IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For switch and endpoint decoders the relationship of decoders to regions
is 1:1. However, for root decoders the relationship is 1:N. Also,
regions are already children of root decoders, so the 1:N relationship
is observed by walking the following glob:
/sys/bus/cxl/devices/$decoder/region*
Hide the vestigial 'region' attribute for root decoders.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853776328.2430596.4647259305040072751.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The ++ needs a match -- on the clean up path. If the p->nr_targets
value gets to be more than 16 it leads to uninitialized data in
cxl_port_setup_targets().
drivers/cxl/core/region.c:995 cxl_port_setup_targets() error: uninitialized symbol 'eiw'.
Fixes: 27b3f8d13830 ("cxl/region: Program target lists")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/YuepCvUAoCtdpcoO@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The "ways" variable comes from the user. The ways_to_cxl() function
has an upper bound but it doesn't check for negatives. Make
the "ways" variable an unsigned int to fix this bug.
Fixes: 80d10a6cee05 ("cxl/region: Add interleave geometry attributes")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueo3NV2hFCXx1iV@kili
[djbw: fixup interleave_ways_store() to only accept unsigned input]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This should check "p->res" instead of "res" (which is uninitialized).
Fixes: 23a22cd1c98b ("cxl/region: Allocate HPA capacity to regions")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueor88I/DkVSOtL@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The LIBNVDIMM subsystem is a platform agnostic representation of system
NVDIMM / persistent memory resources. To date, the CXL subsystem's
interaction with LIBNVDIMM has been to register an nvdimm-bridge device
and cxl_nvdimm objects to proxy CXL capabilities into existing LIBNVDIMM
subsystem mechanics.
With regions the approach is the same. Create a new cxl_pmem_region
object to proxy CXL region details into a LIBNVDIMM definition. With
this enabling LIBNVDIMM can partition CXL persistent memory regions with
legacy namespace labels. A follow-on patch will add CXL region label and
CXL namespace label support to persist region configurations across
driver reload / system-reset events.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784340111.1758207.3036498385188290968.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL region driver is responsible for routing fully formed CXL
regions to one of libnvdimm, for persistent memory regions, device-dax
for volatile memory regions, or just act as an enumeration placeholder
if the region was setup and configuration locked by platform firmware.
In the platform-firmware-setup case the expectation is that region is
already accounted in the system memory map, i.e. already enabled as
"System RAM".
For now, just attach to CXL regions in the CXL_CONFIG_COMMIT state, and
take no further action.
Given this driver is just a small / simple router, include it in the
core rather than its own module.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-18-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After all the soft validation of the region has completed, convey the
region configuration to hardware while being careful to commit decoders
in specification mandated order. In addition to programming the endpoint
decoder base-address, interleave ways and granularity, the switch
decoder target lists are also established.
While the kernel can enforce spec-mandated commit order, it can not
enforce spec-mandated reset order. For example, the kernel can't stop
someone from removing an endpoint device that is occupying decoderN in a
switch decoder where decoderN+1 is also committed. To reset decoderN,
decoderN+1 must be torn down first. That "tear down the world"
implementation is saved for a follow-on patch.
Callback operations are provided for the 'commit' and 'reset'
operations. While those callbacks may prove useful for CXL accelerators
(Type-2 devices with memory) the primary motivation is to enable a
simple way for cxl_test to intercept those operations.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784338418.1758207.14659830845389904356.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Once the region's interleave geometry (ways, granularity, size) is
established and all the endpoint decoder targets are assigned, the next
phase is to program all the intermediate decoders. Specifically, each
CXL switch in the path between the endpoint and its CXL host-bridge
(including the logical switch internal to the host-bridge) needs to have
its decoders programmed and the target list order assigned.
The difficulty in this implementation lies in determining which endpoint
decoder ordering combinations are valid. Consider the cxl_test case of 2
host bridges, each of those host-bridges attached to 2 switches, and
each of those switches attached to 2 endpoints for a potential 8-way
interleave. The x2 interleave at the host-bridge level requires that all
even numbered endpoint decoder positions be located on the "left" hand
side of the topology tree, and the odd numbered positions on the other.
