846 Commits

Author SHA1 Message Date
Sean Christopherson
e5fda4bbad KVM: x86: Move uret MSR slot management to common x86
Now that SVM and VMX both probe MSRs before "defining" user return slots
for them, consolidate the code for probe+define into common x86 and
eliminate the odd behavior of having the vendor code define the slot for
a given MSR.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:19 -04:00
Sean Christopherson
5e17c62401 KVM: VMX: Disable loading of TSX_CTRL MSR the more conventional way
Tag TSX_CTRL as not needing to be loaded when RTM isn't supported in the
host.  Crushing the write mask to '0' has the same effect, but requires
more mental gymnastics to understand.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:18 -04:00
Sean Christopherson
8ea8b8d6f8 KVM: VMX: Use common x86's uret MSR list as the one true list
Drop VMX's global list of user return MSRs now that VMX doesn't resort said
list to isolate "active" MSRs, i.e. now that VMX's list and x86's list have
the same MSRs in the same order.

In addition to eliminating the redundant list, this will also allow moving
more of the list management into common x86.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:18 -04:00
Sean Christopherson
ee9d22e08d KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list
Explicitly flag a uret MSR as needing to be loaded into hardware instead of
resorting the list of "active" MSRs and tracking how many MSRs in total
need to be loaded.  The only benefit to sorting the list is that the loop
to load MSRs during vmx_prepare_switch_to_guest() doesn't need to iterate
over all supported uret MRS, only those that are active.  But that is a
pointless optimization, as the most common case, running a 64-bit guest,
will load the vast majority of MSRs.  Not to mention that a single WRMSR is
far more expensive than iterating over the list.

Providing a stable list order obviates the need to track a given MSR's
"slot" in the per-CPU list of user return MSRs; all lists simply use the
same ordering.  Future patches will take advantage of the stable order to
further simplify the related code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:18 -04:00
Sean Christopherson
b6194b94a2 KVM: VMX: Configure list of user return MSRs at module init
Configure the list of user return MSRs that are actually supported at
module init instead of reprobing the list of possible MSRs every time a
vCPU is created.  Curating the list on a per-vCPU basis is pointless; KVM
is completely hosed if the set of supported MSRs changes after module init,
or if the set of MSRs differs per physical PCU.

The per-vCPU lists also increase complexity (see __vmx_find_uret_msr()) and
creates corner cases that _should_ be impossible, but theoretically exist
in KVM, e.g. advertising RDTSCP to userspace without actually being able to
virtualize RDTSCP if probing MSR_TSC_AUX fails.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:17 -04:00
Sean Christopherson
36fa06f9ff KVM: x86: Add support for RDPID without RDTSCP
Allow userspace to enable RDPID for a guest without also enabling RDTSCP.
Aside from checking for RDPID support in the obvious flows, VMX also needs
to set ENABLE_RDTSCP=1 when RDPID is exposed.

For the record, there is no known scenario where enabling RDPID without
RDTSCP is desirable.  But, both AMD and Intel architectures allow for the
condition, i.e. this is purely to make KVM more architecturally accurate.

Fixes: 41cd02c6f7f6 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
Cc: stable@vger.kernel.org
Reported-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:17 -04:00
Sean Christopherson
5104d7ffcf KVM: VMX: Disable preemption when probing user return MSRs
Disable preemption when probing a user return MSR via RDSMR/WRMSR.  If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.

Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.

Fixes: 4be534102624 ("KVM: VMX: Initialize vmx->guest_msrs[] right after allocation")
Cc: stable@vger.kernel.org
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-6-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:16 -04:00
Sean Christopherson
2183de4161 KVM: x86: Move RDPID emulation intercept to its own enum
Add a dedicated intercept enum for RDPID instead of piggybacking RDTSCP.
Unlike VMX's ENABLE_RDTSCP, RDPID is not bound to SVM's RDTSCP intercept.

