IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add support for parsing the parameters of a NIST P256 or NIST P192 key.
Enable signature verification using these keys. The new module is
enabled with CONFIG_ECDSA:
Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
is A NIST cryptographic standard algorithm. Only signature verification
is implemented.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Salsa20 is not used anywhere in the kernel, is not suitable for disk
encryption, and widely considered to have been superseded by ChaCha20.
So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tiger is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
RIPE-MD 256 is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
RIPE-MD 128 is never referenced anywhere in the kernel, and unlikely
to be depended upon by userspace via AF_ALG. So let's remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This new module implement the SM2 public key algorithm. It was
published by State Encryption Management Bureau, China.
List of specifications for SM2 elliptic curve public key cryptography:
* GM/T 0003.1-2012
* GM/T 0003.2-2012
* GM/T 0003.3-2012
* GM/T 0003.4-2012
* GM/T 0003.5-2012
IETF: https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
oscca: http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
scctc: http://www.gmbz.org.cn/main/bzlb.html
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: Xufeng Zhang <yunbo.xufeng@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that all users of the deprecated ablkcipher interface have been
moved to the skcipher interface, ablkcipher is no longer used and
can be removed.
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Expose the generic Curve25519 library via the crypto API KPP interface.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Wire up our newly added Blake2s implementation via the shash API.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If aead is built as a module along with cryptomgr, it creates a
dependency loop due to the dependency chain aead => crypto_null =>
cryptomgr => aead.
This is due to the presence of the AEAD geniv code. This code is
not really part of the AEAD API but simply support code for IV
generators such as seqiv. This patch moves the geniv code into
its own module thus breaking the dependency loop.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the blkcipher algorithm type has been removed in favor of
skcipher, rename the crypto_blkcipher kernel module to crypto_skcipher,
and rename the config options accordingly:
CONFIG_CRYPTO_BLKCIPHER => CONFIG_CRYPTO_SKCIPHER
CONFIG_CRYPTO_BLKCIPHER2 => CONFIG_CRYPTO_SKCIPHER2
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.
The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher). The advantages of skcipher include:
- A much less confusing name, since none of these algorithm types have
ever actually been for raw block ciphers, but rather for all
length-preserving encryption modes including block cipher modes of
operation, stream ciphers, and other length-preserving modes.
- It unified blkcipher and ablkcipher into a single algorithm type
which supports both synchronous and asynchronous implementations.
Note, blkcipher already operated only on scatterlists, so the fact
that skcipher does too isn't a regression in functionality.
- Better type safety by using struct skcipher_alg, struct
crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.
- It sometimes simplifies the implementations of algorithms.
Also, the blkcipher API was no longer being tested.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The patch brings support of several BLAKE2 variants (2b with various
digest lengths). The keyed digest is supported, using tfm->setkey call.
The in-tree user will be btrfs (for checksumming), we're going to use
the BLAKE2b-256 variant.
The code is reference implementation taken from the official sources and
modified in terms of kernel coding style (whitespace, comments, uintXX_t
-> uXX types, removed unused prototypes and #ifdefs, removed testing
code, changed secure_zero_memory -> memzero_explicit, used own helpers
for unaligned reads/writes and rotations).
Further changes removed sanity checks of key length or output size,
these values are verified in the crypto API callbacks or hardcoded in
shash_alg and not exposed to users.
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The next version of Clang will start policing compiler command line
options, and will reject combinations of -march and -mfpu that it
thinks are incompatible.
This results in errors like
clang-10: warning: ignoring extension 'crypto' because the 'armv7-a'
architecture does not support it [-Winvalid-command-line-argument]
/tmp/aegis128-neon-inner-5ee428.s: Assembler messages:
/tmp/aegis128-neon-inner-5ee428.s:73: Error: selected
processor does not support `aese.8 q2,q14' in ARM mode
when buiding the SIMD aegis128 code for 32-bit ARM, given that the
'armv7-a' -march argument is considered to be compatible with the
ARM crypto extensions. Instead, we should use armv8-a, which does
allow the crypto extensions to be enabled.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
implementation details that do not belong in DM crypt. The wrapper
template for ESSIV generation that was factored out will also be used
by fscrypt in the future.
- Add root hash pkcs#7 signature verification to the DM verity target.
- Add a new "clone" DM target that allows for efficient remote
replication of a device.
- Enhance DM bufio's cache to be tailored to each client based on use.
Clients that make heavy use of the cache get more of it, and those
that use less have reduced cache usage.
