16 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Josh Poimboeuf
f5caf621ee x86/asm: Fix inline asm call constraints for Clang
For inline asm statements which have a CALL instruction, we list the
stack pointer as a constraint to convince GCC to ensure the frame
pointer is set up first:

  static inline void foo()
  {
	register void *__sp asm(_ASM_SP);
	asm("call bar" : "+r" (__sp))
  }

Unfortunately, that pattern causes Clang to corrupt the stack pointer.

The fix is easy: convert the stack pointer register variable to a global
variable.

It should be noted that the end result is different based on the GCC
version.  With GCC 6.4, this patch has exactly the same result as
before:

	defconfig	defconfig-nofp	distro		distro-nofp
 before	9820389		9491555		8816046		8516940
 after	9820389		9491555		8816046		8516940

With GCC 7.2, however, GCC's behavior has changed.  It now changes its
behavior based on the conversion of the register variable to a global.
That somehow convinces it to *always* set up the frame pointer before
inserting *any* inline asm.  (Therefore, listing the variable as an
output constraint is a no-op and is no longer necessary.)  It's a bit
overkill, but the performance impact should be negligible.  And in fact,
there's a nice improvement with frame pointers disabled:

	defconfig	defconfig-nofp	distro		distro-nofp
 before	9796316		9468236		9076191		8790305
 after	9796957		9464267		9076381		8785949

So in summary, while listing the stack pointer as an output constraint
is no longer necessary for newer versions of GCC, it's still needed for
older versions.

Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel Bernal Marin <miguel.bernal.marin@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3db862e970c432ae823cf515c52b54fec8270e0e.1505942196.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-23 15:06:20 +02:00
Martin Schwidefsky
f285144f81 sched/x86: Do not clear PREEMPT_NEED_RESCHED on preempt count reset
The per-cpu preempt count of x86 contains two values, the actual preempt
count and the inverted PREEMPT_NEED_RESCHED bit. If a corrupted preempt
count is detected the preempt_count_set() function is used to reset the
preempt count.

In case the inverted PREEMPT_NEED_RESCHED bit is zero at the time of the
reset, the preemption indication is lost. Use raw_cpu_cmpxchg_4() to reset
only the count part and leave the PREEMPT_NEED_RESCHED bit as it is.

This improves the kernel's behavior when it runs into preempt count leaks
and tries to fix them up.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1478523660-733-1-git-send-email-schwidefsky@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:29:04 +01:00
H. Peter Anvin
18fe58229d x86, asm: change the GEN_*_RMWcc() macros to not quote the condition
Change the lexical defintion of the GEN_*_RMWcc() macros to not take
the condition code as a quoted string.  This will help support
changing them to use the new __GCC_ASM_FLAG_OUTPUTS__ feature in a
subsequent patch.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-4-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-06-08 12:41:20 -07:00
Josh Poimboeuf
821eae7d14 sched/x86: Add stack frame dependency to __preempt_schedule[_notrace]()
If __preempt_schedule() or __preempt_schedule_notrace() is referenced at
the beginning of a function, gcc can insert the asm inline "call
___preempt_schedule[_notrace]" instruction before setting up a stack
frame, which breaks frame pointer convention if CONFIG_FRAME_POINTER is
enabled and can result in bad stack traces.

Force a stack frame to be created if CONFIG_FRAME_POINTER is enabled by
listing the stack pointer as an output operand for the inline asm
statements.

Specifically this fixes the following stacktool warnings:

  stacktool: drivers/scsi/hpsa.o: hpsa_scsi_do_simple_cmd.constprop.106()+0x79: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_find_first()+0x70: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_find_first()+0x92: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_free()+0xff: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_free()+0xf5: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_free()+0x11a: call without frame pointer save/setup
  stacktool: fs/mbcache.o: mb_cache_entry_get()+0x225: call without frame pointer save/setup
  stacktool: kernel/locking/percpu-rwsem.o: percpu_up_read()+0x27: call without frame pointer save/setup
  stacktool: kernel/profile.o: do_profile_hits.isra.5()+0x139: call without frame pointer save/setup
  stacktool: lib/nmi_backtrace.o: nmi_trigger_all_cpu_backtrace()+0x2b6: call without frame pointer save/setup
  stacktool: net/rds/ib_cm.o: rds_ib_cq_comp_handler_recv()+0x58: call without frame pointer save/setup
  stacktool: net/rds/ib_cm.o: rds_ib_cq_comp_handler_send()+0x58: call without frame pointer save/setup
  stacktool: net/rds/ib_recv.o: rds_ib_attempt_ack()+0xc1: call without frame pointer save/setup
  stacktool: net/rds/iw_recv.o: rds_iw_attempt_ack()+0xc1: call without frame pointer save/setup
  stacktool: net/rds/iw_recv.o: rds_iw_recv_cq_comp_handler()+0x55: call without frame pointer save/setup

So it only adds a stack frame to 15 call sites out of ~5000 calls to
___preempt_schedule[_notrace]().  All the others already had stack frames.