Fixes: fb6d4d340e05 ("KVM: x86: emulate RDPID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-5-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:16 -04:00
Sean Christopherson
8aec21c04c KVM: VMX: Do not advertise RDPID if ENABLE_RDTSCP control is unsupported
Clear KVM's RDPID capability if the ENABLE_RDTSCP secondary exec control is
unsupported.  Despite being enumerated in a separate CPUID flag, RDPID is
bundled under the same VMCS control as RDTSCP and will #UD in VMX non-root
if ENABLE_RDTSCP is not enabled.

Fixes: 41cd02c6f7f6 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-2-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:15 -04:00
Vitaly Kuznetsov
f5c7e8425f KVM: nVMX: Always make an attempt to map eVMCS after migration
When enlightened VMCS is in use and nested state is migrated with
vmx_get_nested_state()/vmx_set_nested_state() KVM can't map evmcs
page right away: evmcs gpa is not 'struct kvm_vmx_nested_state_hdr'
and we can't read it from VP assist page because userspace may decide
to restore HV_X64_MSR_VP_ASSIST_PAGE after restoring nested state
(and QEMU, for example, does exactly that). To make sure eVMCS is
mapped /vmx_set_nested_state() raises KVM_REQ_GET_NESTED_STATE_PAGES
request.

Commit f2c7ef3ba955 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
on nested vmexit") added KVM_REQ_GET_NESTED_STATE_PAGES clearing to
nested_vmx_vmexit() to make sure MSR permission bitmap is not switched
when an immediate exit from L2 to L1 happens right after migration (caused
by a pending event, for example). Unfortunately, in the exact same
situation we still need to have eVMCS mapped so
nested_sync_vmcs12_to_shadow() reflects changes in VMCS12 to eVMCS.

As a band-aid, restore nested_get_evmcs_page() when clearing
KVM_REQ_GET_NESTED_STATE_PAGES in nested_vmx_vmexit(). The 'fix' is far
from being ideal as we can't easily propagate possible failures and even if
we could, this is most likely already too late to do so. The whole
'KVM_REQ_GET_NESTED_STATE_PAGES' idea for mapping eVMCS after migration
seems to be fragile as we diverge too much from the 'native' path when
vmptr loading happens on vmx_set_nested_state().

Fixes: f2c7ef3ba955 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES on nested vmexit")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210503150854.1144255-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:11 -04:00
Linus Torvalds
152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Linus Torvalds
ea5bc7b977 Trivial cleanups and fixes all over the place.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
 VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
 +HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
 /uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
 4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
 lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
 LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
 sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
 kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
 dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
 wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
 Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
 =bO1i
 -----END PGP SIGNATURE-----

Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Borislav Petkov:
 "Trivial cleanups and fixes all over the place"

* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  MAINTAINERS: Remove me from IDE/ATAPI section
  x86/pat: Do not compile stubbed functions when X86_PAT is off
  x86/asm: Ensure asm/proto.h can be included stand-alone
  x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
  x86/msr: Make locally used functions static
  x86/cacheinfo: Remove unneeded dead-store initialization
  x86/process/64: Move cpu_current_top_of_stack out of TSS
  tools/turbostat: Unmark non-kernel-doc comment
  x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
  x86/fpu/math-emu: Fix function cast warning
  x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
  x86: Fix various typos in comments, take #2
  x86: Remove unusual Unicode characters from comments
  x86/kaslr: Return boolean values from a function returning bool
  x86: Fix various typos in comments
  x86/setup: Remove unused RESERVE_BRK_ARRAY()
  stacktrace: Move documentation for arch_stack_walk_reliable() to header
  x86: Remove duplicate TSC DEADLINE MSR definitions
2021-04-26 09:25:47 -07:00
Sean Christopherson
27b4a9c454 KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
Append raw to the direct variants of kvm_register_read/write(), and
drop the "l" from the mode-aware variants.  I.e. make the mode-aware
variants the default, and make the direct variants scary sounding so as
to discourage use.  Accessing the full 64-bit values irrespective of
mode is rarely the desired behavior.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:13 -04:00
Sean Christopherson
82277eeed6 KVM: nVMX: Truncate base/index GPR value on address calc in !64-bit
Drop bits 63:32 of the base and/or index GPRs when calculating the
effective address of a VMX instruction memory operand.  Outside of 64-bit
mode, memory encodings are strictly limited to E*X and below.

