IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Tasks without a user-defined clamp value are considered not clamped
and by default their utilization can have any value in the
[0..SCHED_CAPACITY_SCALE] range.
Tasks with a user-defined clamp value are allowed to request any value
in that range, and the required clamp is unconditionally enforced.
However, a "System Management Software" could be interested in limiting
the range of clamp values allowed for all tasks.
Add a privileged interface to define a system default configuration via:
/proc/sys/kernel/sched_uclamp_util_{min,max}
which works as an unconditional clamp range restriction for all tasks.
With the default configuration, the full SCHED_CAPACITY_SCALE range of
values is allowed for each clamp index. Otherwise, the task-specific
clamp is capped by the corresponding system default value.
Do that by tracking, for each task, the "effective" clamp value and
bucket the task has been refcounted in at enqueue time. This
allows to lazy aggregate "requested" and "system default" values at
enqueue time and simplifies refcounting updates at dequeue time.
The cached bucket ids are used to avoid (relatively) more expensive
integer divisions every time a task is enqueued.
An active flag is used to report when the "effective" value is valid and
thus the task is actually refcounted in the corresponding rq's bucket.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task sleeps it removes its max utilization clamp from its CPU.
However, the blocked utilization on that CPU can be higher than the max
clamp value enforced while the task was running. This allows undesired
CPU frequency increases while a CPU is idle, for example, when another
CPU on the same frequency domain triggers a frequency update, since
schedutil can now see the full not clamped blocked utilization of the
idle CPU.
Fix this by using:
uclamp_rq_dec_id(p, rq, UCLAMP_MAX)
uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value)
to detect when a CPU has no more RUNNABLE clamped tasks and to flag this
condition.
Don't track any minimum utilization clamps since an idle CPU never
requires a minimum frequency. The decay of the blocked utilization is
good enough to reduce the CPU frequency.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because of bucketization, different task-specific clamp values are
tracked in the same bucket. For example, with 20% bucket size and
assuming to have:
Task1: util_min=25%
Task2: util_min=35%
both tasks will be refcounted in the [20..39]% bucket and always boosted
only up to 20% thus implementing a simple floor aggregation normally
used in histograms.
In systems with only few and well-defined clamp values, it would be
useful to track the exact clamp value required by a task whenever
possible. For example, if a system requires only 23% and 47% boost
values then it's possible to track the exact boost required by each
task using only 3 buckets of ~33% size each.
Introduce a mechanism to max aggregate the requested clamp values of
RUNNABLE tasks in the same bucket. Keep it simple by resetting the
bucket value to its base value only when a bucket becomes inactive.
Allow a limited and controlled overboosting margin for tasks recounted
in the same bucket.
In systems where the boost values are not known in advance, it is still
possible to control the maximum acceptable overboosting margin by tuning
the number of clamp groups. For example, 20 groups ensure a 5% maximum
overboost.
Remove the rq bucket initialization code since a correct bucket value
is now computed when a task is refcounted into a CPU's rq.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.
When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.
Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).
A task has:
task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).
A runqueue has:
rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).
The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.
Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.
Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The term 'weighted' is not needed since there is no 'unweighted' load.
Instead use the term 'runnable' to distinguish 'runnable' load
(avg.runnable_load_avg) used in load balance from load (avg.load_avg)
which is the sum of 'runnable' and 'blocked' load.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So that external modules can hook into them and extract the info they
need. Since these new tracepoints have no events associated with them
exporting these tracepoints make them useful for external modules to
perform testing and debugging. There's no other way otherwise to access
them.
BPF doesn't have infrastructure to access these bare tracepoints either.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-7-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new tracepoint allows us to track the changes in overutilized
status.
Overutilized status is associated with EAS. It indicates that the system
is in high performance state. EAS is disabled when the system is in this
state since there's not much energy savings while high performance tasks
are pushing the system to the limit and it's better to default to the
spreading behavior of the scheduler.
This tracepoint helps understanding and debugging the conditions under
which this happens.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new functions allow modules to access internal data structures of
unexported struct cfs_rq and struct rq to extract important information
from the tracepoints to be introduced in later patches.
While at it fix alphabetical order of struct declarations in sched.h
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the #ifdef CONFIG_SCHED_DEBUG.