- Add a new DM_GET_TARGET_VERSION ioctl to allow userspace to query the
version number of a DM target (even if the associated module isn't yet
loaded).
- Fix invalid memory access in DM zoned target.
- Fix the max_discard_sectors limit advertised by the DM raid target; it
was mistakenly storing the limit in bytes rather than sectors.
- Small optimizations and cleanups in DM writecache target.
- Various fixes and cleanups in DM core, DM raid1 and space map portion
of DM persistent data library.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEJfWUX4UqZ4x1O2wixSPxCi2dA1oFAl2D7ycTHHNuaXR6ZXJA
cmVkaGF0LmNvbQAKCRDFI/EKLZ0DWp9QCACwTkVGzPGMCbAaCVlCACo8B5JyY4OO
FNxucqUlt1MHKuBbzJd4XwNGlLg68xjMUKVPYPlgina7TaDl+wvlTbHchaJS8nak
x1zyhDSywy0F9f6HHiXJi/vshmAfa0xnIM6fQXVPM346S6xf9u7hqOJQMCrdvY92
w4FhuW9nVt5xizo8iC/3LzoWbhrWncT7dyZUZtG3/tmglhkEK7QwctlgQxcD7tXg
H1lhntQzHzpxQAVBefWWdw7ubuDd6XCHuQMaxRhyR++c62P3eKDR8ck9hhd3hZKv
E481gtxcsjKuYLxwULjqFJZaNFitWFNMJ7gppQyKRqCzn2zlGAL6npl8
=m6zD
-----END PGP SIGNATURE-----
Merge tag 'for-5.4/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper updates from Mike Snitzer:
- crypto and DM crypt advances that allow the crypto API to reclaim
implementation details that do not belong in DM crypt. The wrapper
template for ESSIV generation that was factored out will also be used
by fscrypt in the future.
- Add root hash pkcs#7 signature verification to the DM verity target.
- Add a new "clone" DM target that allows for efficient remote
replication of a device.
- Enhance DM bufio's cache to be tailored to each client based on use.
Clients that make heavy use of the cache get more of it, and those
that use less have reduced cache usage.
- Add a new DM_GET_TARGET_VERSION ioctl to allow userspace to query the
version number of a DM target (even if the associated module isn't
yet loaded).
- Fix invalid memory access in DM zoned target.
- Fix the max_discard_sectors limit advertised by the DM raid target;
it was mistakenly storing the limit in bytes rather than sectors.
- Small optimizations and cleanups in DM writecache target.
- Various fixes and cleanups in DM core, DM raid1 and space map portion
of DM persistent data library.
* tag 'for-5.4/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (22 commits)
dm: introduce DM_GET_TARGET_VERSION
dm bufio: introduce a global cache replacement
dm bufio: remove old-style buffer cleanup
dm bufio: introduce a global queue
dm bufio: refactor adjust_total_allocated
dm bufio: call adjust_total_allocated from __link_buffer and __unlink_buffer
dm: add clone target
dm raid: fix updating of max_discard_sectors limit
dm writecache: skip writecache_wait for pmem mode
dm stats: use struct_size() helper
dm crypt: omit parsing of the encapsulated cipher
dm crypt: switch to ESSIV crypto API template
crypto: essiv - create wrapper template for ESSIV generation
dm space map common: remove check for impossible sm_find_free() return value
dm raid1: use struct_size() with kzalloc()
dm writecache: optimize performance by sorting the blocks for writeback_all
dm writecache: add unlikely for getting two block with same LBA
dm writecache: remove unused member pointer in writeback_struct
dm zoned: fix invalid memory access
dm verity: add root hash pkcs#7 signature verification
...
Implement a template that wraps a (skcipher,shash) or (aead,shash) tuple
so that we can consolidate the ESSIV handling in fscrypt and dm-crypt and
move it into the crypto API. This will result in better test coverage, and
will allow future changes to make the bare cipher interface internal to the
crypto subsystem, in order to increase robustness of the API against misuse.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Provide a version of the core AES transform to the aegis128 SIMD
code that does not rely on the special AES instructions, but uses
plain NEON instructions instead. This allows the SIMD version of
the aegis128 driver to be used on arm64 systems that do not
implement those instructions (which are not mandatory in the
architecture), such as the Raspberry Pi 3.
Since GCC makes a mess of this when using the tbl/tbx intrinsics
to perform the sbox substitution, preload the Sbox into v16..v31
in this case and use inline asm to emit the tbl/tbx instructions.