The endpoints that are peers on the same switch need to have a position
that can be routed with a dedicated address bit per-endpoint. See
check_last_peer() for the details.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337827.1758207.132121746122685208.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL regions (interleave sets) are made up of a set of memory devices
where each device maps a portion of the interleave with one of its
decoders (see CXL 2.0 8.2.5.12 CXL HDM Decoder Capability Structure).
As endpoint decoders are identified by a provisioning tool they can be
added to a region provided the region interleave properties are set
(way, granularity, HPA) and DPA has been assigned to the decoder.
The attach event triggers several validation checks, for example:
- is the DPA sized appropriately for the region
- is the decoder reachable via the host-bridges identified by the
region's root decoder
- is the device already active in a different region position slot
- are there already regions with a higher HPA active on a given port
(per CXL 2.0 8.2.5.12.20 Committing Decoder Programming)
...and the attach event affords an opportunity to collect data and
resources relevant to later programming the target lists in switch
decoders, for example:
- allocate a decoder at each cxl_port in the decode chain
- for a given switch port, how many the region's endpoints are hosted
through the port
- how many unique targets (next hops) does a port need to map to reach
those endpoints
The act of reconciling this information and deploying it to the decoder
configuration is saved for a follow-on patch.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337277.1758207.4108508181328528703.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The ACPI CXL Fixed Memory Window Structure (CFMWS) defines multiple
methods to determine which host bridge provides access to a given
endpoint relative to that device's position in the interleave. The
"Interleave Arithmetic" defines either a "standard modulo" /
round-random algorithm, or "xormap" based algorithm which can be defined
as a non-linear transform. Given that there are already more options
beyond "standard modulo" and that "xormap" may turn out to be ACPI CXL
specific, provide a callback for the region provisioning code to map
endpoint positions back to expected host bridge id (cxl_dport target).
For now just support the simple modulo math case and save the xormap for
a follow-on change.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-14-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning process involves allocating DPA to a set of
endpoint decoders, and HPA plus the region geometry to a region device.
Then the decoder is assigned to the region. At this point several
validation steps can be performed to validate that the decoder is
suitable to participate in the region.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/165784336184.1758207.16403282029203949622.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After a region's interleave parameters (ways and granularity) are set,
add a way for regions to allocate HPA (host physical address space) from
the free capacity in their parent root-decoder. The allocator for this
capacity reuses the 'struct resource' based allocator used for
CONFIG_DEVICE_PRIVATE.
Once the tuple of "ways, granularity, [uuid], and size" is set the
region configuration transitions to the CXL_CONFIG_INTERLEAVE_ACTIVE
state which is a precursor to allowing endpoint decoders to be added to
a region.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784335630.1758207.420216490941955417.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add ABI to allow the number of devices that comprise a region to be
set as well as the interleave granularity for the region.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: reword changelog]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-11-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The process of provisioning a region involves triggering the creation of
a new region object, pouring in the configuration, and then binding that
configured object to the region driver to start its operation. For
persistent memory regions the CXL specification mandates that it
identified by a uuid. Add an ABI for userspace to specify a region's
uuid.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: simplify locking]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784334465.1758207.8224025435884752570.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL 2.0 allows for dynamic provisioning of new memory regions (system
physical address resources like "System RAM" and "Persistent Memory").
Whereas DDR and PMEM resources are conveyed statically at boot, CXL
allows for assembling and instantiating new regions from the available
capacity of CXL memory expanders in the system.
Sysfs with an "echo $region_name > $create_region_attribute" interface
is chosen as the mechanism to initiate the provisioning process. This
was chosen over ioctl() and netlink() to keep the configuration
interface entirely in a pseudo-fs interface, and it was chosen over
configfs since, aside from this one creation event, the interface is
read-mostly. I.e. configfs supports cases where an object is designed to
be provisioned each boot, like an iSCSI storage target, and CXL region
creation is mostly for PMEM regions which are created usually once
per-lifetime of a server instance. This is an improvement over nvdimm
that pre-created "seed" devices that tended to confuse users looking to
determine which devices are active and which are idle.