Some of the tracepoints to be introduced in later patches need to access
this function. Hence make it always available since the tracepoints are
not protected by CONFIG_SCHED_DEBUG.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-2-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Statements in the loop's body and before it are identical.
Use do-while to not repeat it.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/43ffea6ee2152b90dedf962eac851609e4197218.1560256112.git.asml.silence@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update for
5.2. It contains all of the remaining GPLv2 and GPLv2+ updates that
were "easy" to determine by pattern matching. The ones after this are
going to be a bit more difficult and the people on the spdx list will be
discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud, always
nice to see in a diffstat.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXQyQYA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ymnGQCghETUBotn1p3hTjY56VEs6dGzpHMAnRT0m+lv
kbsjBGEJpLbMRB2krnaU
=RMcT
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull still more SPDX updates from Greg KH:
"Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update
for 5.2. It contains all of the remaining GPLv2 and GPLv2+ updates
that were "easy" to determine by pattern matching. The ones after this
are going to be a bit more difficult and the people on the spdx list
will be discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud,
always nice to see in a diffstat"
* tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx: (65 commits)
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 507
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 506
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 505
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 504
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 503
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 502
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 501
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 497
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 496
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 495
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 491
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 490
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 489
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 488
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 487
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 486
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 485
...
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is subject to the terms and conditions of version 2 of the
gnu general public license see the file copying in the main
directory of the linux distribution for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 5 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081200.872755311@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is released under the gpl v2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204655.103854853@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull networking fixes from David Miller:
"Lots of bug fixes here:
1) Out of bounds access in __bpf_skc_lookup, from Lorenz Bauer.
2) Fix rate reporting in cfg80211_calculate_bitrate_he(), from John
Crispin.
3) Use after free in psock backlog workqueue, from John Fastabend.
4) Fix source port matching in fdb peer flow rule of mlx5, from Raed
Salem.
5) Use atomic_inc_not_zero() in fl6_sock_lookup(), from Eric Dumazet.
6) Network header needs to be set for packet redirect in nfp, from
John Hurley.
7) Fix udp zerocopy refcnt, from Willem de Bruijn.
8) Don't assume linear buffers in vxlan and geneve error handlers,
from Stefano Brivio.
9) Fix TOS matching in mlxsw, from Jiri Pirko.
10) More SCTP cookie memory leak fixes, from Neil Horman.
11) Fix VLAN filtering in rtl8366, from Linus Walluij.
12) Various TCP SACK payload size and fragmentation memory limit fixes
from Eric Dumazet.
13) Use after free in pneigh_get_next(), also from Eric Dumazet.
14) LAPB control block leak fix from Jeremy Sowden"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (145 commits)
lapb: fixed leak of control-blocks.
tipc: purge deferredq list for each grp member in tipc_group_delete
ax25: fix inconsistent lock state in ax25_destroy_timer
neigh: fix use-after-free read in pneigh_get_next
tcp: fix compile error if !CONFIG_SYSCTL
hv_sock: Suppress bogus "may be used uninitialized" warnings
be2net: Fix number of Rx queues used for flow hashing
net: handle 802.1P vlan 0 packets properly
tcp: enforce tcp_min_snd_mss in tcp_mtu_probing()
tcp: add tcp_min_snd_mss sysctl
tcp: tcp_fragment() should apply sane memory limits
tcp: limit payload size of sacked skbs
Revert "net: phylink: set the autoneg state in phylink_phy_change"
bpf: fix nested bpf tracepoints with per-cpu data
bpf: Fix out of bounds memory access in bpf_sk_storage
vsock/virtio: set SOCK_DONE on peer shutdown
net: dsa: rtl8366: Fix up VLAN filtering
net: phylink: set the autoneg state in phylink_phy_change
net: add high_order_alloc_disable sysctl/static key
tcp: add tcp_tx_skb_cache sysctl
...
When a cfs_rq sleeps and returns its quota, we delay for 5ms before
waking any throttled cfs_rqs to coalesce with other cfs_rqs going to
sleep, as this has to be done outside of the rq lock we hold.
The current code waits for 5ms without any sleeps, instead of waiting
for 5ms from the first sleep, which can delay the unthrottle more than
we want. Switch this around so that we can't push this forward forever.