Fixes: 064aea774768 ("KVM: nVMX: Decoding memory operands of VMX instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:12 -04:00
Sean Christopherson
ee050a5775 KVM: nVMX: Truncate bits 63:32 of VMCS field on nested check in !64-bit
Drop bits 63:32 of the VMCS field encoding when checking for a nested
VM-Exit on VMREAD/VMWRITE in !64-bit mode.  VMREAD and VMWRITE always
use 32-bit operands outside of 64-bit mode.

The actual emulation of VMREAD/VMWRITE does the right thing, this bug is
purely limited to incorrectly causing a nested VM-Exit if a GPR happens
to have bits 63:32 set outside of 64-bit mode.

Fixes: a7cde481b6e8 ("KVM: nVMX: Do not forward VMREAD/VMWRITE VMExits to L1 if required so by vmcs12 vmread/vmwrite bitmaps")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:12 -04:00
Sean Christopherson
d8971344f5 KVM: VMX: Truncate GPR value for DR and CR reads in !64-bit mode
Drop bits 63:32 when storing a DR/CR to a GPR when the vCPU is not in
64-bit mode.  Per the SDM:

  The operand size for these instructions is always 32 bits in non-64-bit
  modes, regardless of the operand-size attribute.

CR8 technically isn't affected as CR8 isn't accessible outside of 64-bit
mode, but fix it up for consistency and to allow for future cleanup.

Fixes: 6aa8b732ca01 ("[PATCH] kvm: userspace interface")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:12 -04:00
Sean Christopherson
dbdd096a5a KVM: VMX: Intercept FS/GS_BASE MSR accesses for 32-bit KVM
Disable pass-through of the FS and GS base MSRs for 32-bit KVM.  Intel's
SDM unequivocally states that the MSRs exist if and only if the CPU
supports x86-64.  FS_BASE and GS_BASE are mostly a non-issue; a clever
guest could opportunistically use the MSRs without issue.  KERNEL_GS_BASE
is a bigger problem, as a clever guest would subtly be broken if it were
migrated, as KVM disallows software access to the MSRs, and unlike the
direct variants, KERNEL_GS_BASE needs to be explicitly migrated as it's
not captured in the VMCS.

Fixes: 25c5f225beda ("KVM: VMX: Enable MSR Bitmap feature")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422023831.3473491-1-seanjc@google.com>
[*NOT* for stable kernels. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:27:10 -04:00
Sean Christopherson
e23f6d490e KVM: VMX: Invert the inlining of MSR interception helpers
Invert the inline declarations of the MSR interception helpers between
the wrapper, vmx_set_intercept_for_msr(), and the core implementations,
vmx_{dis,en}able_intercept_for_msr().  Letting the compiler _not_
inline the implementation reduces KVM's code footprint by ~3k bytes.

Back when the helpers were added in commit 904e14fb7cb9 ("KVM: VMX: make
MSR bitmaps per-VCPU"), both the wrapper and the implementations were
__always_inline because the end code distilled down to a few conditionals
and a bit operation.  Today, the implementations involve a variety of
checks and bit ops in order to support userspace MSR filtering.

Furthermore, the vast majority of calls to manipulate MSR interception
are not performance sensitive, e.g. vCPU creation and x2APIC toggling.
On the other hand, the one path that is performance sensitive, dynamic
LBR passthrough, uses the wrappers, i.e. is largely untouched by
inverting the inlining.

In short, forcing the low level MSR interception code to be inlined no
longer makes sense.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423221912.3857243-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-26 05:19:33 -04:00
Isaku Yamahata
1083560275 KVM: VMX: use EPT_VIOLATION_GVA_TRANSLATED instead of 0x100
Use symbolic value, EPT_VIOLATION_GVA_TRANSLATED, instead of 0x100
in handle_ept_violation().