Clang does not support this approach, nor does it require it, since
it does a much better job at code generation, so there we use the
intrinsics as usual.
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Provide an accelerated implementation of aegis128 by wiring up the
SIMD hooks in the generic driver to an implementation based on NEON
intrinsics, which can be compiled to both ARM and arm64 code.
This results in a performance of 2.2 cycles per byte on Cortex-A53,
which is a performance increase of ~11x compared to the generic
code.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add some plumbing to allow the AEGIS128 code to be built with SIMD
routines for acceleration.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Recent clang-9 snapshots double the kernel stack usage when building
this file with -O0 -fsanitize=kernel-hwaddress, compared to clang-8
and older snapshots, this changed between commits svn364966 and
svn366056:
crypto/jitterentropy.c:516:5: error: stack frame size of 2640 bytes in function 'jent_entropy_init' [-Werror,-Wframe-larger-than=]
int jent_entropy_init(void)
^
crypto/jitterentropy.c:185:14: error: stack frame size of 2224 bytes in function 'jent_lfsr_time' [-Werror,-Wframe-larger-than=]
static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
^
I prepared a reduced test case in case any clang developers want to
take a closer look, but from looking at the earlier output it seems
that even with clang-8, something was very wrong here.
Turn off any KASAN and UBSAN sanitizing for this file, as that likely
clashes with -O0 anyway. Turning off just KASAN avoids the warning
already, but I suspect both of these have undesired side-effects
for jitterentropy.
Link: https://godbolt.org/z/fDcwZ5
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commit ecc8bc81f2fb3976737ef312f824ba6053aa3590
("crypto: aegis128 - provide a SIMD implementation based on NEON
intrinsics") and commit 7cdc0ddbf74a19cecb2f0e9efa2cae9d3c665189
("crypto: aegis128 - add support for SIMD acceleration").
They cause compile errors on platforms other than ARM because
the mechanism to selectively compile the SIMD code is broken.
Repoted-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Provide an accelerated implementation of aegis128 by wiring up the
SIMD hooks in the generic driver to an implementation based on NEON
intrinsics, which can be compiled to both ARM and arm64 code.
This results in a performance of 2.2 cycles per byte on Cortex-A53,
which is a performance increase of ~11x compared to the generic
code.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add some plumbing to allow the AEGIS128 code to be built with SIMD
routines for acceleration.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Three variants of AEGIS were proposed for the CAESAR competition, and
only one was selected for the final portfolio: AEGIS128.
The other variants, AEGIS128L and AEGIS256, are not likely to ever turn
up in networking protocols or other places where interoperability
between Linux and other systems is a concern, nor are they likely to
be subjected to further cryptanalysis. However, uninformed users may
think that AEGIS128L (which is faster) is equally fit for use.
So let's remove them now, before anyone starts using them and we are
forced to support them forever.
Note that there are no known flaws in the algorithms or in any of these
implementations, but they have simply outlived their usefulness.
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
MORUS was not selected as a winner in the CAESAR competition, which
is not surprising since it is considered to be cryptographically
broken [0]. (Note that this is not an implementation defect, but a
flaw in the underlying algorithm). Since it is unlikely to be in use
currently, let's remove it before we're stuck with it.
[0] https://eprint.iacr.org/2019/172.pdf
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
xxhash is currently implemented as a self-contained module in /lib.
This patch enables that module to be used as part of the generic kernel
crypto framework. It adds a simple wrapper to the 64bit version.
