5946 Commits

Author SHA1 Message Date
David Rientjes
05af2e104a mm, counters: remove task argument to sync_mm_rss() and __sync_task_rss_stat()
sync_mm_rss() can only be used for current to avoid race conditions in
iterating and clearing its per-task counters.  Remove the task argument
for it and its helper function, __sync_task_rss_stat(), to avoid thinking
it can be used safely for anything other than current.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
David Gibson
90481622d7 hugepages: fix use after free bug in "quota" handling
hugetlbfs_{get,put}_quota() are badly named.  They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.

Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed.  If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.

Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.

This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation.  It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from.  hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now.  The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.

subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.

Previous discussion of this bug found in:  "Fix refcounting in hugetlbfs
quota handling.". See:  https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1

v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.

Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Bob Liu
ef6942224a ksm: cleanup: introduce find_mergeable_vma()
There are multiple places which perform the same check.  Add a new
find_mergeable_vma() to handle this.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Mel Gorman
cc9a6c8776 cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
David Rientjes
e845e19936 mm, memcg: pass charge order to oom killer
The oom killer typically displays the allocation order at the time of oom
as a part of its diangostic messages (for global, cpuset, and mempolicy
ooms).

The memory controller may also pass the charge order to the oom killer so
it can emit the same information.  This is useful in determining how large
the memory allocation is that triggered the oom killer.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Copot Alexandru
c7cfa37b73 mm/vmscan.c: fix spelling error
s/noticable/noticeable/

Signed-off-by: Copot Alexandru <alex.mihai.c@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Andi Kleen
9a3c531df9 mm: update stale lock ordering comment for memory-failure.c
When i_mmap_lock changed to a mutex the locking order in memory failure
was changed to take the sleeping lock first.  But the big fat mm lock
ordering comment (BFMLO) wasn't updated.  Do this here.

Pointed out by Andrew.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Fengguang Wu
47a133339c mm: use global_dirty_limit in throttle_vm_writeout()
When starting a memory hog task, a desktop box w/o swap is found to go
unresponsive for a long time.  It's solely caused by lots of congestion
waits in throttle_vm_writeout():

 gnome-system-mo-4201 553.073384: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
 gnome-system-mo-4201 553.073386: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000
           gtali-4237 553.080377: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
           gtali-4237 553.080378: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000
            Xorg-3483 553.103375: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
            Xorg-3483 553.103377: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000

The root cause is, the dirty threshold is knocked down a lot by the memory
hog task.  Fixed by using global_dirty_limit which decreases gradually on
such events and can guarantee we stay above (the also decreasing) nr_dirty
in the progress of following down to the new dirty threshold.

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Fengguang Wu
1010bb1b80 mm: don't set __GFP_WRITE on ramfs/sysfs writes
There is not much point in skipping zones during allocation based on the
dirty usage which they'll never contribute to.  And we'd like to avoid
page reclaim waits when writing to ramfs/sysfs etc.

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Nishanth Aravamudan
f5bf18fa22 bootmem/sparsemem: remove limit constraint in alloc_bootmem_section
While testing AMS (Active Memory Sharing) / CMO (Cooperative Memory
Overcommit) on powerpc, we tripped the following:

  kernel BUG at mm/bootmem.c:483!
  cpu 0x0: Vector: 700 (Program Check) at [c000000000c03940]
      pc: c000000000a62bd8: .alloc_bootmem_core+0x90/0x39c
      lr: c000000000a64bcc: .sparse_early_usemaps_alloc_node+0x84/0x29c
      sp: c000000000c03bc0
     msr: 8000000000021032
    current = 0xc000000000b0cce0
    paca    = 0xc000000001d80000
      pid   = 0, comm = swapper
  kernel BUG at mm/bootmem.c:483!
  enter ? for help
  [c000000000c03c80] c000000000a64bcc
  .sparse_early_usemaps_alloc_node+0x84/0x29c
  [c000000000c03d50] c000000000a64f10 .sparse_init+0x12c/0x28c
  [c000000000c03e20] c000000000a474f4 .setup_arch+0x20c/0x294
  [c000000000c03ee0] c000000000a4079c .start_kernel+0xb4/0x460
  [c000000000c03f90] c000000000009670 .start_here_common+0x1c/0x2c

This is

        BUG_ON(limit && goal + size > limit);

and after some debugging, it seems that

	goal = 0x7ffff000000
	limit = 0x80000000000

and sparse_early_usemaps_alloc_node ->
sparse_early_usemaps_alloc_pgdat_section calls

	return alloc_bootmem_section(usemap_size() * count, section_nr);

This is on a system with 8TB available via the AMS pool, and as a quirk
of AMS in firmware, all of that memory shows up in node 0.  So, we end
up with an allocation that will fail the goal/limit constraints.

In theory, we could "fall-back" to alloc_bootmem_node() in
sparse_early_usemaps_alloc_node(), but since we actually have HOTREMOVE
defined, we'll BUG_ON() instead.  A simple solution appears to be to
unconditionally remove the limit condition in alloc_bootmem_section,
meaning allocations are allowed to cross section boundaries (necessary
for systems of this size).