Oddly, this change actually seems to make things faster in a lot of
cases.  For many smaller functions it causes the stack frame creation to
get moved out of the common path and into the unlikely path.

For example, here's the original cyc2ns_read_end():

  ffffffff8101f8c0 <cyc2ns_read_end>:
  ffffffff8101f8c0:	55                   	push   %rbp
  ffffffff8101f8c1:	48 89 e5             	mov    %rsp,%rbp
  ffffffff8101f8c4:	83 6f 10 01          	subl   $0x1,0x10(%rdi)
  ffffffff8101f8c8:	75 08                	jne    ffffffff8101f8d2 <cyc2ns_read_end+0x12>
  ffffffff8101f8ca:	65 48 89 3d e6 5a ff 	mov    %rdi,%gs:0x7eff5ae6(%rip)        # 153b8 <cyc2ns+0x38>
  ffffffff8101f8d1:	7e
  ffffffff8101f8d2:	65 ff 0d 77 c4 fe 7e 	decl   %gs:0x7efec477(%rip)        # bd50 <__preempt_count>
  ffffffff8101f8d9:	74 02                	je     ffffffff8101f8dd <cyc2ns_read_end+0x1d>
  ffffffff8101f8db:	5d                   	pop    %rbp
  ffffffff8101f8dc:	c3                   	retq
  ffffffff8101f8dd:	e8 1e 37 fe ff       	callq  ffffffff81003000 <___preempt_schedule>
  ffffffff8101f8e2:	5d                   	pop    %rbp
  ffffffff8101f8e3:	c3                   	retq
  ffffffff8101f8e4:	66 66 66 2e 0f 1f 84 	data16 data16 nopw %cs:0x0(%rax,%rax,1)
  ffffffff8101f8eb:	00 00 00 00 00

And here's the same function with the patch:

  ffffffff8101f8c0 <cyc2ns_read_end>:
  ffffffff8101f8c0:	83 6f 10 01          	subl   $0x1,0x10(%rdi)
  ffffffff8101f8c4:	75 08                	jne    ffffffff8101f8ce <cyc2ns_read_end+0xe>
  ffffffff8101f8c6:	65 48 89 3d ea 5a ff 	mov    %rdi,%gs:0x7eff5aea(%rip)        # 153b8 <cyc2ns+0x38>
  ffffffff8101f8cd:	7e
  ffffffff8101f8ce:	65 ff 0d 7b c4 fe 7e 	decl   %gs:0x7efec47b(%rip)        # bd50 <__preempt_count>
  ffffffff8101f8d5:	74 01                	je     ffffffff8101f8d8 <cyc2ns_read_end+0x18>
  ffffffff8101f8d7:	c3                   	retq
  ffffffff8101f8d8:	55                   	push   %rbp
  ffffffff8101f8d9:	48 89 e5             	mov    %rsp,%rbp
  ffffffff8101f8dc:	e8 1f 37 fe ff       	callq  ffffffff81003000 <___preempt_schedule>
  ffffffff8101f8e1:	5d                   	pop    %rbp
  ffffffff8101f8e2:	c3                   	retq
  ffffffff8101f8e3:	66 66 66 66 2e 0f 1f 	data16 data16 data16 nopw %cs:0x0(%rax,%rax,1)
  ffffffff8101f8ea:	84 00 00 00 00 00

Notice that it moved the frame pointer setup code to the unlikely
___preempt_schedule() call path.  Going through a sampling of the
differences in the asm, that's the most common change I see.

Otherwise it has no real effect on callers which already have stack
frames (though it does result in the reordering of some 'mov's).

Reported-by: Jiri Slaby <jslaby@suse.cz>
Tested-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/20160218174158.GA28230@treble.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-24 08:35:45 +01:00
Peter Zijlstra
d87b7a3379 sched/core, sched/x86: Kill thread_info::saved_preempt_count
With the introduction of the context switch preempt_count invariant,
and the demise of PREEMPT_ACTIVE, its pointless to save/restore the
per-cpu preemption count, it must always be 2.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:08:18 +02:00
Peter Zijlstra
609ca06638 sched/core: Create preempt_count invariant
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers.