I've also added test vectors (with help from Nick Terrell). The upstream
xxhash code is tested by running hashing operation on random 222 byte
data with seed values of 0 and a prime number. The upstream test
suite can be found at https://github.com/Cyan4973/xxHash/blob/cf46e0c/xxhsum.c#L664
Essentially hashing is run on data of length 0,1,14,222 with the
aforementioned seed values 0 and prime 2654435761. The particular random
222 byte string was provided to me by Nick Terrell by reading
/dev/random and the checksums were calculated by the upstream xxsum
utility with the following bash script:
dd if=/dev/random of=TEST_VECTOR bs=1 count=222
for a in 0 1; do
for l in 0 1 14 222; do
for s in 0 2654435761; do
echo algo $a length $l seed $s;
head -c $l TEST_VECTOR | ~/projects/kernel/xxHash/xxhsum -H$a -s$s
done
done
done
This produces output as follows:
algo 0 length 0 seed 0
02cc5d05 stdin
algo 0 length 0 seed 2654435761
02cc5d05 stdin
algo 0 length 1 seed 0
25201171 stdin
algo 0 length 1 seed 2654435761
25201171 stdin
algo 0 length 14 seed 0
c1d95975 stdin
algo 0 length 14 seed 2654435761
c1d95975 stdin
algo 0 length 222 seed 0
b38662a6 stdin
algo 0 length 222 seed 2654435761
b38662a6 stdin
algo 1 length 0 seed 0
ef46db3751d8e999 stdin
algo 1 length 0 seed 2654435761
ac75fda2929b17ef stdin
algo 1 length 1 seed 0
27c3f04c2881203a stdin
algo 1 length 1 seed 2654435761
4a15ed26415dfe4d stdin
algo 1 length 14 seed 0
3d33dc700231dfad stdin
algo 1 length 14 seed 2654435761
ea5f7ddef9a64f80 stdin
algo 1 length 222 seed 0
5f3d3c08ec2bef34 stdin
algo 1 length 222 seed 2654435761
6a9df59664c7ed62 stdin
algo 1 is xx64 variant, algo 0 is the 32 bit variant which is currently
not hooked up.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
kcrypto_wq is only used by cryptd, so move it into cryptd.c and change
the workqueue name from "crypto" to "cryptd".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add Elliptic Curve Russian Digital Signature Algorithm (GOST R
34.10-2012, RFC 7091, ISO/IEC 14888-3) is one of the Russian (and since
2018 the CIS countries) cryptographic standard algorithms (called GOST
algorithms). Only signature verification is supported, with intent to be
used in the IMA.
Summary of the changes:
* crypto/Kconfig:
- EC-RDSA is added into Public-key cryptography section.
* crypto/Makefile:
- ecrdsa objects are added.
* crypto/asymmetric_keys/x509_cert_parser.c:
- Recognize EC-RDSA and Streebog OIDs.
* include/linux/oid_registry.h:
- EC-RDSA OIDs are added to the enum. Also, a two currently not
implemented curve OIDs are added for possible extension later (to
not change numbering and grouping).
* crypto/ecc.c:
- Kenneth MacKay copyright date is updated to 2014, because
vli_mmod_slow, ecc_point_add, ecc_point_mult_shamir are based on his
code from micro-ecc.
- Functions needed for ecrdsa are EXPORT_SYMBOL'ed.
- New functions:
vli_is_negative - helper to determine sign of vli;
vli_from_be64 - unpack big-endian array into vli (used for
a signature);
vli_from_le64 - unpack little-endian array into vli (used for
a public key);
vli_uadd, vli_usub - add/sub u64 value to/from vli (used for
increment/decrement);
mul_64_64 - optimized to use __int128 where appropriate, this speeds
up point multiplication (and as a consequence signature
verification) by the factor of 1.5-2;
vli_umult - multiply vli by a small value (speeds up point
multiplication by another factor of 1.5-2, depending on vli sizes);
vli_mmod_special - module reduction for some form of Pseudo-Mersenne
primes (used for the curves A);
vli_mmod_special2 - module reduction for another form of
Pseudo-Mersenne primes (used for the curves B);
vli_mmod_barrett - module reduction using pre-computed value (used
for the curve C);
vli_mmod_slow - more general module reduction which is much slower
(used when the modulus is subgroup order);
vli_mod_mult_slow - modular multiplication;
ecc_point_add - add two points;
ecc_point_mult_shamir - add two points multiplied by scalars in one
combined multiplication (this gives speed up by another factor 2 in
compare to two separate multiplications).
ecc_is_pubkey_valid_partial - additional samity check is added.
- Updated vli_mmod_fast with non-strict heuristic to call optimal
module reduction function depending on the prime value;
- All computations for the previously defined (two NIST) curves should
not unaffected.
* crypto/ecc.h:
- Newly exported functions are documented.
* crypto/ecrdsa_defs.h
- Five curves are defined.
* crypto/ecrdsa.c:
- Signature verification is implemented.
* crypto/ecrdsa_params.asn1, crypto/ecrdsa_pub_key.asn1:
- Templates for BER decoder for EC-RDSA parameters and public key.
Cc: linux-integrity@vger.kernel.org
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ecc.c have algorithms that could be used togeter by ecdh and ecrdsa.
Make it separate module. Add CRYPTO_ECC into Kconfig. EXPORT_SYMBOL and
document to what seems appropriate. Move structs ecc_point and ecc_curve
from ecc_curve_defs.h into ecc.h.
No code changes.