Johannes Weiner pointed out that if alloc_bootmem_section() no longer
guarantees section-locality, we need check_usemap_section_nr() to print
possible cross-dependencies between node descriptors and the usemaps
allocated through it.  That makes the two loops in
sparse_early_usemaps_alloc_node() identical, so re-factor the code a
bit.

[akpm@linux-foundation.org: code simplification]
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Anton Blanchard <anton@au1.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>	[3.3.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Konstantin Khlebnikov
f0cb3c76ae mm: drain percpu lru add/rotate page-vectors on cpu hot-unplug
This cpu hotplug hook was accidentally removed in commit 00a62ce91e55
("mm: fix Committed_AS underflow on large NR_CPUS environment")

The visible effect of this accident: some pages are borrowed in per-cpu
page-vectors.  Truncate can deal with it, but these pages cannot be
reused while this cpu is offline.  So this is like a temporary memory
leak.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Christoph Lameter
3268c63ede mm: fix move/migrate_pages() race on task struct
Migration functions perform the rcu_read_unlock too early.  As a result
the task pointed to may change from under us.  This can result in an oops,
as reported by Dave Hansen in https://lkml.org/lkml/2012/2/23/302.

The following patch extend the period of the rcu_read_lock until after the
permissions checks are done.  We also take a refcount so that the task
reference is stable when calling security check functions and performing
cpuset node validation (which takes a mutex).

The refcount is dropped before actual page migration occurs so there is no
change to the refcounts held during page migration.

Also move the determination of the mm of the task struct to immediately
before the do_migrate*() calls so that it is clear that we switch from
handling the task during permission checks to the mm for the actual
migration.  Since the determination is only done once and we then no
longer use the task_struct we can be sure that we operate on a specific
address space that will not change from under us.

[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Dean Nelson
385de35722 thp: allow a hwpoisoned head page to be put back to LRU
Andrea Arcangeli pointed out to me that a check in __memory_failure()
which was intended to prevent THP tail pages from being checked for the
absence of the PG_lru flag (something that is always the case), was also
preventing THP head pages from being checked.

A THP head page could actually benefit from the call to shake_page() by
ending up being put back to a LRU, provided it had been waiting in a
pagevec array.

Andrea suggested that the "!PageTransCompound(p)" in the if-statement
should be replaced by a "!PageTransTail(p)", thus allowing THP head pages
to be checked and possibly shaken.

Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: Jin Dongming <jin.dongming@np.css.fujitsu.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Jarkko Sakkinen
6d9d88d07e tmpfs: security xattr setting on inode creation
Adds to generic xattr support introduced in Linux 3.0 by implementing
initxattrs callback.  This enables consulting of security attributes from
LSM and EVM when inode is created.

[hughd@google.com: moved under CONFIG_TMPFS_XATTR, with memcpy in shmem_xattr_alloc]
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@intel.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
David Rientjes
08ab9b10d4 mm, oom: force oom kill on sysrq+f
The oom killer chooses not to kill a thread if:

 - an eligible thread has already been oom killed and has yet to exit,
   and

 - an eligible thread is exiting but has yet to free all its memory and
   is not the thread attempting to currently allocate memory.

SysRq+F manually invokes the global oom killer to kill a memory-hogging
task.  This is normally done as a last resort to free memory when no
progress is being made or to test the oom killer itself.

For both uses, we always want to kill a thread and never defer.  This
patch causes SysRq+F to always kill an eligible thread and can be used to
force a kill even if another oom killed thread has failed to exit.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Siddhesh Poyarekar
b76437579d procfs: mark thread stack correctly in proc/<pid>/maps
Stack for a new thread is mapped by userspace code and passed via
sys_clone.  This memory is currently seen as anonymous in
/proc/<pid>/maps, which makes it difficult to ascertain which mappings
are being used for thread stacks.  This patch uses the individual task
stack pointers to determine which vmas are actually thread stacks.

For a multithreaded program like the following:

	#include <pthread.h>

	void *thread_main(void *foo)
	{
		while(1);
	}

	int main()
	{
		pthread_t t;
		pthread_create(&t, NULL, thread_main, NULL);
		pthread_join(t, NULL);
	}

proc/PID/maps looks like the following:

    00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
    7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
    7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0
    7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
    7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
    7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
    7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
    7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
    7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
    7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
    ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]

Here, one could guess that 7f8a44492000-7f8a44c92000 is a stack since
the earlier vma that has no permissions (7f8a44e3d000-7f8a4503d000) but
that is not always a reliable way to find out which vma is a thread
stack.  Also, /proc/PID/maps and /proc/PID/task/TID/maps has the same
content.

With this patch in place, /proc/PID/task/TID/maps are treated as 'maps
as the task would see it' and hence, only the vma that that task uses as
stack is marked as [stack].  All other 'stack' vmas are marked as
anonymous memory.  /proc/PID/maps acts as a thread group level view,
where all thread stack vmas are marked as [stack:TID] where TID is the
process ID of the task that uses that vma as stack, while the process
stack is marked as [stack].

