IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Checksum items are not inserted until the entire ordered extent is on disk,
but individual pages might be clean and available for reclaim long before
the whole extent is on disk.
In order to allow those pages to be freed, we need to be able to search
the list of ordered extents to find the checksum that is going to be inserted
in the tree. This way if the page needs to be read back in before
the checksums are in the btree, we'll be able to verify the checksum on
the page.
This commit adds the ability to search the pending ordered extents for
a given offset in the file, and changes btrfs_releasepage to allow
ordered pages to be freed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This changes the ordered data code to update i_size after the extent
is on disk. An on disk i_size is maintained in the in-memory btrfs inode
structures, and this is updated as extents finish.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The old data=ordered code would force commit to wait until
all the data extents from the transaction were fully on disk. This
introduced large latencies into the commit and stalled new writers
in the transaction for a long time.
The new code changes the way data allocations and extents work:
* When delayed allocation is filled, data extents are reserved, and
the extent bit EXTENT_ORDERED is set on the entire range of the extent.
A struct btrfs_ordered_extent is allocated an inserted into a per-inode
rbtree to track the pending extents.
* As each page is written EXTENT_ORDERED is cleared on the bytes corresponding
to that page.
* When all of the bytes corresponding to a single struct btrfs_ordered_extent
are written, The previously reserved extent is inserted into the FS
btree and into the extent allocation trees. The checksums for the file
data are also updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to delete an unlinked inode with dirty pages from the list
instead of forcing commit to write these out before deleting the inode.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Using ilookup5 during data=ordered writeback could deadlock on I_LOCK. This
saves a pointer to the inode instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This forces file data extents down the disk along with the metadata that
references them. The current implementation is fairly simple, and just
writes out all of the dirty pages in an inode before the commit.
Signed-off-by: Chris Mason <chris.mason@oracle.com>