Recall that the major change that CXL brings over previous persistent
memory architectures is the ability to dynamically define new regions.
Compare that to drivers like 'nfit' where the region configuration is
statically defined by platform firmware.
Regions are created as a child of a root decoder that encompasses an
address space with constraints. When created through sysfs, the root
decoder is explicit. When created from an LSA's region structure a root
decoder will possibly need to be inferred by the driver.
Upon region creation through sysfs, a vacant region is created with a
unique name. Regions have a number of attributes that must be configured
before the region can be bound to the driver where HDM decoder program
is completed.
An example of creating a new region:
- Allocate a new region name:
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
- Create a new region by name:
while
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
! echo $region > /sys/bus/cxl/devices/decoder0.0/create_pmem_region
do true; done
- Region now exists in sysfs:
stat -t /sys/bus/cxl/devices/decoder0.0/$region
- Delete the region, and name:
echo $region > /sys/bus/cxl/devices/decoder0.0/delete_region
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784333909.1758207.794374602146306032.stgit@dwillia2-xfh.jf.intel.com
[djbw: simplify locking, reword changelog]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The port scanning algorithm in devm_cxl_enumerate_ports() walks up the
topology and adds cxl_port objects starting from the root down to the
endpoint. When those ports are initially created they know all their
dports, but they do not know the downstream cxl_port instance that
represents the next descendant in the topology. Rework create_endpoint()
into devm_cxl_add_endpoint() that enumerates the downstream cxl_port
topology into each port's 'struct cxl_ep' record for each endpoint it
that the port is an ancestor.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-7-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning flow involves selecting interleave ways +
granularity settings for a region, and then programming the decoder
topology to meet those constraints, if possible. For example, root
decoders set the minimum interleave ways + granularity for any hosted
regions.
Given decoder programming is not atomic and collisions can occur between
multiple requesting regions userspace will be responsible for conflict
resolution and it needs these attributes to make those decisions.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784332235.1758207.7185062713652694607.stgit@dwillia2-xfh.jf.intel.com
[djbw: reword changelog, make read-only, add sysfs ABI documentaion]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reduce the complexity and the overhead of walking the topology to
determine endpoint connectivity to root decoder interleave
configurations.
Note that cxl_detach_ep(), after it determines that the last @ep has
departed and decides to delete the port, now needs to walk the dport
array with the device_lock() held to remove entries. Previously
list_splice_init() could be used atomically delete all dport entries at
once and then perform entry tear down outside the lock. There is no
list_splice_init() equivalent for the xarray.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784331647.1758207.6345820282285119339.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region provisioning that needs to walk the topology
by endpoints, use an xarray to record endpoint interest in a given port.
In addition to being more space and time efficient it also reduces the
complexity of the implementation by moving locking internal to the
xarray implementation. It also allows for a single cxl_ep reference to
be recorded in multiple xarrays.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-2-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
At the time that cxl_port instances are being created, cache the dport
from the parent port that points to this new child port. This will be
useful for region provisioning when walking the tree to calculate
decoder targets, and saves rewalking the dport list after the fact to
build this information.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-1-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that the primary role of the cxl_mem driver is to probe if the
given endpoint is connected to a CXL port topology. In that process it
walks its device ancestry to its PCI root port. If that root port is
also a CXL root port then the probe process adds cxl_port object
instances at switch in the path between to the root and the endpoint. As
those cxl_port instances are added, or if a previous enumeration
attempt already created the port, a 'struct cxl_ep' instance is
registered with that port to track the endpoints interested in that
port.
At the time the cxl_ep is registered the downstream egress path from the
port to the endpoint is known. Take the opportunity to record that
information as it will be needed for dynamic programming of decoder
targets during region provisioning.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784329944.1758207.15203961796832072116.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning flow will roughly follow a sequence of:
1/ Allocate DPA to a set of decoders
2/ Allocate HPA to a region
3/ Associate decoders with a region and validate that the DPA allocations
and topologies match the parameters of the region.