So /proc/PID/maps will look like this:

    00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
    7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
    7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack:1442]
    7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
    7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
    7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
    7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
    7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
    7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
    7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
    ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]

Thus marking all vmas that are used as stacks by the threads in the
thread group along with the process stack.  The task level maps will
however like this:

    00400000-00401000 r-xp 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    00600000-00601000 rw-p 00000000 fd:0a 3671804                            /home/siddhesh/a.out
    019ef000-01a10000 rw-p 00000000 00:00 0                                  [heap]
    7f8a44491000-7f8a44492000 ---p 00000000 00:00 0
    7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack]
    7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482                    /lib64/libc-2.14.90.so
    7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0
    7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938                    /lib64/libpthread-2.14.90.so
    7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0
    7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0
    7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0
    7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348                    /lib64/ld-2.14.90.so
    7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0
    7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0
    7fff627ff000-7fff62800000 r-xp 00000000 00:00 0                          [vdso]
    ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]

where only the vma that is being used as a stack by *that* task is
marked as [stack].

Analogous changes have been made to /proc/PID/smaps,
/proc/PID/numa_maps, /proc/PID/task/TID/smaps and
/proc/PID/task/TID/numa_maps. Relevant snippets from smaps and
numa_maps:

    [siddhesh@localhost ~ ]$ pgrep a.out
    1441
    [siddhesh@localhost ~ ]$ cat /proc/1441/smaps | grep "\[stack"
    7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack:1442]
    7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
    [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/smaps | grep "\[stack"
    7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0                          [stack]
    [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/smaps | grep "\[stack"
    7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0                          [stack]
    [siddhesh@localhost ~ ]$ cat /proc/1441/numa_maps | grep "stack"
    7f8a44492000 default stack:1442 anon=2 dirty=2 N0=2
    7fff6273a000 default stack anon=3 dirty=3 N0=3
    [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/numa_maps | grep "stack"
    7f8a44492000 default stack anon=2 dirty=2 N0=2
    [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/numa_maps | grep "stack"
    7fff6273a000 default stack anon=3 dirty=3 N0=3

[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Siddhesh Poyarekar <siddhesh.poyarekar@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Jamie Lokier <jamie@shareable.org>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Hillf Danton
9e81130b7c mm: hugetlb: bail out unmapping after serving reference page
When unmapping a given VM range, we could bail out if a reference page is
supplied and is unmapped, which is a minor optimization.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Hillf Danton
d563c0501b vmscan: handle isolated pages with lru lock released
When shrinking inactive lru list, isolated pages are queued on locally
private list, so the lock-hold time could be reduced if pages are counted
without lock protection.

To achieve that, firstly updating reclaim stat is delayed until the
putback stage, after reacquiring the lru lock.

Secondly, operations related to vm and zone stats are now proteced with
preemption disabled as they are per-cpu operations.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Kautuk Consul
6583a84304 rmap: anon_vma_prepare: Reduce code duplication by calling anon_vma_chain_link
Reduce code duplication by calling anon_vma_chain_link() from
anon_vma_prepare().

Also move anon_vmal_chain_link() to a more suitable location in the file.

Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: KAMEZWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Hillf Danton
28073b02bf mm: hugetlb: defer freeing pages when gathering surplus pages
When gathering surplus pages, the number of needed pages is recomputed
after reacquiring hugetlb lock to catch changes in resv_huge_pages and
free_huge_pages.  Plus it is recomputed with the number of newly allocated
pages involved.

Thus freeing pages can be deferred a bit to see if the final page request
is satisfied, though pages could be allocated less than needed.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Mel Gorman
cc715d99e5 mm: vmscan: forcibly scan highmem if there are too many buffer_heads pinning highmem
Stuart Foster reported on bugzilla that copying large amounts of data
from NTFS caused an OOM kill on 32-bit X86 with 16G of memory.  Andrew
Morton correctly identified that the problem was NTFS was using 512
blocks meaning each page had 8 buffer_heads in low memory pinning it.

In the past, direct reclaim used to scan highmem even if the allocating
process did not specify __GFP_HIGHMEM but not any more.  kswapd no longer
will reclaim from zones that are above the high watermark.  The intention
in both cases was to minimise unnecessary reclaim.  The downside is on
machines with large amounts of highmem that lowmem can be fully consumed
by buffer_heads with nothing trying to free them.

The following patch is based on a suggestion by Andrew Morton to extend
the buffer_heads_over_limit case to force kswapd and direct reclaim to
scan the highmem zone regardless of the allocation request or watermarks.

Addresses https://bugzilla.kernel.org/show_bug.cgi?id=42578

[hughd@google.com: move buffer_heads_over_limit check up]
[akpm@linux-foundation.org: buffer_heads_over_limit is unlikely]
Reported-by: Stuart Foster <smf.linux@ntlworld.com>
Tested-by: Stuart Foster <smf.linux@ntlworld.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Konstantin Khlebnikov
ce1744f4ed mm: replace PAGE_MIGRATION with IS_ENABLED(CONFIG_MIGRATION)
Since commit 2a11c8ea20bf ("kconfig: Introduce IS_ENABLED(),
IS_BUILTIN() and IS_MODULE()") there is a generic grep-friendly method
for checking config options in C expressions.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Naoya Horiguchi
025c5b2451 thp: optimize away unnecessary page table locking
Currently when we check if we can handle thp as it is or we need to split
it into regular sized pages, we hold page table lock prior to check
whether a given pmd is mapping thp or not.  Because of this, when it's not
"huge pmd" we suffer from unnecessary lock/unlock overhead.  To remove it,
this patch introduces a optimized check function and replace several
similar logics with it.

