IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Remove temporary 'matched_waiters' waitq and just enqueue matched
waiters directly to the caller provided 'matched_waitq'.
Reviewed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Rename various interfaces and structs associated with vdo's wait-queue,
e.g.: s/wait_queue/vdo_wait_queue/, s/waiter/vdo_waiter/, etc.
Now all function names start with "vdo_waitq_" or "vdo_waiter_".
Reviewed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Rename process_vio_io() to vdo_submit_vio(), and process_data_vio_io() to
submit_data_vio().
Reviewed-by: Susan LeGendre-McGhee <slegendr@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Rename submit_data_vio_io() to vdo_submit_data_vio().
Reviewed-by: Susan LeGendre-McGhee <slegendr@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Rename submit_flush_vio() to vdo_submit_flush_vio().
Reviewed-by: Susan LeGendre-McGhee <slegendr@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Rename submit_metadata_vio() to vdo_submit_metadata_vio().
Reviewed-by: Susan LeGendre-McGhee <slegendr@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Just open-code access to bio's sector.
Reviewed-by: Susan LeGendre-McGhee <slegendr@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
dm-vdo targets are not supported for 32-bit configurations. A vdo target
typically requires 1 to 1.5 GB of memory at any given time, which is likely
a large fraction of the addressable memory of a 32-bit system. At the same
time, the amount of addressable storage attached to a 32-bit system may not
be large enough for deduplication to provide much benefit. Because of these
concerns, 32-bit platforms are deemed unlikely to benefit from using a vdo
target, so dm-vdo is targeted only at 64-bit platforms.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This adds the dm-vdo target.
The dm-vdo target provides inline deduplication, compression, and
zero-block elimination, allowing applications to consume less actual
storage than a normal target. By layering it with other device mapper
targets, it can add these features to any storage stack. It can also
provide a common deduplication pool for groups of targets. The vdo target
does not protect against data corruption, relying instead on integrity
protection of the storage below it.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add support for dumping detailed vdo state to the kernel log via a dmsetup
message. The dump code is not thread-safe and is generally intended for use
only when the vdo is hung.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add data and methods setting run time parameters via sysfs, and to
make state and statistics information available through sysfs.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add data and methods to report statisics.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add data and methods for marshalling and unmarshalling the persistent
metadata.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add the data and methods that manage the dm-vdo target itself. This
includes the overall state of the target and its threads, the state of
the logical volumes, startup, shutdown, and statistics.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
When a vdo is restarted after a crash, it will automatically attempt to
recover from its journals.
If a vdo encounters an unrecoverable error, it will enter read-only mode.
This mode indicates that some previously acknowledged data may have been
lost. The vdo may be instructed to rebuild as best it can in order to
return to a writable state. Although some data may be lost, this process
will ensure that the vdo's own metadata is self-consistent.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The recovery journal is used to amortize updates across the block map and
slab depot. Each write request causes an entry to be made in the journal.
Entries are either "data remappings" or "block map remappings." For a data
remapping, the journal records the logical address affected and its old and
new physical mappings. For a block map remapping, the journal records the
block map page number and the physical block allocated for it (block map
pages are never reclaimed, so the old mapping is always 0). Each journal
entry and the data write it represents must be stable on disk before the
other metadata structures may be updated to reflect the operation.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The set of leaf pages of the block map tree is too large to fit in memory,
so each block map zone maintains a cache of leaf pages. This patch adds the
implementation of that cache.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The block map contains the logical to physical mapping. It can be thought
of as an array with one entry per logical address. Each entry is 5 bytes:
36 bits contain the physical block number which holds the data for the
given logical address, and the remaining 4 bits are used to indicate the
nature of the mapping. Of the 16 possible states, one represents a logical
address which is unmapped (i.e. it has never been written, or has been
discarded), one represents an uncompressed block, and the other 14 states
are used to indicate that the mapped data is compressed, and which of the
compression slots in the compressed block this logical address maps to.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add the data and methods that implement the slab_depot that manages
the allocation of slabs of blocks added by the preceding patches.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Each slab is independent of every other. They are assigned to "physical
zones" in round-robin fashion. If there are P physical zones, then slab n
is assigned to zone n mod P. The set of slabs in each physical zone is
managed by a block allocator.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The slab depot maintains an additional small data structure, the "slab
summary," which is used to reduce the amount of work needed to come back
online after a crash. The slab summary maintains an entry for each slab
indicating whether or not the slab has ever been used, whether it is clean
(i.e. all of its reference count updates have been persisted to storage),
and approximately how full it is. During recovery, each physical zone will
attempt to recover at least one slab, stopping whenever it has recovered a
slab which has some free blocks. Once each zone has some space (or has
determined that none is available), the target can resume normal operation
in a degraded mode. Read and write requests can be serviced, perhaps with
degraded performance, while the remainder of the dirty slabs are recovered.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Most of the vdo volume belongs to the slab depot. The depot contains a
collection of slabs. The slabs can be up to 32GB, and are divided into
three sections. Most of a slab consists of a linear sequence of 4K blocks.