Signed-off-by: Yao Yuan <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <724e8271ea301aece3eb2afe286a9e2e92a70b18.1619136576.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-23 07:43:11 -04:00
Sean Christopherson
72add915fb KVM: VMX: Enable SGX virtualization for SGX1, SGX2 and LC
Enable SGX virtualization now that KVM has the VM-Exit handlers needed
to trap-and-execute ENCLS to ensure correctness and/or enforce the CPU
model exposed to the guest.  Add a KVM module param, "sgx", to allow an
admin to disable SGX virtualization independent of the kernel.

When supported in hardware and the kernel, advertise SGX1, SGX2 and SGX
LC to userspace via CPUID and wire up the ENCLS_EXITING bitmap based on
the guest's SGX capabilities, i.e. to allow ENCLS to be executed in an
SGX-enabled guest.  With the exception of the provision key, all SGX
attribute bits may be exposed to the guest.  Guest access to the
provision key, which is controlled via securityfs, will be added in a
future patch.

Note, KVM does not yet support exposing ENCLS_C leafs or ENCLV leafs.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <a99e9c23310c79f2f4175c1af4c4cbcef913c3e5.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:56 -04:00
Sean Christopherson
b6f084ca55 KVM: VMX: Add ENCLS[EINIT] handler to support SGX Launch Control (LC)
Add a VM-Exit handler to trap-and-execute EINIT when SGX LC is enabled
in the host.  When SGX LC is enabled, the host kernel may rewrite the
hardware values at will, e.g. to launch enclaves with different signers,
thus KVM needs to intercept EINIT to ensure it is executed with the
correct LE hash (even if the guest sees a hardwired hash).

Switching the LE hash MSRs on VM-Enter/VM-Exit is not a viable option as
writing the MSRs is prohibitively expensive, e.g. on SKL hardware each
WRMSR is ~400 cycles.  And because EINIT takes tens of thousands of
cycles to execute, the ~1500 cycle overhead to trap-and-execute EINIT is
unlikely to be noticed by the guest, let alone impact its overall SGX
performance.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <57c92fa4d2083eb3be9e6355e3882fc90cffea87.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:55 -04:00
Sean Christopherson
8f102445d4 KVM: VMX: Add emulation of SGX Launch Control LE hash MSRs
Emulate the four Launch Enclave public key hash MSRs (LE hash MSRs) that
exist on CPUs that support SGX Launch Control (LC).  SGX LC modifies the
behavior of ENCLS[EINIT] to use the LE hash MSRs when verifying the key
used to sign an enclave.  On CPUs without LC support, the LE hash is
hardwired into the CPU to an Intel controlled key (the Intel key is also
the reset value of the LE hash MSRs). Track the guest's desired hash so
that a future patch can stuff the hash into the hardware MSRs when
executing EINIT on behalf of the guest, when those MSRs are writable in
host.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <c58ef601ddf88f3a113add837969533099b1364a.1618196135.git.kai.huang@intel.com>
[Add a comment regarding the MSRs being available until SGX is locked.
 - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:55 -04:00
Sean Christopherson
70210c044b KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions
Add an ECREATE handler that will be used to intercept ECREATE for the
purpose of enforcing and enclave's MISCSELECT, ATTRIBUTES and XFRM, i.e.
to allow userspace to restrict SGX features via CPUID.  ECREATE will be
intercepted when any of the aforementioned masks diverges from hardware
in order to enforce the desired CPUID model, i.e. inject #GP if the
guest attempts to set a bit that hasn't been enumerated as allowed-1 in
CPUID.