This requires an extra flag rather than using hrtimer_active, since we
need to start a new timer if the current one is in the process of
finishing.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jens reported that significant performance can be had on some block
workloads by special casing local wakeups. That is, wakeups on the
current task before it schedules out.
Given something like the normal wait pattern:
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (cond)
break;
schedule();
}
__set_current_state(TASK_RUNNING);
Any wakeup (on this CPU) after set_current_state() and before
schedule() would benefit from this.
Normal wakeups take p->pi_lock, which serializes wakeups to the same
task. By eliding that we gain concurrency on:
- ttwu_stat(); we already had concurrency on rq stats, this now also
brings it to task stats. -ENOCARE
- tracepoints; it is now possible to get multiple instances of
trace_sched_waking() (and possibly trace_sched_wakeup()) for the
same task. Tracers will have to learn to cope.
Furthermore, p->pi_lock is used by set_special_state(), to order
against TASK_RUNNING stores from other CPUs. But since this is
strictly CPU local, we don't need the lock, and set_special_state()'s
disabling of IRQs is sufficient.
After the normal wakeup takes p->pi_lock it issues
smp_mb__after_spinlock(), in order to ensure the woken task must
observe prior stores before we observe the p->state. If this is CPU
local, this will be satisfied with a compiler barrier, and we rely on
try_to_wake_up() being a funcation call, which implies such.
Since, when 'p == current', 'p->on_rq' must be true, the normal wakeup
would continue into the ttwu_remote() branch, which normally is
concerned with exactly this wakeup scenario, except from a remote CPU.
IOW we're waking a task that is still running. In this case, we can
trivially avoid taking rq->lock, all that's left from this is to set
p->state.
This then yields an extremely simple and fast path for 'p == current'.
Reported-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: gkohli@codeaurora.org
Cc: hch@lst.de
Cc: oleg@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
runnable_avg_yN_inv[] is only used in kernel/sched/pelt.c but was
included in several other places because they need other macros all
came from kernel/sched/sched-pelt.h which was generated by
Documentation/scheduler/sched-pelt. As the result, it causes compilation
a lot of warnings,
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
...
Silence it by appending the __maybe_unused attribute for it, so all
generated variables and macros can still be kept in the same file.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1559596304-31581-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cfs_rq_has_blocked() and others_have_blocked() are only used within
update_blocked_averages(). The !CONFIG_FAIR_GROUP_SCHED version of the
latter calls them within a #define CONFIG_NO_HZ_COMMON block, whereas
the CONFIG_FAIR_GROUP_SCHED one calls them unconditionnally.
As reported by Qian, the above leads to this warning in
!CONFIG_NO_HZ_COMMON configs:
kernel/sched/fair.c: In function 'update_blocked_averages':
kernel/sched/fair.c:7750:7: warning: variable 'done' set but not used [-Wunused-but-set-variable]
It wouldn't be wrong to keep cfs_rq_has_blocked() and
others_have_blocked() as they are, but since their only current use is
to figure out when we can stop calling update_blocked_averages() on
fully decayed NOHZ idle CPUs, we can give them a new definition for
!CONFIG_NO_HZ_COMMON.
Change the definition of cfs_rq_has_blocked() and
others_have_blocked() for !CONFIG_NO_HZ_COMMON so that the
NOHZ-specific blocks of update_blocked_averages() become no-ops and
the 'done' variable gets optimised out.
While at it, remove the CONFIG_NO_HZ_COMMON block from the
!CONFIG_FAIR_GROUP_SCHED definition of update_blocked_averages() by
using the newly-introduced update_blocked_load_status() helper.
No change in functionality intended.
[ Additions by Peter Zijlstra. ]
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190603115424.7951-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Non-inline io_schedule() was introduced in:
commit 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Keep in line with io_schedule_timeout(), otherwise "/proc/<pid>/wchan" will
report io_schedule() rather than its callers when waiting for IO.
Reported-by: Jilong Kou <koujilong@huawei.com>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Link: https://lkml.kernel.org/r/20190603091338.2695-1-gaoxiang25@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer fixes from Thomas Gleixner:
"A set of small fixes:
- Repair the ktime_get_coarse() functions so they actually deliver
what they are supposed to: tick granular time stamps. The current
code missed to add the accumulated nanoseconds part of the
timekeeper so the resulting granularity was 1 second.