Signed-off-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
To prevent any issues with persistent data, separate lzo-rle from lzo so
that it is treated as a separate algorithm, and lzo is still available.
Link: http://lkml.kernel.org/r/20190205155944.16007-3-dave.rodgman@arm.com
Signed-off-by: Dave Rodgman <dave.rodgman@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com>
Cc: Matt Sealey <matt.sealey@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <nitingupta910@gmail.com>
Cc: Richard Purdie <rpurdie@openedhand.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Sonny Rao <sonnyrao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Even if CRYPTO_STATS is set to n, some part of CRYPTO_STATS are
compiled.
This patch made all part of crypto_user_stat uncompiled in that case.
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for the Adiantum encryption mode. Adiantum was designed by
Paul Crowley and is specified by our paper:
Adiantum: length-preserving encryption for entry-level processors
(https://eprint.iacr.org/2018/720.pdf)
See our paper for full details; this patch only provides an overview.
Adiantum is a tweakable, length-preserving encryption mode designed for
fast and secure disk encryption, especially on CPUs without dedicated
crypto instructions. Adiantum encrypts each sector using the XChaCha12
stream cipher, two passes of an ε-almost-∆-universal (εA∆U) hash
function, and an invocation of the AES-256 block cipher on a single
16-byte block. On CPUs without AES instructions, Adiantum is much
faster than AES-XTS; for example, on ARM Cortex-A7, on 4096-byte sectors
Adiantum encryption is about 4 times faster than AES-256-XTS encryption,
and decryption about 5 times faster.
Adiantum is a specialization of the more general HBSH construction. Our
earlier proposal, HPolyC, was also a HBSH specialization, but it used a
different εA∆U hash function, one based on Poly1305 only. Adiantum's
εA∆U hash function, which is based primarily on the "NH" hash function
like that used in UMAC (RFC4418), is about twice as fast as HPolyC's;
consequently, Adiantum is about 20% faster than HPolyC.
This speed comes with no loss of security: Adiantum is provably just as
secure as HPolyC, in fact slightly *more* secure. Like HPolyC,
Adiantum's security is reducible to that of XChaCha12 and AES-256,
subject to a security bound. XChaCha12 itself has a security reduction
to ChaCha12. Therefore, one need not "trust" Adiantum; one need only
trust ChaCha12 and AES-256. Note that the εA∆U hash function is only
used for its proven combinatorical properties so cannot be "broken".
Adiantum is also a true wide-block encryption mode, so flipping any
plaintext bit in the sector scrambles the entire ciphertext, and vice
versa. No other such mode is available in the kernel currently; doing
the same with XTS scrambles only 16 bytes. Adiantum also supports
arbitrary-length tweaks and naturally supports any length input >= 16
bytes without needing "ciphertext stealing".
For the stream cipher, Adiantum uses XChaCha12 rather than XChaCha20 in
order to make encryption feasible on the widest range of devices.
Although the 20-round variant is quite popular, the best known attacks
on ChaCha are on only 7 rounds, so ChaCha12 still has a substantial
security margin; in fact, larger than AES-256's. 12-round Salsa20 is
also the eSTREAM recommendation. For the block cipher, Adiantum uses
AES-256, despite it having a lower security margin than XChaCha12 and
needing table lookups, due to AES's extensive adoption and analysis
making it the obvious first choice. Nevertheless, for flexibility this
patch also permits the "adiantum" template to be instantiated with
XChaCha20 and/or with an alternate block cipher.
We need Adiantum support in the kernel for use in dm-crypt and fscrypt,
where currently the only other suitable options are block cipher modes
such as AES-XTS. A big problem with this is that many low-end mobile
devices (e.g. Android Go phones sold primarily in developing countries,
as well as some smartwatches) still have CPUs that lack AES
instructions, e.g. ARM Cortex-A7. Sadly, AES-XTS encryption is much too
slow to be viable on these devices. We did find that some "lightweight"
block ciphers are fast enough, but these suffer from problems such as
not having much cryptanalysis or being too controversial.
The ChaCha stream cipher has excellent performance but is insecure to
use directly for disk encryption, since each sector's IV is reused each
time it is overwritten. Even restricting the threat model to offline
attacks only isn't enough, since modern flash storage devices don't
guarantee that "overwrites" are really overwrites, due to wear-leveling.
Adiantum avoids this problem by constructing a
"tweakable super-pseudorandom permutation"; this is the strongest
possible security model for length-preserving encryption.
