IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Calling kmem_obj_info() via kmem_dump_obj() on KFENCE objects has been
producing garbage data due to the object not actually being maintained
by SLAB or SLUB.
Fix this by implementing __kfence_obj_info() that copies relevant
information to struct kmem_obj_info when the object was allocated by
KFENCE; this is called by a common kmem_obj_info(), which also calls the
slab/slub/slob specific variant now called __kmem_obj_info().
For completeness, kmem_dump_obj() now displays if the object was
allocated by KFENCE.
Link: https://lore.kernel.org/all/20220323090520.GG16885@xsang-OptiPlex-9020/
Link: https://lkml.kernel.org/r/20220406131558.3558585-1-elver@google.com
Fixes: b89fb5ef0ce6 ("mm, kfence: insert KFENCE hooks for SLUB")
Fixes: d3fb45f370d9 ("mm, kfence: insert KFENCE hooks for SLAB")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz> [slab]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are four types of kmalloc_caches: KMALLOC_NORMAL, KMALLOC_CGROUP,
KMALLOC_RECLAIM, and KMALLOC_DMA. While the first three types are
created using new_kmalloc_cache(), KMALLOC_DMA caches are created in a
separate logic. Let KMALLOC_DMA caches be also created using
new_kmalloc_cache(), to enhance readability.
Historically, there were only KMALLOC_NORMAL caches and KMALLOC_DMA
caches in the first place, and they were initialized in two separate
logics. However, when KMALLOC_RECLAIM was introduced in v4.20 via
commit 1291523f2c1d ("mm, slab/slub: introduce kmalloc-reclaimable
caches") and KMALLOC_CGROUP was introduced in v5.14 via
commit 494c1dfe855e ("mm: memcg/slab: create a new set of kmalloc-cg-<n>
caches"), their creations were merged with KMALLOC_NORMAL's only.
KMALLOC_DMA creation logic should be merged with them, too.
By merging KMALLOC_DMA initialization with other types, the following
two changes might occur:
1. The order dma-kmalloc-<n> caches added in slab_cache list may be
sorted by size. i.e. the order they appear in /proc/slabinfo may change
as well.
2. slab_state will be set to UP after KMALLOC_DMA is created.
In case of slub, freelist randomization is dependent on slab_state>=UP,
and therefore KMALLOC_DMA cache's freelist will not be randomized in
creation, but will be deferred to init_freelist_randomization().
Co-developed-by: JaeSang Yoo <jsyoo5b@gmail.com>
Signed-off-by: JaeSang Yoo <jsyoo5b@gmail.com>
Signed-off-by: Ohhoon Kwon <ohkwon1043@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220410162511.656541-1-ohkwon1043@gmail.com
Many stack traces are similar so there are many similar arrays.
Stackdepot saves each unique stack only once.
Replace field addrs in struct track with depot_stack_handle_t handle. Use
stackdepot to save stack trace.
The benefits are smaller memory overhead and possibility to aggregate
per-cache statistics in the following patch using the stackdepot handle
instead of matching stacks manually.
[ vbabka@suse.cz: rebase to 5.17-rc1 and adjust accordingly ]
This was initially merged as commit 788691464c29 and reverted by commit
ae14c63a9f20 due to several issues, that should now be fixed.
The problem of unconditional memory overhead by stackdepot has been
addressed by commit 2dba5eb1c73b ("lib/stackdepot: allow optional init
and stack_table allocation by kvmalloc()"), so the dependency on
stackdepot will result in extra memory usage only when a slab cache
tracking is actually enabled, and not for all CONFIG_SLUB_DEBUG builds.
The build failures on some architectures were also addressed, and the
reported issue with xfs/433 test did not reproduce on 5.17-rc1 with this
patch.
Signed-off-by: Oliver Glitta <glittao@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-and-tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Use helper function is_power_of_2() to check if KMALLOC_MIN_SIZE is power
of two. Minor readability improvement.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220217091609.8214-1-linmiaohe@huawei.com
Merge misc updates from Andrew Morton:
"146 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak,
dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap,
memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb,
userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp,
ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and
damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits)
mm/damon: hide kernel pointer from tracepoint event
mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log
mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging
mm/damon/dbgfs: remove an unnecessary variable
mm/damon: move the implementation of damon_insert_region to damon.h
mm/damon: add access checking for hugetlb pages
Docs/admin-guide/mm/damon/usage: update for schemes statistics
mm/damon/dbgfs: support all DAMOS stats
Docs/admin-guide/mm/damon/reclaim: document statistics parameters
mm/damon/reclaim: provide reclamation statistics
mm/damon/schemes: account how many times quota limit has exceeded
mm/damon/schemes: account scheme actions that successfully applied
mm/damon: remove a mistakenly added comment for a future feature
Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts
Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning
Docs/admin-guide/mm/damon/usage: remove redundant information
Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks
mm/damon: convert macro functions to static inline functions
mm/damon: modify damon_rand() macro to static inline function
mm/damon: move damon_rand() definition into damon.h
...