- Prevent the tracer from infinitely recursing into time getter
functions in the arm architectured timer by marking these functions
notrace
- Fix a trivial compiler warning caused by wrong qualifier ordering"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Repair ktime_get_coarse*() granularity
clocksource/drivers/arm_arch_timer: Don't trace count reader functions
clocksource/drivers/timer-ti-dm: Change to new style declaration
Alexei Starovoitov says:
====================
pull-request: bpf 2019-06-15
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) fix stack layout of JITed x64 bpf code, from Alexei.
2) fix out of bounds memory access in bpf_sk_storage, from Arthur.
3) fix lpm trie walk, from Jonathan.
4) fix nested bpf_perf_event_output, from Matt.
5) and several other fixes.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
BPF_PROG_TYPE_RAW_TRACEPOINTs can be executed nested on the same CPU, as
they do not increment bpf_prog_active while executing.
This enables three levels of nesting, to support
- a kprobe or raw tp or perf event,
- another one of the above that irq context happens to call, and
- another one in nmi context
(at most one of which may be a kprobe or perf event).
Fixes: 20b9d7ac4852 ("bpf: avoid excessive stack usage for perf_sample_data")
Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- Out of range read of stack trace output
- Fix for NULL pointer dereference in trace_uprobe_create()
- Fix to a livepatching / ftrace permission race in the module code
- Fix for NULL pointer dereference in free_ftrace_func_mapper()
- A couple of build warning clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXQToxhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qusmAP4/mmJPgsDchnu5ui0wB8BByzJlsPn8
luXFDuqI4f34zgD+JCmeYbj5LLh98D9XkaaEgP4yz3yKsWeSdwWPCU0vTgo=
=M/+E
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
- Out of range read of stack trace output
- Fix for NULL pointer dereference in trace_uprobe_create()
- Fix to a livepatching / ftrace permission race in the module code
- Fix for NULL pointer dereference in free_ftrace_func_mapper()
- A couple of build warning clean ups
* tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix NULL pointer dereference in free_ftrace_func_mapper()
module: Fix livepatch/ftrace module text permissions race
tracing/uprobe: Fix obsolete comment on trace_uprobe_create()
tracing/uprobe: Fix NULL pointer dereference in trace_uprobe_create()
tracing: Make two symbols static
tracing: avoid build warning with HAVE_NOP_MCOUNT
tracing: Fix out-of-range read in trace_stack_print()
Pull cgroup fixes from Tejun Heo:
"This has an unusually high density of tricky fixes:
- task_get_css() could deadlock when it races against a dying cgroup.
- cgroup.procs didn't list thread group leaders with live threads.
This could mislead readers to think that a cgroup is empty when
it's not. Fixed by making PROCS iterator include dead tasks. I made
a couple mistakes making this change and this pull request contains
a couple follow-up patches.
- When cpusets run out of online cpus, it updates cpusmasks of member
tasks in bizarre ways. Joel improved the behavior significantly"
* 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cpuset: restore sanity to cpuset_cpus_allowed_fallback()
cgroup: Fix css_task_iter_advance_css_set() cset skip condition
cgroup: css_task_iter_skip()'d iterators must be advanced before accessed
cgroup: Include dying leaders with live threads in PROCS iterations
cgroup: Implement css_task_iter_skip()
cgroup: Call cgroup_release() before __exit_signal()
docs cgroups: add another example size for hugetlb
cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()
Convert proc_dointvec_minmax_bpf_stats() into a more generic
helper, since we are going to use jump labels more often.
Note that sysctl_bpf_stats_enabled is removed, since
it is no longer needed/used.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
.ndo_xdp_xmit() assumes it is called under RCU. For example virtio_net
uses RCU to detect it has setup the resources for tx. The assumption
accidentally broke when introducing bulk queue in devmap.
Fixes: 5d053f9da431 ("bpf: devmap prepare xdp frames for bulking")
Reported-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
dev_map_free() waits for flush_needed bitmap to be empty in order to
ensure all flush operations have completed before freeing its entries.
However the corresponding clear_bit() was called before using the
entries, so the entries could be used after free.
All access to the entries needs to be done before clearing the bit.
It seems commit a5e2da6e9787 ("bpf: netdev is never null in
__dev_map_flush") accidentally changed the clear_bit() and memory access
order.