Note, access to the PROVISIONKEY is not yet supported.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <c3a97684f1b71b4f4626a1fc3879472a95651725.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:55 -04:00
Sean Christopherson
9798adbc04 KVM: VMX: Frame in ENCLS handler for SGX virtualization
Introduce sgx.c and sgx.h, along with the framework for handling ENCLS
VM-Exits.  Add a bool, enable_sgx, that will eventually be wired up to a
module param to control whether or not SGX virtualization is enabled at
runtime.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <1c782269608b2f5e1034be450f375a8432fb705d.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:55 -04:00
Sean Christopherson
3c0c2ad1ae KVM: VMX: Add basic handling of VM-Exit from SGX enclave
Add support for handling VM-Exits that originate from a guest SGX
enclave.  In SGX, an "enclave" is a new CPL3-only execution environment,
wherein the CPU and memory state is protected by hardware to make the
state inaccesible to code running outside of the enclave.  When exiting
an enclave due to an asynchronous event (from the perspective of the
enclave), e.g. exceptions, interrupts, and VM-Exits, the enclave's state
is automatically saved and scrubbed (the CPU loads synthetic state), and
then reloaded when re-entering the enclave.  E.g. after an instruction
based VM-Exit from an enclave, vmcs.GUEST_RIP will not contain the RIP
of the enclave instruction that trigered VM-Exit, but will instead point
to a RIP in the enclave's untrusted runtime (the guest userspace code
that coordinates entry/exit to/from the enclave).

To help a VMM recognize and handle exits from enclaves, SGX adds bits to
existing VMCS fields, VM_EXIT_REASON.VMX_EXIT_REASON_FROM_ENCLAVE and
GUEST_INTERRUPTIBILITY_INFO.GUEST_INTR_STATE_ENCLAVE_INTR.  Define the
new architectural bits, and add a boolean to struct vcpu_vmx to cache
VMX_EXIT_REASON_FROM_ENCLAVE.  Clear the bit in exit_reason so that
checks against exit_reason do not need to account for SGX, e.g.
"if (exit_reason == EXIT_REASON_EXCEPTION_NMI)" continues to work.

KVM is a largely a passive observer of the new bits, e.g. KVM needs to
account for the bits when propagating information to a nested VMM, but
otherwise doesn't need to act differently for the majority of VM-Exits
from enclaves.

The one scenario that is directly impacted is emulation, which is for
all intents and purposes impossible[1] since KVM does not have access to
the RIP or instruction stream that triggered the VM-Exit.  The inability
to emulate is a non-issue for KVM, as most instructions that might
trigger VM-Exit unconditionally #UD in an enclave (before the VM-Exit
check.  For the few instruction that conditionally #UD, KVM either never
sets the exiting control, e.g. PAUSE_EXITING[2], or sets it if and only
if the feature is not exposed to the guest in order to inject a #UD,
e.g. RDRAND_EXITING.

But, because it is still possible for a guest to trigger emulation,
e.g. MMIO, inject a #UD if KVM ever attempts emulation after a VM-Exit
from an enclave.  This is architecturally accurate for instruction
VM-Exits, and for MMIO it's the least bad choice, e.g. it's preferable
to killing the VM.  In practice, only broken or particularly stupid
guests should ever encounter this behavior.

Add a WARN in skip_emulated_instruction to detect any attempt to
modify the guest's RIP during an SGX enclave VM-Exit as all such flows
should either be unreachable or must handle exits from enclaves before
getting to skip_emulated_instruction.

[1] Impossible for all practical purposes.  Not truly impossible
    since KVM could implement some form of para-virtualization scheme.

[2] PAUSE_LOOP_EXITING only affects CPL0 and enclaves exist only at
    CPL3, so we also don't need to worry about that interaction.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <315f54a8507d09c292463ef29104e1d4c62e9090.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:54 -04:00
Haiwei Li
870c575a56 KVM: vmx: add mismatched size assertions in vmcs_check32()
Add compile-time assertions in vmcs_check32() to disallow accesses to
64-bit and 64-bit high fields via vmcs_{read,write}32().  Upper level KVM
code should never do partial accesses to VMCS fields.  KVM handles the
split accesses automatically in vmcs_{read,write}64() when running as a
32-bit kernel.

Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <20210409022456.23528-1-lihaiwei.kernel@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:51 -04:00
Maxim Levitsky
4020da3b9f KVM: x86: pending exceptions must not be blocked by an injected event
Injected interrupts/nmi should not block a pending exception,
but rather be either lost if nested hypervisor doesn't
intercept the pending exception (as in stock x86), or be delivered
in exitintinfo/IDT_VECTORING_INFO field, as a part of a VMexit
that corresponds to the pending exception.

The only reason for an exception to be blocked is when nested run
is pending (and that can't really happen currently
but still worth checking for).

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401143817.1030695-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:02 -04:00
David Edmondson
8486039a6c KVM: x86: dump_vmcs should include the autoload/autostore MSR lists
When dumping the current VMCS state, include the MSRs that are being
automatically loaded/stored during VM entry/exit.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-6-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:01 -04:00
David Edmondson
0702a3cbbf KVM: x86: dump_vmcs should show the effective EFER
If EFER is not being loaded from the VMCS, show the effective value by
reference to the MSR autoload list or calculation.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-5-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:00 -04:00
David Edmondson
5518da62d4 KVM: x86: dump_vmcs should consider only the load controls of EFER/PAT
When deciding whether to dump the GUEST_IA32_EFER and GUEST_IA32_PAT
fields of the VMCS, examine only the VM entry load controls, as saving
on VM exit has no effect on whether VM entry succeeds or fails.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:31:00 -04:00
David Edmondson
699e1b2e55 KVM: x86: dump_vmcs should not conflate EFER and PAT presence in VMCS
Show EFER and PAT based on their individual entry/exit controls.

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:59 -04:00
David Edmondson
d9e46d344e KVM: x86: dump_vmcs should not assume GUEST_IA32_EFER is valid
If the VM entry/exit controls for loading/saving MSR_EFER are either
not available (an older processor or explicitly disabled) or not
used (host and guest values are the same), reading GUEST_IA32_EFER
from the VMCS returns an inaccurate value.

Because of this, in dump_vmcs() don't use GUEST_IA32_EFER to decide
whether to print the PDPTRs - always do so if the fields exist.

Fixes: 4eb64dce8d0a ("KVM: x86: dump VMCS on invalid entry")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-2-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:59 -04:00
Sean Christopherson
eba04b20e4 KVM: x86: Account a variety of miscellaneous allocations
Switch to GFP_KERNEL_ACCOUNT for a handful of allocations that are
clearly associated with a single task/VM.

Note, there are a several SEV allocations that aren't accounted, but
those can (hopefully) be fixed by using the local stack for memory.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331023025.2485960-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-17 08:30:58 -04:00
Reiji Watanabe
04c4f2ee3f KVM: VMX: Don't use vcpu->run->internal.ndata as an array index
__vmx_handle_exit() uses vcpu->run->internal.ndata as an index for
an array access.  Since vcpu->run is (can be) mapped to a user address
space with a writer permission, the 'ndata' could be updated by the
user process at anytime (the user process can set it to outside the
bounds of the array).
So, it is not safe that __vmx_handle_exit() uses the 'ndata' that way.

Fixes: 1aa561b1a4c0 ("kvm: x86: Add "last CPU" to some KVM_EXIT information")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210413154739.490299-1-reijiw@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-13 18:23:41 -04:00
Ingo Molnar
163b099146 x86: Fix various typos in comments, take #2
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-21 23:50:28 +01:00
Ingo Molnar
d9f6e12fb0 x86: Fix various typos in comments
Fix ~144 single-word typos in arch/x86/ code comments.

Doing this in a single commit should reduce the churn.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-18 15:31:53 +01:00
Sean Christopherson
978c834a66 KVM: VMX: Track root HPA instead of EPTP for paravirt Hyper-V TLB flush
Track the address of the top-level EPT struct, a.k.a. the root HPA,
instead of the EPTP itself for Hyper-V's paravirt TLB flush.  The
paravirt API takes only the address, not the full EPTP, and in theory
tracking the EPTP could lead to false negatives, e.g. if the HPA matched
but the attributes in the EPTP do not.  In practice, such a mismatch is
extremely unlikely, if not flat out impossible, given how KVM generates
the EPTP.