Commit 494c1dfe855e ("mm: memcg/slab: create a new set of kmalloc-cg-<n>
caches") makes cgroup_memory_nokmem global, however, it is unnecessary
because there is already a function mem_cgroup_kmem_disabled() which
exports it.
Just make it static and replace it with mem_cgroup_kmem_disabled() in
mm/slab_common.c.
Link: https://lkml.kernel.org/r/20211109065418.21693-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because mm/slab_common.c is not instrumented with software KASAN modes,
it is not possible to detect use-after-free of the kmem_cache passed
into kmem_cache_destroy(). In particular, because of the s->refcount--
and subsequent early return if non-zero, KASAN would never be able to
see the double-free via kmem_cache_free(kmem_cache, s). To be able to
detect a double-kmem_cache_destroy(), check accessibility of the
kmem_cache, and in case of failure return early.
While KASAN_HW_TAGS is able to detect such bugs, by checking
accessibility and returning early we fail more gracefully and also avoid
corrupting reused objects (where tags mismatch).
A recent case of a double-kmem_cache_destroy() was detected by KFENCE:
https://lkml.kernel.org/r/0000000000003f654905c168b09d@google.com, which
was not detectable by software KASAN modes.
Link: https://lkml.kernel.org/r/20211119142219.1519617-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no external users of slab_start/next/stop(), so make them
static. And the memory.kmem.slabinfo is deprecated, which outputs
nothing now, so move memcg_slab_show() into mm/memcontrol.c and rename
it to mem_cgroup_slab_show to be consistent with other function names.
Link: https://lkml.kernel.org/r/20211109133359.32881-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling kmem_cache_destroy() while the cache still has objects allocated
is a kernel bug, and will usually result in the entire cache being
leaked. While the message in kmem_cache_destroy() resembles a warning,
it is currently not implemented using a real WARN().
This is problematic for infrastructure testing the kernel, all of which
rely on the specific format of WARN()s to pick up on bugs.
Some 13 years ago this used to be a simple WARN_ON() in slub, but commit
d629d8195793 ("slub: improve kmem_cache_destroy() error message")
changed it into an open-coded warning to avoid confusion with a bug in
slub itself.
Instead, turn the open-coded warning into a real WARN() with the message
preserved, so that test systems can actually identify these issues, and
we get all the other benefits of using a normal WARN(). The warning
message is extended with "when called from <caller-ip>" to make it even
clearer where the fault lies.
For most configurations this is only a cosmetic change, however, note
that WARN() here will now also respect panic_on_warn.
Link: https://lkml.kernel.org/r/20211102170733.648216-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All three implementations of slab support kmem_obj_info() which reports
details of an object allocated from the slab allocator. By using the
slab type instead of the page type, we make it obvious that this can
only be called for slabs.
[ vbabka@suse.cz: also convert the related kmem_valid_obj() to folios ]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <guro@fb.com>
This has served its purpose and is no longer used. All usercopy
violations appear to have been handled by now, any remaining instances
(or new bugs) will cause copies to be rejected.
This isn't a direct revert of commit 2d891fbc3bb6 ("usercopy: Allow
strict enforcement of whitelists"); since usercopy_fallback is
effectively 0, the fallback handling is removed too.
This also removes the usercopy_fallback module parameter on slab_common.
Link: https://github.com/KSPP/linux/issues/153
Link: https://lkml.kernel.org/r/20210921061149.1091163-1-steve@sk2.org
Signed-off-by: Stephen Kitt <steve@sk2.org>
Suggested-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Joel Stanley <joel@jms.id.au> [defconfig change]
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E . Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
flush_all() flushes a specific SLAB cache on each CPU (where the cache
is present). The deactivate_slab()/__free_slab() invocation happens
within IPI handler and is problematic for PREEMPT_RT.
The flush operation is not a frequent operation or a hot path. The
per-CPU flush operation can be moved to within a workqueue.
Because a workqueue handler, unlike IPI handler, does not disable irqs,
flush_slab() now has to disable them for working with the kmem_cache_cpu
fields. deactivate_slab() is safe to call with irqs enabled.