Note that the problem happens only in __dev_map_flush(), not in
dev_map_flush_old(). dev_map_flush_old() is called only after nulling
out the corresponding netdev_map entry, so dev_map_free() never frees
the entry thus no such race happens there.
Fixes: a5e2da6e9787 ("bpf: netdev is never null in __dev_map_flush")
Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Commit 0597c49c69d5 ("tracing/uprobes: Use dyn_event framework for
uprobe events") cleaned up the usage of trace_uprobe_create(), and the
function has been no longer used for removing uprobe/uretprobe.
Link: http://lkml.kernel.org/r/20190614074026.8045-2-devel@etsukata.com
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Fix sparse warnings:
kernel/trace/trace.c:6927:24: warning:
symbol 'get_tracing_log_err' was not declared. Should it be static?
kernel/trace/trace.c:8196:15: warning:
symbol 'trace_instance_dir' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20190614153210.24424-1-yuehaibing@huawei.com
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Selecting HAVE_NOP_MCOUNT enables -mnop-mcount (if gcc supports it)
and sets CC_USING_NOP_MCOUNT. Reuse __is_defined (which is suitable for
testing CC_USING_* defines) to avoid conditional compilation and fix
the following gcc 9 warning on s390:
kernel/trace/ftrace.c:2514:1: warning: ‘ftrace_code_disable’ defined
but not used [-Wunused-function]
Link: http://lkml.kernel.org/r/patch.git-1a82d13f33ac.your-ad-here.call-01559732716-ext-6629@work.hours
Fixes: 2f4df0017baed ("tracing: Add -mcount-nop option support")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Jason reported that the coarse ktime based time getters advance only once
per second and not once per tick as advertised.
The code reads only the monotonic base time, which advances once per
second. The nanoseconds are accumulated on every tick in xtime_nsec up to
a second and the regular time getters take this nanoseconds offset into
account, but the ktime_get_coarse*() implementation fails to do so.
Add the accumulated xtime_nsec value to the monotonic base time to get the
proper per tick advancing coarse tinme.
Fixes: b9ff604cff11 ("timekeeping: Add ktime_get_coarse_with_offset")
Reported-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906132136280.1791@nanos.tec.linutronix.de
Logan noticed that devm_memremap_pages_release() kills the percpu_ref
drops all the page references that were acquired at init and then
immediately proceeds to unplug, arch_remove_memory(), the backing pages
for the pagemap. If for some reason device shutdown actually collides
with a busy / elevated-ref-count page then arch_remove_memory() should
be deferred until after that reference is dropped.
As it stands the "wait for last page ref drop" happens *after*
devm_memremap_pages_release() returns, which is obviously too late and
can lead to crashes.
Fix this situation by assigning the responsibility to wait for the
percpu_ref to go idle to devm_memremap_pages() with a new ->cleanup()
callback. Implement the new cleanup callback for all
devm_memremap_pages() users: pmem, devdax, hmm, and p2pdma.
Link: http://lkml.kernel.org/r/155727339156.292046.5432007428235387859.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 41e94a851304 ("add devm_memremap_pages")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new devm_release_action() facility to allow
devm_memremap_pages_release() to be manually triggered.
Link: http://lkml.kernel.org/r/155727337088.292046.5774214552136776763.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the case that a process is constrained by taskset(1) (i.e.
sched_setaffinity(2)) to a subset of available cpus, and all of those are
subsequently offlined, the scheduler will set tsk->cpus_allowed to
the current value of task_cs(tsk)->effective_cpus.
This is done via a call to do_set_cpus_allowed() in the context of
cpuset_cpus_allowed_fallback() made by the scheduler when this case is
detected. This is the only call made to cpuset_cpus_allowed_fallback()
in the latest mainline kernel.
However, this is not sane behavior.
I will demonstrate this on a system running the latest upstream kernel
with the following initial configuration:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,fffffff
Cpus_allowed_list: 0-63
(Where cpus 32-63 are provided via smt.)