For now, this change (step 1) arranges for DPA capacity to be allocated
and deleted from non-committed decoders based on the decoder's mode /
partition selection. Capacity is allocated from the lowest DPA in the
partition and any 'pmem' allocation blocks out all remaining ram
capacity in its 'skip' setting. DPA allocations are enforced in decoder
instance order. I.e. decoder N + 1 always starts at a higher DPA than
instance N, and deleting allocations must proceed from the
highest-instance allocated decoder to the lowest.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784329399.1758207.16732038126938632700.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL specification enforces that endpoint decoders are committed in
hw instance id order. In preparation for adding dynamic DPA allocation,
record the hw instance id in endpoint decoders, and enforce allocations
to occur in hw instance id order.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784328827.1758207.9627538529944559954.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that the Device Physical Address (DPA) space of a CXL Memory
Expander is potentially partitioned into a volatile and persistent
portion. A decoder maps a Host Physical Address (HPA) range to a DPA
range and that translation depends on the value of all previous (lower
instance number) decoders before the current one.
In preparation for allowing dynamic provisioning of regions, decoders
need an ABI to indicate which DPA partition a decoder targets. This ABI
needs to be prepared for the possibility that some other agent committed
and locked a decoder that spans the partition boundary.
Add 'decoderX.Y/mode' to endpoint decoders that indicates which
partition 'ram' / 'pmem' the decoder targets, or 'mixed' if the decoder
currently spans the partition boundary.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603881967.551046.6007594190951596439.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for provisioning CXL regions, add accounting for the DPA
space consumed by existing regions / decoders. Recall, a CXL region is a
memory range comprised from one or more endpoint devices contributing a
mapping of their DPA into HPA space through a decoder.
Record the DPA ranges covered by committed decoders at initial probe of
endpoint ports relative to a per-device resource tree of the DPA type
(pmem or volatile-ram).
The cxl_dpa_rwsem semaphore is introduced to globally synchronize DPA
state across all endpoints and their decoders at once. The vast majority
of DPA operations are reads as region creation is expected to be as rare
as disk partitioning and volume creation. The device_lock() for this
synchronization is specifically avoided for concern of entangling with
sysfs attribute removal.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784327682.1758207.7914919426043855876.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Previously the target routing specifics of switch decoders and platform
CXL window resource tracking of root decoders were factored out of
'struct cxl_decoder'. While switch decoders translate from SPA to
downstream ports, endpoint decoders translate from SPA to DPA.
This patch, 3 of 3, adds a 'struct cxl_endpoint_decoder' that tracks an
endpoint-specific Device Physical Address (DPA) resource. For now this
just defines ->dpa_res, a follow-on patch will handle requesting DPA
resource ranges from a device-DPA resource tree.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784327088.1758207.15502834501671201192.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Previously the target routing specifics of switch decoders were factored
out of 'struct cxl_decoder' into 'struct cxl_switch_decoder'.
This patch, 2 of 3, adds a 'struct cxl_root_decoder' as a superset of a
switch decoder that also track the associated CXL window platform
resource.
Note that the reason the resource for a given root decoder needs to be
looked up after the fact (i.e. after cxl_parse_cfmws() and
add_cxl_resource()) is because add_cxl_resource() may have merged CXL
windows in order to keep them at the top of the resource tree / decode
hierarchy.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784326541.1758207.9915663937394448341.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently 'struct cxl_decoder' contains the superset of attributes
needed for all decoder types. Before more type-specific attributes are
added to the common definition, reorganize 'struct cxl_decoder' into type
specific objects.
This patch, the first of three, factors out a cxl_switch_decoder type.
See the new kdoc for what a 'struct cxl_switch_decoder' represents in a
CXL topology.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/165784325340.1758207.5064717153608954960.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The per-device CDAT data provides performance data that is relevant for
mapping which CXL devices can participate in which CXL ranges by QTG
(QoS Throttling Group) (per ECN: CXL 2.0 CEDT CFMWS & QTG_DSM) [1]. The
QTG association specified in the ECN is advisory. Until the
cxl_acpi driver grows support for invoking the QTG _DSM method the CDAT
data is only of interest to userspace that may need it for debug
purposes.