Now that TASK_DEAD no longer results in preempt_count() == 3 during
scheduling, we will always call context_switch() with preempt_count()
== 2.

However, we don't always end up with preempt_count() == 2 in
finish_task_switch() because new tasks get created with
preempt_count() == 1.

Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right
places. Note that we cannot use INIT_PREEMPT_COUNT as that serves
another purpose (boot).

After this, preempt_count() is invariant across the context switch,
with exception of PREEMPT_ACTIVE.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:08:14 +02:00
Konstantin Khlebnikov
fe32d3cd5e sched/preempt: Fix cond_resched_lock() and cond_resched_softirq()
These functions check should_resched() before unlocking spinlock/bh-enable:
preempt_count always non-zero => should_resched() always returns false.
cond_resched_lock() worked iff spin_needbreak is set.

This patch adds argument "preempt_offset" to should_resched().

preempt_count offset constants for that:

  PREEMPT_DISABLE_OFFSET  - offset after preempt_disable()
  PREEMPT_LOCK_OFFSET     - offset after spin_lock()
  SOFTIRQ_DISABLE_OFFSET  - offset after local_bh_distable()
  SOFTIRQ_LOCK_OFFSET     - offset after spin_lock_bh()

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: bdb438065890 ("sched: Extract the basic add/sub preempt_count modifiers")
Link: http://lkml.kernel.org/r/20150715095204.12246.98268.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:21:24 +02:00
Frederic Weisbecker
4eaca0a887 preempt: Use preempt_schedule_context() as the official tracing preemption point
preempt_schedule_context() is a tracing safe preemption point but it's
only used when CONFIG_CONTEXT_TRACKING=y. Other configs have tracing
recursion issues since commit:

  b30f0e3ffedf ("sched/preempt: Optimize preemption operations on __schedule() callers")

introduced function based preemp_count_*() ops.

Lets make it available on all configs and give it a more appropriate
name for its new position.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433432349-1021-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-07 15:57:42 +02:00
Oleg Nesterov
e2336f6e51 sched: Kill task_preempt_count()
task_preempt_count() is pointless if preemption counter is per-cpu,
currently this is x86 only. It is only valid if the task is not
running, and even in this case the only info it can provide is the
state of PREEMPT_ACTIVE bit.

Change its single caller to check p->on_rq instead, this should be
the same if p->state != TASK_RUNNING, and kill this helper.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20141008183348.GC17495@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:56 +01:00
Oleg Nesterov
009f60e276 sched: stop the unbound recursion in preempt_schedule_context()
preempt_schedule_context() does preempt_enable_notrace() at the end
and this can call the same function again; exception_exit() is heavy
and it is quite possible that need-resched is true again.

1. Change this code to dec preempt_count() and check need_resched()
   by hand.

2. As Linus suggested, we can use the PREEMPT_ACTIVE bit and avoid
   the enable/disable dance around __schedule(). But in this case
   we need to move into sched/core.c.

3. Cosmetic, but x86 forgets to declare this function. This doesn't
   really matter because it is only called by asm helpers, still it
   make sense to add the declaration into asm/preempt.h to match
   preempt_schedule().

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Chuck Ebbert <cebbert.lkml@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20141005202322.GB27962@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:46:05 +01:00
Christoph Lameter
b3ca1c10d7 percpu: add raw_cpu_ops
The kernel has never been audited to ensure that this_cpu operations are
consistently used throughout the kernel.  The code generated in many
places can be improved through the use of this_cpu operations (which
uses a segment register for relocation of per cpu offsets instead of
performing address calculations).

The patch set also addresses various consistency issues in general with
the per cpu macros.

A. The semantics of __this_cpu_ptr() differs from this_cpu_ptr only
   because checks are skipped. This is typically shown through a raw_
   prefix. So this patch set changes the places where __this_cpu_ptr()
   is used to raw_cpu_ptr().

B. There has been the long term wish by some that __this_cpu operations
   would check for preemption. However, there are cases where preemption
   checks need to be skipped. This patch set adds raw_cpu operations that
   do not check for preemption and then adds preemption checks to the
   __this_cpu operations.

C. The use of __get_cpu_var is always a reference to a percpu variable
   that can also be handled via a this_cpu operation. This patch set
   replaces all uses of __get_cpu_var with this_cpu operations.

D. We can then use this_cpu RMW operations in various places replacing
   sequences of instructions by a single one.

E. The use of this_cpu operations throughout will allow other arches than
   x86 to implement optimized references and RMV operations to work with
   per cpu local data.

F. The use of this_cpu operations opens up the possibility to
   further optimize code that relies on synchronization through
   per cpu data.