Opportunsitically rename the related fields to use the 'root'
nomenclature, and to prefix them with 'hv_' to connect them to Hyper-V's
paravirt TLB flushing.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:06 -04:00
Sean Christopherson
14072e5695 KVM: VMX: Skip additional Hyper-V TLB EPTP flushes if one fails
Skip additional EPTP flushes if one fails when processing EPTPs for
Hyper-V's paravirt TLB flushing.  If _any_ flush fails, KVM falls back
to a full global flush, i.e. additional flushes are unnecessary (and
will likely fail anyways).

Continue processing the loop unless a mismatch was already detected,
e.g. to handle the case where the first flush fails and there is a
yet-to-be-detected mismatch.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:05 -04:00
Sean Christopherson
ee36656f0a KVM: VMX: Define Hyper-V paravirt TLB flush fields iff Hyper-V is enabled
Ifdef away the Hyper-V specific fields in structs kvm_vmx and vcpu_vmx
as each field has only a single reference outside of the struct itself
that isn't already wrapped in ifdeffery (and both are initialization).

vcpu_vmx.ept_pointer in particular should be wrapped as it is valid if
and only if Hyper-v is active, i.e. non-Hyper-V code cannot rely on it
to actually track the current EPTP (without additional code changes).

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:04 -04:00
Sean Christopherson
c82f1b670f KVM: VMX: Explicitly check for hv_remote_flush_tlb when loading pgd
Explicitly check that kvm_x86_ops.tlb_remote_flush() points at Hyper-V's
implementation for PV flushing instead of assuming that a non-NULL
implementation means running on Hyper-V.  Wrap the related logic in
ifdeffery as hv_remote_flush_tlb() is defined iff CONFIG_HYPERV!=n.

Short term, the explicit check makes it more obvious why a non-NULL
tlb_remote_flush() triggers EPTP shenanigans.  Long term, this will
allow TDX to define its own implementation of tlb_remote_flush() without
running afoul of Hyper-V.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:03 -04:00
Sean Christopherson
d0a2d45654 KVM: VMX: Don't invalidate hv_tlb_eptp if the new EPTP matches
Don't invalidate the common EPTP, and thus trigger rechecking of EPTPs
across all vCPUs, if the new EPTP matches the old/common EPTP.  In all
likelihood this is a meaningless optimization, but there are (uncommon)
scenarios where KVM can reload the same EPTP.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:02 -04:00
Sean Christopherson
cdbd4b40e7 KVM: VMX: Invalidate hv_tlb_eptp to denote an EPTP mismatch
Drop the dedicated 'ept_pointers_match' field in favor of stuffing
'hv_tlb_eptp' with INVALID_PAGE to mark it as invalid, i.e. to denote
that there is at least one EPTP mismatch.  Use a local variable to
track whether or not a mismatch is detected so that hv_tlb_eptp can be
used to skip redundant flushes.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:01 -04:00
Sean Christopherson
446f7f1155 KVM: VMX: Do Hyper-V TLB flush iff vCPU's EPTP hasn't been flushed
Combine the for-loops for Hyper-V TLB EPTP checking and flushing, and in
doing so skip flushes for vCPUs whose EPTP matches the target EPTP.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:44:00 -04:00
Sean Christopherson
288bee2809 KVM: VMX: Fold Hyper-V EPTP checking into it's only caller
Fold check_ept_pointer_match() into hv_remote_flush_tlb_with_range() in
preparation for combining the kvm_for_each_vcpu loops of the ==CHECK and
!=MATCH statements.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:59 -04:00
Sean Christopherson
b68aa15cca KVM: VMX: Stash kvm_vmx in a local variable for Hyper-V paravirt TLB flush
Capture kvm_vmx in a local variable instead of polluting
hv_remote_flush_tlb_with_range() with to_kvm_vmx(kvm).