Search the DOE mailboxes available, query CDAT data, cache the data and
make it available via a sysfs binary attribute per endpoint at:
/sys/bus/cxl/devices/endpointX/CDAT
...similar to other ACPI-structured table data in
/sys/firmware/ACPI/tables. The CDAT is relative to 'struct cxl_port'
objects since switches in addition to endpoints can host a CDAT
instance. Switch CDAT support is not implemented.
This does not support table updates at runtime. It will always provide
whatever was there when first cached. It is also the case that table
updates are not expected outside of explicit DPA address map affecting
commands like Set Partition with the immediate flag set. Given that the
driver does not support Set Partition with the immediate flag set there
is no current need for update support.
Link: https://www.computeexpresslink.org/spec-landing [1]
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
[djbw: drop in-kernel parsing infra for now, and other minor fixups]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220719205249.566684-7-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Unless and until accelerator (type-2) drivers start registering for
CXL.mem mapping services from the CXL subsystem core, initialize idle
HDM decoders to the "expander" type. I.e. the only CXL devices using the
CXL core presently are those implementing the CXL 2.0 Type-3 memory
expander device class code that the cxl_pci driver claims.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-6-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region creation has need for checking host-bridge connectivity when
adding endpoints to regions. Record, at port creation time, the
host-bridge to provide a useful shortcut from any location in the
topology to the most-significant ancestor.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-4-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of testing DPA allocation mechanisms in the CXL core, the
cxl_test environment needs to support establishing and retrieving the
'pmem partition boundary.
Replace the platform_device_add_resources() method for delineating DPA
within an endpoint with an emulated DEV_SIZE amount of partitionable
capacity. Set DEV_SIZE such that an endpoint has enough capacity to
simultaneously participate in 8 distinct regions.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603887411.551046.13234212587991192347.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Dump the device-physical-address map for a CXL expander in /proc/iomem
style format. E.g.:
cat /sys/kernel/debug/cxl/mem1/dpamem
00000000-0fffffff : ram
10000000-1fffffff : pmem
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603885318.551046.8308248564880066726.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new cxl debugfs file, move 'cxl' directory
establishment and teardown to the core and let subsequent init routines
reference that setup.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603884654.551046.4962104601691723080.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region provisioning all device decoders need to be
enumerated since DPA allocations are calculated by summing the
capacities of all decoders in a set. I.e. the programming for decoder[N]
depends on the state of decoder[N-1], so skipping over decoders that
fail to initialize prevents accurate DPA accounting.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: reword changelog]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603879664.551046.6863805202478861026.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
To date the per-device-partition DPA range information has only been
used for enumeration purposes. In preparation for allocating regions
from available DPA capacity, convert those ranges into DPA-type resource
trees.
With resources and the new add_dpa_res() helper some open coded end
address calculations and debug prints can be cleaned.
The 'cxlds->pmem_res' and 'cxlds->ram_res' resources are child resources
of the total-device DPA space and they in turn will host DPA allocations
from cxl_endpoint_decoder instances (tracked by cxled->dpa_res).
Cc: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603878921.551046.8127845916514734142.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Interleave granularity and ways have CXL specification defined encodings.
Promote the conversion helpers to a common header, and use them to
replace other open-coded instances.
Force caller to consider the error case of the conversion similarly to
other conversion helpers like kstrto*().
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603875016.551046.17236943065932132355.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This helper was only used to identify the object type for lockdep
purposes. Now that lockdep support is done with explicit lock classes,
this helper can be dropped.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603874340.551046.15491766127759244728.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Root decoders are responsible for hosting the available host address
space for endpoints and regions to claim. The tracking of that available
capacity can be done in iomem_resource directly. As a result, root
decoders no longer need to host their own resource tree. The
current ->platform_res attribute was added prematurely.
Otherwise, ->hpa_range fills the role of conveying the current decode
range of the decoder.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603873619.551046.791596854070136223.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for growing a ->dpa_range attribute for endpoint
decoders, rename the current ->decoder_range to the more descriptive
->hpa_range.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603872867.551046.2170426227407458814.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Save a few characters and use the already initialized local variable.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603872171.551046.913207574344536475.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The upcoming region provisioning implementation has a need to
dereference port->uport during the port unregister flow. Specifically,
endpoint decoders need to be able to lookup their corresponding memdev
via port->uport.