The patch set works in a couple of stages:

I. Patch 1 adds the additional raw_cpu operations and raw_cpu_ptr().
    Also converts the existing __this_cpu_xx_# primitive in the x86
    code to raw_cpu_xx_#.

II. Patch 2-4 use the raw_cpu operations in places that would give
     us false positives once they are enabled.

III. Patch 5 adds preemption checks to __this_cpu operations to allow
    checking if preemption is properly disabled when these functions
    are used.

IV. Patches 6-20 are patches that simply replace uses of __get_cpu_var
   with this_cpu_ptr. They do not depend on any changes to the percpu
   code. No preemption tests are skipped if they are applied.

V. Patches 21-46 are conversion patches that use this_cpu operations
   in various kernel subsystems/drivers or arch code.

VI.  Patches 47/48 (not included in this series) remove no longer used
    functions (__this_cpu_ptr and __get_cpu_var).  These should only be
    applied after all the conversion patches have made it and after we
    have done additional passes through the kernel to ensure that none of
    the uses of these functions remain.

This patch (of 46):

The patches following this one will add preemption checks to __this_cpu
ops so we need to have an alternative way to use this_cpu operations
without preemption checks.

raw_cpu_ops will be the basis for all other ops since these will be the
operations that do not implement any checks.

Primitive operations are renamed by this patch from __this_cpu_xxx to
raw_cpu_xxxx.

Also change the uses of the x86 percpu primitives in preempt.h.
These depend directly on asm/percpu.h (header #include nesting issue).

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Alex Shi <alex.shi@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bryan Wu <cooloney@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Robert Richter <rric@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wim Van Sebroeck <wim@iguana.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:13 -07:00
Peter Zijlstra
ba1f14fbe7 sched: Remove PREEMPT_NEED_RESCHED from generic code
While hunting a preemption issue with Alexander, Ben noticed that the
currently generic PREEMPT_NEED_RESCHED stuff is horribly broken for
load-store architectures.

We currently rely on the IPI to fold TIF_NEED_RESCHED into
PREEMPT_NEED_RESCHED, but when this IPI lands while we already have
a load for the preempt-count but before the store, the store will erase
the PREEMPT_NEED_RESCHED change.

The current preempt-count only works on load-store archs because
interrupts are assumed to be completely balanced wrt their preempt_count
fiddling; the previous preempt_count load will match the preempt_count
state after the interrupt and therefore nothing gets lost.

This patch removes the PREEMPT_NEED_RESCHED usage from generic code and
pushes it into x86 arch code; the generic code goes back to relying on
TIF_NEED_RESCHED.

Boot tested on x86_64 and compile tested on ppc64.

Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reported-and-Tested-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20131128132641.GP10022@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-12-11 15:52:32 +01:00
Peter Zijlstra
75f93fed50 sched: Revert need_resched() to look at TIF_NEED_RESCHED
Yuanhan reported a serious throughput regression in his pigz
benchmark. Using the ftrace patch I found that several idle
paths need more TLC before we can switch the generic
need_resched() over to preempt_need_resched.

The preemption paths benefit most from preempt_need_resched and
do indeed use it; all other need_resched() users don't really
care that much so reverting need_resched() back to
tif_need_resched() is the simple and safe solution.

Reported-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: lkp@linux.intel.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20130927153003.GF15690@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-28 10:04:47 +02:00
Peter Zijlstra
1a338ac32c sched, x86: Optimize the preempt_schedule() call
Remove the bloat of the C calling convention out of the
preempt_enable() sites by creating an ASM wrapper which allows us to
do an asm("call ___preempt_schedule") instead.

calling.h bits by Andi Kleen

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-tk7xdi1cvvxewixzke8t8le1@git.kernel.org
[ Fixed build error. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:23:07 +02:00
Peter Zijlstra
c2daa3bed5 sched, x86: Provide a per-cpu preempt_count implementation
Convert x86 to use a per-cpu preemption count. The reason for doing so
is that accessing per-cpu variables is a lot cheaper than accessing
thread_info variables.

We still need to save/restore the actual preemption count due to
PREEMPT_ACTIVE so we place the per-cpu __preempt_count variable in the
same cache-line as the other hot __switch_to() variables such as
current_task.

NOTE: this save/restore is required even for !PREEMPT kernels as
cond_resched() also relies on preempt_count's PREEMPT_ACTIVE to ignore
task_struct::state.

Also rename thread_info::preempt_count to ensure nobody is
'accidentally' still poking at it.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-gzn5rfsf8trgjoqx8hyayy3q@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-25 14:07:57 +02:00