[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:57 -07:00
Xiao Guangrong
b716ad953a mm: search from free_area_cache for the bigger size
If the required size is bigger than cached_hole_size it is better to
search from free_area_cache - it is easier to get a free region,
specifically for the 64 bit process whose address space is large enough

Do it just as hugetlb_get_unmapped_area_topdown() in arch/x86/mm/hugetlbpage.c

Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Xiao Guangrong
f44d21985e mm: do not reset cached_hole_size when vma is unmapped
In the current code, cached_hole_size is set to the maximum value if the
unmapped vma is less that free_area_cache so the next search will search
from the base address.

Actually, we can keep cached_hole_size so that if the next required size
is more than cached_hole_size, it can search from free_area_cache.

Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Dan Carpenter
aad6ec3777 mm: compaction: make compact_control order signed
"order" is -1 when compacting via /proc/sys/vm/compact_memory.  Making
it unsigned causes a bug in __compact_pgdat() when we test:

	if (cc->order < 0 || !compaction_deferred(zone, cc->order))
		compact_zone(zone, cc);

[akpm@linux-foundation.org: make __compact_pgdat()'s comparison match other code sites]
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Hugh Dickins
8575ec29f6 compact_pgdat: workaround lockdep warning in kswapd
I get this lockdep warning from swapping load on linux-next, due to
"vmscan: kswapd carefully call compaction".

=================================
[ INFO: inconsistent lock state ]
3.3.0-rc2-next-20120201 #5 Not tainted
---------------------------------
inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
kswapd0/28 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (pcpu_alloc_mutex){+.+.?.}, at: [<ffffffff810d6684>] pcpu_alloc+0x67/0x325
{RECLAIM_FS-ON-W} state was registered at:
  [<ffffffff81099b75>] mark_held_locks+0xd7/0x103
  [<ffffffff8109a13c>] lockdep_trace_alloc+0x85/0x9e
  [<ffffffff810f6bdc>] __kmalloc+0x6c/0x14b
  [<ffffffff810d57fd>] pcpu_mem_zalloc+0x59/0x62
  [<ffffffff810d5d16>] pcpu_extend_area_map+0x26/0xb1
  [<ffffffff810d679f>] pcpu_alloc+0x182/0x325
  [<ffffffff810d694d>] __alloc_percpu+0xb/0xd
  [<ffffffff8142ebfd>] snmp_mib_init+0x1e/0x2e
  [<ffffffff8185cd8d>] ipv4_mib_init_net+0x7a/0x184
  [<ffffffff813dc963>] ops_init.clone.0+0x6b/0x73
  [<ffffffff813dc9cc>] register_pernet_operations+0x61/0xa0
  [<ffffffff813dca8e>] register_pernet_subsys+0x29/0x42
  [<ffffffff8185d044>] inet_init+0x1ad/0x252
  [<ffffffff810002e3>] do_one_initcall+0x7a/0x12f
  [<ffffffff81832bc5>] kernel_init+0x9d/0x11e
  [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10
irq event stamp: 656613
hardirqs last  enabled at (656613): [<ffffffff814e0ddc>] __mutex_unlock_slowpath+0x104/0x128
hardirqs last disabled at (656612): [<ffffffff814e0d34>] __mutex_unlock_slowpath+0x5c/0x128
softirqs last  enabled at (655568): [<ffffffff8105b4a5>] __do_softirq+0x120/0x136
softirqs last disabled at (654757): [<ffffffff814e52dc>] call_softirq+0x1c/0x30

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(pcpu_alloc_mutex);
  <Interrupt>
    lock(pcpu_alloc_mutex);

 *** DEADLOCK ***

no locks held by kswapd0/28.

