IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
vmx and svm vcpus have different contents and therefore may have different
alignmment requirements. Let each specify its required alignment.
Signed-off-by: Avi Kivity <avi@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Fixes a couple of warnings like this one:
WARNING: arch/powerpc/kvm/kvm-440.o(.text+0x1e8c): Section mismatch in reference from the function kvmppc_44x_exit() to the function .exit.text:kvmppc_booke_exit()
The function kvmppc_44x_exit() references a function in an exit section.
Often the function kvmppc_booke_exit() has valid usage outside the exit section
and the fix is to remove the __exit annotation of kvmppc_booke_exit.
Also add some __init annotations on obvious routines.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Avi Kivity <avi@redhat.com>
After the rewrite of KVM's debug support, this code doesn't even build any
more.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Store shadow TLB entries in memory, but only use it on host context switch
(instead of every guest entry). This improves performance for most workloads on
440 by reducing the guest TLB miss rate.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Formerly, we used to maintain a per-vcpu shadow TLB and on every entry to the
guest would load this array into the hardware TLB. This consumed 1280 bytes of
memory (64 entries of 16 bytes plus a struct page pointer each), and also
required some assembly to loop over the array on every entry.
Instead of saving a copy in memory, we can just store shadow mappings directly
into the hardware TLB, accepting that the host kernel will clobber these as
part of the normal 440 TLB round robin. When we do that we need less than half
the memory, and we have decreased the exit handling time for all guest exits,
at the cost of increased number of TLB misses because the host overwrites some
guest entries.
These savings will be increased on processors with larger TLBs or which
implement intelligent flush instructions like tlbivax (which will avoid the
need to walk arrays in software).
In addition to that and to the code simplification, we have a greater chance of
leaving other host userspace mappings in the TLB, instead of forcing all
subsequent tasks to re-fault all their mappings.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch doesn't yet move all 44x-specific data into the new structure, but
is the first step down that path. In the future we may also want to create a
struct kvm_vcpu_booke.
Based on patch from Liu Yu <yu.liu@freescale.com>.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This introduces a set of core-provided hooks. For 440, some of these are
implemented by booke.c, with the rest in (the new) 44x.c.
Note that these hooks are link-time, not run-time. Since it is not possible to
build a single kernel for both e500 and 440 (for example), using function
pointers would only add overhead.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>