Of course, storing random nonces along with the ciphertext would be the
ideal solution. But doing that with existing hardware and filesystems
runs into major practical problems; in most cases it would require data
journaling (like dm-integrity) which severely degrades performance.
Thus, for now length-preserving encryption is still needed.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a generic implementation of NHPoly1305, an ε-almost-∆-universal hash
function used in the Adiantum encryption mode.
CONFIG_NHPOLY1305 is not selectable by itself since there won't be any
real reason to enable it without also enabling Adiantum support.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a generic version of output feedback mode. We already have support of
several hardware based transformations of this mode and the needed test
vectors but we somehow missed adding a generic software one. Fix this now.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch implement a generic way to get statistics about all crypto
usages.
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As it turns out, the AVX2 multibuffer SHA routines are currently
broken [0], in a way that would have likely been noticed if this
code were in wide use. Since the code is too complicated to be
maintained by anyone except the original authors, and since the
performance benefits for real-world use cases are debatable to
begin with, it is better to drop it entirely for the moment.
[0] https://marc.info/?l=linux-crypto-vger&m=153476243825350&w=2
Suggested-by: Eric Biggers <ebiggers@google.com>
Cc: Megha Dey <megha.dey@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These are unused, undesired, and have never actually been used by
anybody. The original authors of this code have changed their mind about
its inclusion. While originally proposed for disk encryption on low-end
devices, the idea was discarded [1] in favor of something else before
that could really get going. Therefore, this patch removes Speck.
[1] https://marc.info/?l=linux-crypto-vger&m=153359499015659
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 56e8e57fc3a7 ("crypto: morus - Add common SIMD glue code for
MORUS") accidetally consiedered the glue code to be usable by different
architectures, but it seems to be only usable on x86.
This patch moves it under arch/x86/crypto and adds 'depends on X86' to
the Kconfig options and also removes the prompt to hide these internal
options from the user.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds a common glue code for optimized implementations of
MORUS AEAD algorithms.
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the generic implementation of the MORUS family of AEAD
algorithms (MORUS-640 and MORUS-1280). The original authors of MORUS
are Hongjun Wu and Tao Huang.
At the time of writing, MORUS is one of the finalists in CAESAR, an
open competition intended to select a portfolio of alternatives to
the problematic AES-GCM:
https://competitions.cr.yp.to/caesar-submissions.htmlhttps://competitions.cr.yp.to/round3/morusv2.pdf
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the generic implementation of the AEGIS family of AEAD
algorithms (AEGIS-128, AEGIS-128L, and AEGIS-256). The original
authors of AEGIS are Hongjun Wu and Bart Preneel.
At the time of writing, AEGIS is one of the finalists in CAESAR, an
open competition intended to select a portfolio of alternatives to
the problematic AES-GCM:
https://competitions.cr.yp.to/caesar-submissions.htmlhttps://competitions.cr.yp.to/round3/aegisv11.pdf
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adds zstd support to crypto and scompress. Only supports the default
level.
Previously we held off on this patch, since there weren't any users.
Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
which isn't defined until this patch is in. I also see a patch adding
zstd to pstore [0], which depends on crypto zstd.
[0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Our convention is to distinguish file types by suffixes with a period
as a separator.
*-asn1.[ch] is a different pattern from other generated sources such
as *.lex.c, *.tab.[ch], *.dtb.S, etc. More confusing, files with
'-asn1.[ch]' are generated files, but '_asn1.[ch]' are checked-in
files:
net/netfilter/nf_conntrack_h323_asn1.c
include/linux/netfilter/nf_conntrack_h323_asn1.h
include/linux/sunrpc/gss_asn1.h
Rename generated files to *.asn1.[ch] for consistency.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Introduce the SM4 cipher algorithms (OSCCA GB/T 32907-2016).
SM4 (GBT.32907-2016) is a cryptographic standard issued by the
Organization of State Commercial Administration of China (OSCCA)
as an authorized cryptographic algorithms for the use within China.
SMS4 was originally created for use in protecting wireless
networks, and is mandated in the Chinese National Standard for
Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
(GB.15629.11-2003).
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
TPM security routines require encryption and decryption with AES in
CFB mode, so add it to the Linux Crypto schemes. CFB is basically a
one time pad where the pad is generated initially from the encrypted
IV and then subsequently from the encrypted previous block of
ciphertext. The pad is XOR'd into the plain text to get the final
ciphertext.
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
All users of ablk_helper have been converted over to crypto_simd, so
remove ablk_helper.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>