stack backtrace:
Pid: 28, comm: kswapd0 Not tainted 3.3.0-rc2-next-20120201 #5
Call Trace:
 [<ffffffff810981f4>] print_usage_bug+0x1bf/0x1d0
 [<ffffffff81096c3e>] ? print_irq_inversion_bug+0x1d9/0x1d9
 [<ffffffff810982c0>] mark_lock_irq+0xbb/0x22e
 [<ffffffff810c5399>] ? free_hot_cold_page+0x13d/0x14f
 [<ffffffff81098684>] mark_lock+0x251/0x331
 [<ffffffff81098893>] mark_irqflags+0x12f/0x141
 [<ffffffff81098e32>] __lock_acquire+0x58d/0x753
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff81099433>] lock_acquire+0x54/0x6a
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff8107a5b8>] ? add_preempt_count+0xa9/0xae
 [<ffffffff814e0a21>] mutex_lock_nested+0x5e/0x315
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff81098f81>] ? __lock_acquire+0x6dc/0x753
 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c
 [<ffffffff810d6684>] pcpu_alloc+0x67/0x325
 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c
 [<ffffffff810d694d>] __alloc_percpu+0xb/0xd
 [<ffffffff8106c35e>] schedule_on_each_cpu+0x23/0x110
 [<ffffffff810c9fcb>] lru_add_drain_all+0x10/0x12
 [<ffffffff810f126f>] __compact_pgdat+0x20/0x182
 [<ffffffff810f15c2>] compact_pgdat+0x27/0x29
 [<ffffffff810c306b>] ? zone_watermark_ok+0x1a/0x1c
 [<ffffffff810cdf6f>] balance_pgdat+0x732/0x751
 [<ffffffff810ce0ed>] kswapd+0x15f/0x178
 [<ffffffff810cdf8e>] ? balance_pgdat+0x751/0x751
 [<ffffffff8106fd11>] kthread+0x84/0x8c
 [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10
 [<ffffffff810787ed>] ? finish_task_switch+0x85/0xea
 [<ffffffff814e3861>] ? retint_restore_args+0xe/0xe
 [<ffffffff8106fc8d>] ? __init_kthread_worker+0x56/0x56
 [<ffffffff814e51e0>] ? gs_change+0xb/0xb

The RECLAIM_FS notations indicate that it's doing the GFP_FS checking that
Nick hacked into lockdep a while back: I think we're intended to read that
"<Interrupt>" in the DEADLOCK scenario as "<Direct reclaim>".

I'm hazy, I have not reached any conclusion as to whether it's right to
complain or not; but I believe it's uneasy about kswapd now doing the
mutex_lock(&pcpu_alloc_mutex) which lru_add_drain_all() entails.  Nor have
I reached any conclusion as to whether it's important for kswapd to do
that draining or not.

But so as not to get blocked on this, with lockdep disabled from giving
further reports, here's a patch which removes the lru_add_drain_all() from
kswapd's callpath (and calls it only once from compact_nodes(), instead of
once per node).

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Rik van Riel
aff622495c vmscan: only defer compaction for failed order and higher
Currently a failed order-9 (transparent hugepage) compaction can lead to
memory compaction being temporarily disabled for a memory zone.  Even if
we only need compaction for an order 2 allocation, eg.  for jumbo frames
networking.

The fix is relatively straightforward: keep track of the highest order at
which compaction is succeeding, and only defer compaction for orders at
which compaction is failing.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Rik van Riel
7be62de99a vmscan: kswapd carefully call compaction
With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous
free pages, even when it is woken for a higher order request.

This could be bad for eg.  jumbo frame network allocations, which are done
from interrupt context and cannot compact memory themselves.  Higher than
before allocation failure rates in the network receive path have been
observed in kernels with compaction enabled.

Teach kswapd to defragment the memory zones in a node, but only if
required and compaction is not deferred in a zone.

[akpm@linux-foundation.org: reduce scope of zones_need_compaction]
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Rik van Riel
fe2c2a1066 vmscan: reclaim at order 0 when compaction is enabled
When built with CONFIG_COMPACTION, kswapd should not try to free
contiguous pages, because it is not trying hard enough to have a real
chance at being successful, but still disrupts the LRU enough to break
other things.

Do not do higher order page isolation unless we really are in lumpy
reclaim mode.

Stop reclaiming pages once we have enough free pages that compaction can
deal with things, and we hit the normal order 0 watermarks used by kswapd.

Also remove a line of code that increments balanced right before exiting
the function.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Rik van Riel
67f96aa252 mm: make swapin readahead skip over holes
Ever since abandoning the virtual scan of processes, for scalability
reasons, swap space has been a little more fragmented than before.  This
can lead to the situation where a large memory user is killed, swap space
ends up full of "holes" and swapin readahead is totally ineffective.

On my home system, after killing a leaky firefox it took over an hour to
page just under 2GB of memory back in, slowing the virtual machines down
to a crawl.

This patch makes swapin readahead simply skip over holes, instead of
stopping at them.  This allows the system to swap things back in at rates
of several MB/second, instead of a few hundred kB/second.

The checks done in valid_swaphandles are already done in
read_swap_cache_async as well, allowing us to remove a fair amount of
code.

[akpm@linux-foundation.org: fix it for page_cluster >= 32]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Adrian Drzewiecki <z@drze.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Hillf Danton
c38446cc65 mm: vmscan: fix misused nr_reclaimed in shrink_mem_cgroup_zone()
The value of nr_reclaimed is the number of pages reclaimed in the current
round of the loop, whereas nr_to_reclaim should be compared with the
number of pages reclaimed in all rounds.