These blocks are used either to store data, or to hold portions of the
block map (see subsequent patches). In addition to the data blocks, each
slab has a set of reference counters, using 1 byte for each data block.
Finally each slab has a journal. Reference updates are written to the slab
journal, which is written out one block at a time as each block fills. A
copy of the reference counters is kept in memory, and are written out a
block at a time, in oldest-dirtied-order whenever there is a need to
reclaim slab journal space. The journal is used both to ensure that the
main recovery journal (see subsequent patches) can regularly free up space,
and also to amortize the cost of updating individual reference blocks.
This patch adds the slab structure as well as the slab journal and
reference counters.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
When blocks do not deduplicate, vdo will attempt to compress them. Up to 14
compressed blocks may be packed into a single data block (this limitation
is imposed by the block map). The packer implements a simple best-fit
packing algorithm and also manages the formatting and writing of compressed
blocks when bins fill.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add the data and methods that manage queries to the deduplication
index and the responses from the index.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
In order to deduplicate concurrent writes of the same data (to different
locations), data_vios which are writing the same data are grouped together
in a "hash lock," named for and keyed by the hash of the data being
written. Each hash lock is assigned to a hash zone based on a portion of
its hash.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The io_submitter handles bio submission from vdo data store to the storage
below. It will merge bios when possible.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds support for handling incoming flush and/or FUA bios. Each
such bio is assigned to a struct vdo_flush. These are allocated as needed,
but there is always one kept in reserve in case allocations fail. In the
event of an allocation failure, bios may need to wait for an outstanding
flush to complete.
The logical address space is partitioned into logical zones, each handled
by its own thread. Each zone keeps a list of all data_vios handling write
requests for logical addresses in that zone. When a flush bio is processed,
each logical zone is informed of the flush. When all of the writes which
are in progress at the time of the notification have completed in all
zones, the flush bio is then allowed to complete.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add the data and methods that implement the data_vio object that
handles user data bios as they are processed.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add the data and methods that implement the vio object that is basic
unit of I/O in vdo.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds the admin_state structures which are used to track the
states of individual vdo components for handling of operations like suspend
and resume. It also adds the action manager which is used to schedule and
manage cross-thread administrative and internal operations.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The deduplication index interface for index clients includes the
deduplication request and index session structures. This is the interface
that the rest of the vdo target uses to make requests, receive responses,
and collect statistics.
This patch also adds sysfs nodes for inspecting various index properties at
runtime.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The top-level deduplication index brings all the earlier components
together. The top-level index creates the separate zone structures that
enable the index to handle several requests in parallel, handles
dispatching requests to the right zones and components, and coordinates
metadata to ensure that it remain consistent. It also coordinates recovery
in the event of an unexpected index failure.
If sparse caching is enabled, the top-level index also handles the
coordination required by the sparse chapter index cache, which (unlike most
index structures) is shared among all zones.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The volume store structures manage the reading and writing of chapter
pages. When a chapter is closed, it is packed into a read-only structure,
split across several pages, and written to storage.
The volume store also contains a cache and specialized queues that sort and
batch requests by the page they need, in order to minimize latency and I/O
requests when records have to be read from storage. The cache and queues
also coordinate with the volume index to ensure that the volume does not
waste resources reading pages that are no longer valid.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Deduplication records are stored in groups called chapters. New records are
collected in a structure called the open chapter, which is optimized for
adding, removing, and sorting records.
When a chapter fills, it is packed into a read-only structure called a
closed chapter, which is optimized for searching and reading. The closed
chapter includes a delta index, called the chapter index, which maps each
record name to the record page containing the record and allows the index
to read at most one record page when looking up a record.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The volume index is a large delta index that maps each record name to the
chapter which contains the newest record for that name. The volume index
can contain several million records and is stored entirely in memory while
the index is operating, accounting for the majority of the deduplication
index's memory budget.
The volume index is composed of two subindexes in order to handle sparse
hook names separately from regular names. If sparse indexing is not
enabled, the sparse hook portion of the volume index is not used or
instantiated.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The delta index is a space and memory efficient alternative to a hashtable.
Instead of storing the entire key for each entry, the entries are sorted by
key and only the difference between adjacent keys (the delta) is stored.
If the keys are evenly distributed, the size of the deltas follows an
exponential distribution, and the deltas can use a Huffman code to take up
even less space.
This structure allows the index to use many fewer bytes per entry than a
traditional hash table, but it is slightly more expensive to look up
entries, because a request must read and sum every entry in a list of
deltas in order to find a given record. The delta index reduces this lookup
cost by splitting its key space into many sub-lists, each starting at a
fixed key value, so that each individual list is short.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds infrastructure for managing reads and writes to the
underlying storage layer for the deduplication index. The deduplication
index uses dm-bufio for all of its reads and writes, so part of this
infrastructure is managing the various dm-bufio clients required. It also
adds the buffered reader and buffered writer abstractions, which simplify
reading and writing metadata structures that span several blocks.