If we limit our current shell process to cpu2 only and then offline it
and reonline it:
# taskset -p 4 $$
pid 2272's current affinity mask: ffffffffffffffff
pid 2272's new affinity mask: 4
# echo off > /sys/devices/system/cpu/cpu2/online
# dmesg | tail -3
[ 2195.866089] process 2272 (bash) no longer affine to cpu2
[ 2195.872700] IRQ 114: no longer affine to CPU2
[ 2195.879128] smpboot: CPU 2 is now offline
# echo on > /sys/devices/system/cpu/cpu2/online
# dmesg | tail -1
[ 2617.043572] smpboot: Booting Node 0 Processor 2 APIC 0x4
We see that our current process now has an affinity mask containing
every cpu available on the system _except_ the one we originally
constrained it to:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,fffffffb
Cpus_allowed_list: 0-1,3-63
This is not sane behavior, as the scheduler can now not only place the
process on previously forbidden cpus, it can't even schedule it on
the cpu it was originally constrained to!
Other cases result in even more exotic affinity masks. Take for instance
a process with an affinity mask containing only cpus provided by smt at
the moment that smt is toggled, in a configuration such as the following:
# taskset -p f000000000 $$
# grep -i cpu /proc/$$/status
Cpus_allowed: 000000f0,00000000
Cpus_allowed_list: 36-39
A double toggle of smt results in the following behavior:
# echo off > /sys/devices/system/cpu/smt/control
# echo on > /sys/devices/system/cpu/smt/control
# grep -i cpus /proc/$$/status
Cpus_allowed: ffffff00,ffffffff
Cpus_allowed_list: 0-31,40-63
This is even less sane than the previous case, as the new affinity mask
excludes all smt-provided cpus with ids less than those that were
previously in the affinity mask, as well as those that were actually in
the mask.
With this patch applied, both of these cases end in the following state:
# grep -i cpu /proc/$$/status
Cpus_allowed: ffffffff,ffffffff
Cpus_allowed_list: 0-63
The original policy is discarded. Though not ideal, it is the simplest way
to restore sanity to this fallback case without reinventing the cpuset
wheel that rolls down the kernel just fine in cgroup v2. A user who wishes
for the previous affinity mask to be restored in this fallback case can use
that mechanism instead.
This patch modifies scheduler behavior by instead resetting the mask to
task_cs(tsk)->cpus_allowed by default, and cpu_possible mask in legacy
mode. I tested the cases above on both modes.
Note that the scheduler uses this fallback mechanism if and only if
_every_ other valid avenue has been traveled, and it is the last resort
before calling BUG().
Suggested-by: Waiman Long <longman@redhat.com>
Suggested-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Acked-by: Phil Auld <pauld@redhat.com>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull ptrace fixes from Eric Biederman:
"This is just two very minor fixes:
- prevent ptrace from reading unitialized kernel memory found twice
by syzkaller
- restore a missing smp_rmb in ptrace_may_access and add comment tp
it so it is not removed by accident again.
Apologies for being a little slow about getting this to you, I am
still figuring out how to develop with a little baby in the house"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ptrace: restore smp_rmb() in __ptrace_may_access()
signal/ptrace: Don't leak unitialized kernel memory with PTRACE_PEEK_SIGINFO
Restore the read memory barrier in __ptrace_may_access() that was deleted
a couple years ago. Also add comments on this barrier and the one it pairs
with to explain why they're there (as far as I understand).
Fixes: bfedb589252c ("mm: Add a user_ns owner to mm_struct and fix ptrace permission checks")
Cc: stable@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
If the leftmost parent node of the tree has does not have a child
on the left side, then trie_get_next_key (and bpftool map dump) will
not look at the child on the right. This leads to the traversal
missing elements.
Lookup is not affected.
Update selftest to handle this case.
Reproducer:
bpftool map create /sys/fs/bpf/lpm type lpm_trie key 6 \
value 1 entries 256 name test_lpm flags 1
bpftool map update pinned /sys/fs/bpf/lpm key 8 0 0 0 0 0 value 1
bpftool map update pinned /sys/fs/bpf/lpm key 16 0 0 0 0 128 value 2
bpftool map dump pinned /sys/fs/bpf/lpm
Returns only 1 element. (2 expected)
Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE")
Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
While adding handling for dying task group leaders c03cd7738a83
("cgroup: Include dying leaders with live threads in PROCS
iterations") added an inverted cset skip condition to
css_task_iter_advance_css_set(). It should skip cset if it's
completely empty but was incorrectly testing for the inverse condition
for the dying_tasks list. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations")
Reported-by: syzbot+d4bba5ccd4f9a2a68681@syzkaller.appspotmail.com