In each round of the loop, reclaimed pages are cut off from the reclaim
goal, and the loop stops once the goal achieved.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Konstantin Khlebnikov
69c978232a mm: make get_mm_counter static-inline
Make get_mm_counter() always static inline, it is simple enough for that.
And remove unused set_mm_counter()

bloat-o-meter:

add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242)
function                                     old     new   delta
try_to_unmap_one                             886     952     +66
sys_remap_file_pages                        1214    1230     +16
dup_mm                                      1684    1700     +16
do_exit                                     2277    2278      +1
zap_page_range                               208     205      -3
unmap_region                                 304     296      -8
static.oom_kill_process                      554     546      -8
try_to_unmap_file                           1716    1700     -16
getrusage                                    925     909     -16
flush_old_exec                              1704    1688     -16
static.dump_header                           416     390     -26
acct_update_integrals                        218     187     -31
do_task_stat                                2986    2954     -32
get_mm_counter                                34       -     -34
xacct_add_tsk                                371     334     -37
task_statm                                   172     118     -54
task_mem                                     383     323     -60

try_to_unmap_one() grows because update_hiwater_rss() now completely inline.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
Hillf Danton
6131728914 mm/vmscan.c: cleanup with s/reclaim_mode/isolate_mode/
With tons of reclaim_mode (defined as one field of struct scan_control)
already in the file, it is clearer to rename the local reclaim_mode when
setting up the isolation mode.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
David Rientjes
dc3f21eade mm, oom: introduce independent oom killer ratelimit state
printk_ratelimit() uses the global ratelimit state for all printks.  The
oom killer should not be subjected to this state just because another
subsystem or driver may be flooding the kernel log.

This patch introduces printk ratelimiting specifically for the oom killer.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
David Rientjes
8447d950e7 mm, oom: do not emit oom killer warning if chosen thread is already exiting
If a thread is chosen for oom kill and is already PF_EXITING, then the oom
killer simply sets TIF_MEMDIE and returns.  This allows the thread to have
access to memory reserves so that it may quickly exit.  This logic is
preceeded with a comment saying there's no need to alarm the sysadmin.
This patch adds truth to that statement.

There's no need to emit any warning about the oom condition if the thread
is already exiting since it will not be killed.  In this condition, just
silently return the oom killer since its only giving access to memory
reserves and is otherwise a no-op.

Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
David Rientjes
647f2bdf4a mm, oom: fold oom_kill_task() into oom_kill_process()
oom_kill_task() has a single caller, so fold it into its parent function,
oom_kill_process().  Slightly reduces the number of lines in the oom
killer.

Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
David Rientjes
2a1c9b1fc0 mm, oom: avoid looping when chosen thread detaches its mm
oom_kill_task() returns non-zero iff the chosen process does not have any
threads with an attached ->mm.

In such a case, it's better to just return to the page allocator and retry
the allocation because memory could have been freed in the interim and the
oom condition may no longer exist.  It's unnecessary to loop in the oom
killer and find another thread to kill.

This allows both oom_kill_task() and oom_kill_process() to be converted to
void functions.  If the oom condition persists, the oom killer will be
recalled.

Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:55 -07:00
Andrea Arcangeli
1a5a9906d4 mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode.  In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.

It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds).  The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().

Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously.  This is
probably why it wasn't common to run into this.  For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.

Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).

The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value.  Even if the real pmd is changing under the
value we hold on the stack, we don't care.  If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).

All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd.  The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds).  I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).

		if (pmd_trans_huge(*pmd)) {
			if (next-addr != HPAGE_PMD_SIZE) {
				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
				split_huge_page_pmd(vma->vm_mm, pmd);
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(pmd))

Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.

The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.

====== start quote =======
      mapcount 0 page_mapcount 1
      kernel BUG at mm/huge_memory.c:1384!

    At some point prior to the panic, a "bad pmd ..." message similar to the
    following is logged on the console:

      mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).

    The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
    the page's PMD table entry.

        143 void pmd_clear_bad(pmd_t *pmd)
        144 {
    ->  145         pmd_ERROR(*pmd);
        146         pmd_clear(pmd);
        147 }

    After the PMD table entry has been cleared, there is an inconsistency
    between the actual number of PMD table entries that are mapping the page
    and the page's map count (_mapcount field in struct page). When the page
    is subsequently reclaimed, __split_huge_page() detects this inconsistency.

       1381         if (mapcount != page_mapcount(page))
       1382                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
       1383                        mapcount, page_mapcount(page));
    -> 1384         BUG_ON(mapcount != page_mapcount(page));

    The root cause of the problem is a race of two threads in a multithreaded
    process. Thread B incurs a page fault on a virtual address that has never
    been accessed (PMD entry is zero) while Thread A is executing an madvise()
    system call on a virtual address within the same 2 MB (huge page) range.

               virtual address space
              .---------------------.
              |                     |
              |                     |
            .-|---------------------|
            | |                     |
            | |                     |<-- B(fault)
            | |                     |
      2 MB  | |/////////////////////|-.
      huge <  |/////////////////////|  > A(range)
      page  | |/////////////////////|-'
            | |                     |
            | |                     |
            '-|---------------------|
              |                     |
              |                     |
              '---------------------'

    - Thread A is executing an madvise(..., MADV_DONTNEED) system call
      on the virtual address range "A(range)" shown in the picture.