The existing ->dead flag was added for cases where the core was
committed to tearing down the port, but needed to drop locks before
calling device_unregister(). Reuse that flag to indicate to
delete_endpoint() that it has no "release action" work to do as
unregister_port() will handle it.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603871491.551046.6682199179541194356.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The conversion of command sizes to unsigned missed a couple of checks
against variable size payloads during command validation, which made all
variable payload commands unconditionally fail. Add the checks back using
the new CXL_VARIABLE_PAYLOAD scheme.
Fixes: 26f89535a5bb ("cxl/mbox: Use type __u32 for mailbox payload sizes")
Cc: <stable@vger.kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Reported-by: Abhi Cs <abhi.cs@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20220628220109.633564-1-vishal.l.verma@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Save some characters and directly check decoder type rather than port
type. There's no need to check if the port is an endpoint port since, by
this point, cxl_endpoint_decoder_alloc() has a specified type.
Reviewed by: Adam Manzanares <a.manzanares@samsung.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL memory expanders that support the CXL 2.0 memory device class code
include an "HDM Decoder Capability" mechanism to supplant the "CXL DVSEC
Range" mechanism originally defined in CXL 1.1. Both mechanisms depend
on a "mem_enable" bit being set in configuration space before either
mechanism activates. When the HDM Decoder Capability is enabled the CXL
DVSEC Range settings are ignored.
Previously, the cxl_mem driver was relying on platform-firmware to set
"mem_enable". That is an invalid assumption as there is no requirement
that platform-firmware sets the bit before the driver sees a device,
especially in hot-plug scenarios. Additionally, ACPI-platforms that
support CXL 2.0 devices also support the ACPI CEDT (CXL Early Discovery
Table). That table outlines the platform permissible address ranges for
CXL operation. So, there is a need for the driver to set "mem_enable",
and there is information available to determine the validity of the CXL
DVSEC Ranges.
Arrange for the driver to optionally enable the HDM Decoder Capability
if "mem_enable" was not set by platform firmware, or the CXL DVSEC Range
configuration was invalid. Be careful to only disable memory decode if
the kernel was the one to enable it. In other words, if CXL is backing
all of kernel memory at boot the device needs to maintain "mem_enable"
and "HDM Decoder enable" all the way up to handoff back to platform
firmware (e.g. ACPI S5 state entry may require CXL memory to stay
active).
Fixes: 560f78559006 ("cxl/pci: Retrieve CXL DVSEC memory info")
Cc: Dan Carpenter <dan.carpenter@oracle.com>
[dan: fix early terminiation of range-allowed loop]
Cc: Ariel Sibley <ariel.sibley@microchip.com>
[ariel: Memory_size must be non-zero]
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165307136375.2499769.861793697156744166.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The port driver maps component registers for port operations. Reuse that
mapping for HDM Decoder Capability setup / enable. Move
devm_cxl_setup_hdm() before cxl_hdm_decode_init() and plumb @cxlhdm
through the hdm init helpers.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165291691712.1426646.14336397551571515480.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that nothing external to cxl_hdm_decode_init() considers
'struct cxl_endpoint_dvec_info' move it internal to
cxl_hdm_decode_init().
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165291690612.1426646.7866084245521113414.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for changing how the driver handles 'mem_enable' in the CXL
DVSEC control register. Merge the contents of cxl_hdm_decode_init() into
cxl_dvsec_ranges() and rename the combined function cxl_hdm_decode_init().
The possible cleanups and fixes that result from this merge are saved for a
follow-on change.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165291690027.1426646.10249756632415633752.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a device does not have mem_enable set then the current range
settings are moot. Skip the enumeration and cause cxl_hdm_decode_init()
to proceed directly to enable the HDM Decoder Capability.
Fixes: 560f78559006 ("cxl/pci: Retrieve CXL DVSEC memory info")
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165291689442.1426646.18012291761753694336.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for fixing the setting of the 'mem_enabled' bit in CXL
DVSEC Control register, move all CXL DVSEC range enumeration into the
same source file.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165291688886.1426646.15046138604010482084.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>