCCMGWaXASarIW
g/q/q7s3iNbaLPrgb5rhQ2XY6puTTrot4whW7hXWsNWEW0r3MuwjOtxoy1VCMBeI
5PiCSqByYf7c6O5hqu4VClhalB76q43LQLY55/WLnuljJfru7Koiy9zxpnE0zTii
VnesQZv7emI1HYd4UbZkwo1LdE0o67I1dWucQx2yrqRpRvx6K/0VvvWH/Z4Y8N1Z
B6DQdvn0tRAnpFxsJLZ51WaEwtZuaXYirXwE6wMDcxhbmCorXvPTUdu4mLPhMkp7
nLfbA8fyXeU7HwzH90v/dvKY38jU6O0yzFAKHySowlSb6Kzmbuhym5Hgd2N91BUK
bbE4uW4mOjUpByGNGKcOJ+5typN2hfotriayWwgKKiROYQR19HpFNR4VFiE4Gwgy
yGxkbDgr11tHZ9flEMJT1c7k6sDDY+Dg2xgc1AxQQ9aZCXeH4Fe70uvgQzrTKjX3
XRER04mHV5yXpze7lumg
=99TB
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: features and fixes for 4.9
- lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups/fixes
On Penwell SRAM has to be powered on, otherwise it prevents booting.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: ca22312dc840 ("x86/platform/intel-mid: Extend PWRMU to support Penwell")
Link: http://lkml.kernel.org/r/20160908103232.137587-2-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>