    sys_madvise
      // Acquire the semaphore in shared mode.
      down_read(&current->mm->mmap_sem)
      ...
      madvise_vma
        switch (behavior)
        case MADV_DONTNEED:
             madvise_dontneed
               zap_page_range
                 unmap_vmas
                   unmap_page_range
                     zap_pud_range
                       zap_pmd_range
                         //
                         // Assume that this huge page has never been accessed.
                         // I.e. content of the PMD entry is zero (not mapped).
                         //
                         if (pmd_trans_huge(*pmd)) {
                             // We don't get here due to the above assumption.
                         }
                         //
                         // Assume that Thread B incurred a page fault and
             .---------> // sneaks in here as shown below.
             |           //
             |           if (pmd_none_or_clear_bad(pmd))
             |               {
             |                 if (unlikely(pmd_bad(*pmd)))
             |                     pmd_clear_bad
             |                     {
             |                       pmd_ERROR
             |                         // Log "bad pmd ..." message here.
             |                       pmd_clear
             |                         // Clear the page's PMD entry.
             |                         // Thread B incremented the map count
             |                         // in page_add_new_anon_rmap(), but
             |                         // now the page is no longer mapped
             |                         // by a PMD entry (-> inconsistency).
             |                     }
             |               }
             |
             v
    - Thread B is handling a page fault on virtual address "B(fault)" shown
      in the picture.

    ...
    do_page_fault
      __do_page_fault
        // Acquire the semaphore in shared mode.
        down_read_trylock(&mm->mmap_sem)
        ...
        handle_mm_fault
          if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
              // We get here due to the above assumption (PMD entry is zero).
              do_huge_pmd_anonymous_page
                alloc_hugepage_vma
                  // Allocate a new transparent huge page here.
                ...
                __do_huge_pmd_anonymous_page
                  ...
                  spin_lock(&mm->page_table_lock)
                  ...
                  page_add_new_anon_rmap
                    // Here we increment the page's map count (starts at -1).
                    atomic_set(&page->_mapcount, 0)
                  set_pmd_at
                    // Here we set the page's PMD entry which will be cleared
                    // when Thread A calls pmd_clear_bad().
                  ...
                  spin_unlock(&mm->page_table_lock)

    The mmap_sem does not prevent the race because both threads are acquiring
    it in shared mode (down_read).  Thread B holds the page_table_lock while
    the page's map count and PMD table entry are updated.  However, Thread A
    does not synchronize on that lock.

====== end quote =======

[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>		[2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:54 -07:00
Linus Torvalds
e2a0883e40 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile 1 from Al Viro:
 "This is _not_ all; in particular, Miklos' and Jan's stuff is not there
  yet."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (64 commits)
  ext4: initialization of ext4_li_mtx needs to be done earlier
  debugfs-related mode_t whack-a-mole
  hfsplus: add an ioctl to bless files
  hfsplus: change finder_info to u32
  hfsplus: initialise userflags
  qnx4: new helper - try_extent()
  qnx4: get rid of qnx4_bread/qnx4_getblk
  take removal of PF_FORKNOEXEC to flush_old_exec()
  trim includes in inode.c
  um: uml_dup_mmap() relies on ->mmap_sem being held, but activate_mm() doesn't hold it
  um: embed ->stub_pages[] into mmu_context
  gadgetfs: list_for_each_safe() misuse
  ocfs2: fix leaks on failure exits in module_init
  ecryptfs: make register_filesystem() the last potential failure exit
  ntfs: forgets to unregister sysctls on register_filesystem() failure
  logfs: missing cleanup on register_filesystem() failure
  jfs: mising cleanup on register_filesystem() failure
  make configfs_pin_fs() return root dentry on success
  configfs: configfs_create_dir() has parent dentry in dentry->d_parent
  configfs: sanitize configfs_create()
  ...
2012-03-21 13:36:41 -07:00
Linus Torvalds
3a990a52f9 Merge branch 'vm' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull munmap/truncate race fixes from Al Viro:
 "Fixes for racy use of unmap_vmas() on truncate-related codepaths"

* 'vm' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  VM: make zap_page_range() callers that act on a single VMA use separate helper
  VM: make unmap_vmas() return void
  VM: don't bother with feeding upper limit to tlb_finish_mmu() in exit_mmap()
  VM: make zap_page_range() return void
  VM: can't go through the inner loop in unmap_vmas() more than once...
  VM: unmap_page_range() can return void
2012-03-21 13:32:19 -07:00
Linus Torvalds
3556485f15 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates for 3.4 from James Morris:
 "The main addition here is the new Yama security module from Kees Cook,
  which was discussed at the Linux Security Summit last year.  Its
  purpose is to collect miscellaneous DAC security enhancements in one
  place.  This also marks a departure in policy for LSM modules, which
  were previously limited to being standalone access control systems.
  Chromium OS is using Yama, and I believe there are plans for Ubuntu,
  at least.

  This patchset also includes maintenance updates for AppArmor, TOMOYO
  and others."

Fix trivial conflict in <net/sock.h> due to the jumo_label->static_key
rename.