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:58 -04:00
Sean Christopherson
a4038ef1aa KVM: VMX: Track common EPTP for Hyper-V's paravirt TLB flush
Explicitly track the EPTP that is common to all vCPUs instead of
grabbing vCPU0's EPTP when invoking Hyper-V's paravirt TLB flush.
Tracking the EPTP will allow optimizing the checks when loading a new
EPTP and will also allow dropping ept_pointer_match, e.g. by marking
the common EPTP as invalid.

This also technically fixes a bug where KVM could theoretically flush an
invalid GPA if all vCPUs have an invalid root.  In practice, it's likely
impossible to trigger a remote TLB flush in such a scenario.  In any
case, the superfluous flush is completely benign.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:57 -04:00
Sean Christopherson
e83bc09caf KVM: x86: Get active PCID only when writing a CR3 value
Retrieve the active PCID only when writing a guest CR3 value, i.e. don't
get the PCID when using EPT or NPT.  The PCID is especially problematic
for EPT as the bits have different meaning, and so the PCID and must be
manually stripped, which is annoying and unnecessary.  And on VMX,
getting the active PCID also involves reading the guest's CR3 and
CR4.PCIDE, i.e. may add pointless VMREADs.

Opportunistically rename the pgd/pgd_level params to root_hpa and
root_level to better reflect their new roles.  Keep the function names,
as "load the guest PGD" is still accurate/correct.

Last, and probably least, pass root_hpa as a hpa_t/u64 instead of an
unsigned long.  The EPTP holds a 64-bit value, even in 32-bit mode, so
in theory EPT could support HIGHMEM for 32-bit KVM.  Never mind that
doing so would require changing the MMU page allocators and reworking
the MMU to use kmap().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:56 -04:00
Sean Christopherson
e7b7bdea77 KVM: x86/mmu: Move logic for setting SPTE masks for EPT into the MMU proper
Let the MMU deal with the SPTE masks to avoid splitting the logic and
knowledge across the MMU and VMX.

The SPTE masks that are used for EPT are very, very tightly coupled to
the MMU implementation.  The use of available bits, the existence of A/D
types, the fact that shadow_x_mask even exists, and so on and so forth
are all baked into the MMU implementation.  Cross referencing the params
to the masks is also a nightmare, as pretty much every param is a u64.

A future patch will make the location of the MMU_WRITABLE and
HOST_WRITABLE bits MMU specific, to free up bit 11 for a MMU_PRESENT bit.
Doing that change with the current kvm_mmu_set_mask_ptes() would be an
absolute mess.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:48 -04:00
Sean Christopherson
d6b87f2565 KVM: x86/mmu: Co-locate code for setting various SPTE masks
Squish all the code for (re)setting the various SPTE masks into one
location.  With the split code, it's not at all clear that the masks are
set once during module initialization.  This will allow a future patch to
clean up initialization of the masks without shuffling code all over
tarnation.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:47 -04:00
Sean Christopherson
8120337a4c KVM: x86/mmu: Stop using software available bits to denote MMIO SPTEs
Stop tagging MMIO SPTEs with specific available bits and instead detect
MMIO SPTEs by checking for their unique SPTE value.  The value is
guaranteed to be unique on shadow paging and NPT as setting reserved
physical address bits on any other type of SPTE would consistute a KVM
bug.  Ditto for EPT, as creating a WX non-MMIO would also be a bug.

Note, this approach is also future-compatibile with TDX, which will need
to reflect MMIO EPT violations as #VEs into the guest.  To create an EPT
violation instead of a misconfig, TDX EPTs will need to have RWX=0,  But,
MMIO SPTEs will also be the only case where KVM clears SUPPRESS_VE, so
MMIO SPTEs will still be guaranteed to have a unique value within a given
MMU context.

The main motivation is to make it easier to reason about which types of
SPTEs use which available bits.  As a happy side effect, this frees up
two more bits for storing the MMIO generation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15 04:43:41 -04:00