This patch also includes structures and utilities for encoding and decoding
all of the deduplication index metadata, collectively called the index
layout.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add structures which record the configuration of various deduplication
index parameters. This also includes facilities for saving and loading the
configuration and validating its integrity.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds two hash maps, one keyed by integers, the other by
pointers, and also a priority heap. The integer map is used for locking of
logical and physical addresses. The pointer map is used for managing
concurrent writes of the same data, ensuring that those writes are
deduplicated. The priority heap is used to minimize the search time for
free blocks.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds funnel_queue, a mostly lock-free multi-producer,
single-consumer queue. It also adds the request queue used by the dm-vdo
deduplication index, and the work_queue used by the dm-vdo data store. Both
of these are built on top of funnel queue and are intended to support the
dispatching of many short-running tasks. The work_queue also supports
priorities. Finally, this patch adds vdo_completion, the structure which is
enqueued on work_queues.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds utilities for managing and using named threads, as well as
several locking and synchronization utilities. These utilities help dm-vdo
minimize thread transitions and manage interactions between threads.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: Bruce Johnston <bjohnsto@redhat.com>
Signed-off-by: Bruce Johnston <bjohnsto@redhat.com>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add definitions of constants defining the fixed parameters of a VDO
volume, and the default and maximum values of configurable or dynamic
parameters.
Add definitions of internal status codes used for internal
communication within the module and for logging.
Add definitions of types and structs used to manage the processing of
an I/O operation.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Add various support utilities for the vdo target and deduplication index,
including logging utilities, string and time management, and index-specific
error codes.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
This patch adds standardized allocation macros and memory tracking tools to
track and report any allocated memory that is not freed. This makes it
easier to ensure that the vdo target does not leak memory.
This patch also adds utilities for controlling whether certain threads are
allowed to allocate memory, since memory allocation during certain critical
code sections can cause the vdo target to deadlock.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Michael Sclafani <dm-devel@lists.linux.dev>
Signed-off-by: Michael Sclafani <dm-devel@lists.linux.dev>
Co-developed-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Signed-off-by: Thomas Jaskiewicz <tom@jaskiewicz.us>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
MurmurHash3 is a fast, non-cryptographic, 128-bit hash. It was originally
written by Austin Appleby and placed in the public domain. This version has
been modified to produce the same result on both big endian and little
endian processors, making it suitable for use in portable persistent data.
Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net>
Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net>
Co-developed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Ken Raeburn <raeburn@redhat.com>
Co-developed-by: John Wiele <jwiele@redhat.com>
Signed-off-by: John Wiele <jwiele@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Tasklets have an inherent problem with memory corruption. The function
tasklet_action_common calls tasklet_trylock, then it calls the tasklet
callback and then it calls tasklet_unlock. If the tasklet callback frees
the structure that contains the tasklet or if it calls some code that may
free it, tasklet_unlock will write into free memory.
The commits 8e14f61015 and d9a02e016a try to fix it for dm-crypt, but
it is not a sufficient fix and the data corruption can still happen [1].
There is no fix for dm-verity and dm-verity will write into free memory
with every tasklet-processed bio.
There will be atomic workqueues implemented in the kernel 6.9 [2]. They
will have better interface and they will not suffer from the memory
corruption problem.
But we need something that stops the memory corruption now and that can be
backported to the stable kernels. So, I'm proposing this commit that
disables tasklets in both dm-crypt and dm-verity. This commit doesn't
remove the tasklet support, because the tasklet code will be reused when
atomic workqueues will be implemented.
[1] https://lore.kernel.org/all/d390d7ee-f142-44d3-822a-87949e14608b@suse.de/T/
[2] https://lore.kernel.org/lkml/20240130091300.2968534-1-tj@kernel.org/
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 39d42fa96b ("dm crypt: add flags to optionally bypass kcryptd workqueues")
Fixes: 5721d4e5a9 ("dm verity: Add optional "try_verify_in_tasklet" feature")
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The function kvmalloc_node limits the allocation size to INT_MAX. This
limit will be overflowed if dm-writecache attempts to map a device with
1TiB or larger length. This commit changes kvmalloc_array to vmalloc_array
to avoid the limit.
The commit also changes vmalloc(array_size()) to vmalloc_array().
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The kvmalloc function fails with a warning if the size is larger than
INT_MAX. Linus said that there should be limits that prevent this warning
from being hit. This commit adds the limits to the dm-stats subsystem
in DM core.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
The kvmalloc function fails with a warning if the size is larger than
INT_MAX. The warning was triggered by a syscall testing robot.
In order to avoid the warning, this commit limits the number of targets to
1048576 and the size of the parameter area to 1073741824.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>