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (38 commits)
  AppArmor: Fix location of const qualifier on generated string tables
  TOMOYO: Return error if fails to delete a domain
  AppArmor: add const qualifiers to string arrays
  AppArmor: Add ability to load extended policy
  TOMOYO: Return appropriate value to poll().
  AppArmor: Move path failure information into aa_get_name and rename
  AppArmor: Update dfa matching routines.
  AppArmor: Minor cleanup of d_namespace_path to consolidate error handling
  AppArmor: Retrieve the dentry_path for error reporting when path lookup fails
  AppArmor: Add const qualifiers to generated string tables
  AppArmor: Fix oops in policy unpack auditing
  AppArmor: Fix error returned when a path lookup is disconnected
  KEYS: testing wrong bit for KEY_FLAG_REVOKED
  TOMOYO: Fix mount flags checking order.
  security: fix ima kconfig warning
  AppArmor: Fix the error case for chroot relative path name lookup
  AppArmor: fix mapping of META_READ to audit and quiet flags
  AppArmor: Fix underflow in xindex calculation
  AppArmor: Fix dropping of allowed operations that are force audited
  AppArmor: Add mising end of structure test to caps unpacking
  ...
2012-03-21 13:25:04 -07:00
Linus Torvalds
9f3938346a Merge branch 'kmap_atomic' of git://github.com/congwang/linux
Pull kmap_atomic cleanup from Cong Wang.

It's been in -next for a long time, and it gets rid of the (no longer
used) second argument to k[un]map_atomic().

Fix up a few trivial conflicts in various drivers, and do an "evil
merge" to catch some new uses that have come in since Cong's tree.

* 'kmap_atomic' of git://github.com/congwang/linux: (59 commits)
  feature-removal-schedule.txt: schedule the deprecated form of kmap_atomic() for removal
  highmem: kill all __kmap_atomic() [swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename]
  drbd: remove the second argument of k[un]map_atomic()
  zcache: remove the second argument of k[un]map_atomic()
  gma500: remove the second argument of k[un]map_atomic()
  dm: remove the second argument of k[un]map_atomic()
  tomoyo: remove the second argument of k[un]map_atomic()
  sunrpc: remove the second argument of k[un]map_atomic()
  rds: remove the second argument of k[un]map_atomic()
  net: remove the second argument of k[un]map_atomic()
  mm: remove the second argument of k[un]map_atomic()
  lib: remove the second argument of k[un]map_atomic()
  power: remove the second argument of k[un]map_atomic()
  kdb: remove the second argument of k[un]map_atomic()
  udf: remove the second argument of k[un]map_atomic()
  ubifs: remove the second argument of k[un]map_atomic()
  squashfs: remove the second argument of k[un]map_atomic()
  reiserfs: remove the second argument of k[un]map_atomic()
  ocfs2: remove the second argument of k[un]map_atomic()
  ntfs: remove the second argument of k[un]map_atomic()
  ...
2012-03-21 09:40:26 -07:00
Linus Torvalds
69a7aebcf0 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial tree from Jiri Kosina:
 "It's indeed trivial -- mostly documentation updates and a bunch of
  typo fixes from Masanari.

  There are also several linux/version.h include removals from Jesper."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (101 commits)
  kcore: fix spelling in read_kcore() comment
  constify struct pci_dev * in obvious cases
  Revert "char: Fix typo in viotape.c"
  init: fix wording error in mm_init comment
  usb: gadget: Kconfig: fix typo for 'different'
  Revert "power, max8998: Include linux/module.h just once in drivers/power/max8998_charger.c"
  writeback: fix fn name in writeback_inodes_sb_nr_if_idle() comment header
  writeback: fix typo in the writeback_control comment
  Documentation: Fix multiple typo in Documentation
  tpm_tis: fix tis_lock with respect to RCU
  Revert "media: Fix typo in mixer_drv.c and hdmi_drv.c"
  Doc: Update numastat.txt
  qla4xxx: Add missing spaces to error messages
  compiler.h: Fix typo
  security: struct security_operations kerneldoc fix
  Documentation: broken URL in libata.tmpl
  Documentation: broken URL in filesystems.tmpl
  mtd: simplify return logic in do_map_probe()
  mm: fix comment typo of truncate_inode_pages_range
  power: bq27x00: Fix typos in comment
  ...
2012-03-20 21:12:50 -07:00
Al Viro
f5cc4eef99 VM: make zap_page_range() callers that act on a single VMA use separate helper
... and not rely on ->vm_next being there for them...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:51 -04:00
Al Viro
6e8bb0193a VM: make unmap_vmas() return void
same story - nobody uses it and it's been pointless since
"mm: Remove i_mmap_lock lockbreak" went in.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:51 -04:00
Al Viro
853f5e2640 VM: don't bother with feeding upper limit to tlb_finish_mmu() in exit_mmap()
no point, really - the only instance that cares about those arguments of
tlb_finish_mmu() is itanic and there we explicitly check if that's called
from exit_mmap() (i.e. that ->fullmm is set), in which case we ignore those
arguments completely.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:51 -04:00
Al Viro
14f5ff5df3 VM: make zap_page_range() return void
... since all callers ignore its return value and it's been
useless since commit 97a894136f29802da19a15541de3c019e1ca147e
(mm: Remove i_mmap_lock lockbreak) anyway.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:50 -04:00
Al Viro
8b2a12382c VM: can't go through the inner loop in unmap_vmas() more than once...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:50 -04:00
Al Viro
038c7aa16a VM: unmap_page_range() can return void
return value is always the 4th ('end') argument.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-03-20 21:39:50 -04:00