[vbabka@suse.cz: adapt to new SLUB changes]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Pull RCU updates from Paul McKenney:
- Bitmap parsing support for "all" as an alias for all bits
- Documentation updates
- Miscellaneous fixes, including some that overlap into mm and lockdep
- kvfree_rcu() updates
- mem_dump_obj() updates, with acks from one of the slab-allocator
maintainers
- RCU NOCB CPU updates, including limited deoffloading
- SRCU updates
- Tasks-RCU updates
- Torture-test updates
* 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits)
tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline
rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states
rcu: Add missing __releases() annotation
rcu: Remove obsolete rcu_read_unlock() deadlock commentary
rcu: Improve comments describing RCU read-side critical sections
rcu: Create an unrcu_pointer() to remove __rcu from a pointer
srcu: Early test SRCU polling start
rcu: Fix various typos in comments
rcu/nocb: Unify timers
rcu/nocb: Prepare for fine-grained deferred wakeup
rcu/nocb: Only cancel nocb timer if not polling
rcu/nocb: Delete bypass_timer upon nocb_gp wakeup
rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup
rcu/nocb: Allow de-offloading rdp leader
rcu/nocb: Directly call __wake_nocb_gp() from bypass timer
rcu: Don't penalize priority boosting when there is nothing to boost
rcu: Point to documentation of ordering guarantees
rcu: Make rcu_gp_cleanup() be noinline for tracing
rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs
rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP
...
The KMALLOC_NORMAL (kmalloc-<n>) caches are for unaccounted objects only
when CONFIG_MEMCG_KMEM is enabled. To make sure that this condition
remains true, we will have to prevent KMALOC_NORMAL caches to merge with
other kmem caches. This is now done by setting its refcount to -1 right
after its creation.
Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Roman Gushchin <guro@fb.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are currently two problems in the way the objcg pointer array
(memcg_data) in the page structure is being allocated and freed.
On its allocation, it is possible that the allocated objcg pointer
array comes from the same slab that requires memory accounting. If this
happens, the slab will never become empty again as there is at least
one object left (the obj_cgroup array) in the slab.
When it is freed, the objcg pointer array object may be the last one
in its slab and hence causes kfree() to be called again. With the
right workload, the slab cache may be set up in a way that allows the
recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system.
One way to solve this problem is to split the kmalloc-<n> caches
(KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n>
(KMALLOC_NORMAL) caches for unaccounted objects only and a new set of
kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All
the other caches can still allow a mix of accounted and unaccounted
objects.
With this change, all the objcg pointer array objects will come from
KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So
both the recursive kfree() problem and non-freeable slab problem are
gone.
Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have
mixed accounted and unaccounted objects, this will slightly reduce the
number of objcg pointer arrays that need to be allocated and save a bit
of memory. On the other hand, creating a new set of kmalloc caches does
have the effect of reducing cache utilization. So it is properly a wash.
The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and
KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches()
will include the newly added caches without change.
[vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem]
Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
[akpm@linux-foundation.org: un-fat-finger v5 delta creation]
[longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches]
Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com
Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
[longman@redhat.com: fix for CONFIG_ZONE_DMA=n]
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_calls and free_calls implementation in sysfs have two issues, one is
PAGE_SIZE limitation of sysfs and other is it does not adhere to "one
value per file" rule.
To overcome this issues, move the alloc_calls and free_calls
implementation to debugfs.
Debugfs cache will be created if SLAB_STORE_USER flag is set.
Rename the alloc_calls/free_calls to alloc_traces/free_traces, to be
inline with what it does.
[faiyazm@codeaurora.org: fix the leak of alloc/free traces debugfs interface]
Link: https://lkml.kernel.org/r/1624248060-30286-1-git-send-email-faiyazm@codeaurora.org
Link: https://lkml.kernel.org/r/1623438200-19361-1-git-send-email-faiyazm@codeaurora.org
Signed-off-by: Faiyaz Mohammed <faiyazm@codeaurora.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently when size is not supported by kmalloc_index, compiler will
generate a run-time BUG() while compile-time error is also possible, and
better. So change BUG to BUILD_BUG_ON_MSG to make compile-time check
possible.
Also remove code that allocates more than 32MB because current
implementation supports only up to 32MB.
[42.hyeyoo@gmail.com: fix support for clang 10]
Link: https://lkml.kernel.org/r/20210518181247.GA10062@hyeyoo
[vbabka@suse.cz: fix false-positive assert in kernel/bpf/local_storage.c]
Link: https://lkml.kernel.org/r/bea97388-01df-8eac-091b-a3c89b4a4a09@suse.czLink: https://lkml.kernel.org/r/20210511173448.GA54466@hyeyoo
[elver@google.com: kfence fix]
Link: https://lkml.kernel.org/r/20210512195227.245000695c9014242e9a00e5@linux-foundation.org
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is better to use __func__ to trace function name.
Link: https://lkml.kernel.org/r/31fdbad5c45cd1e26be9ff37be321b8586b80fee.1624355507.git.gumingtao@xiaomi.com
Signed-off-by: gumingtao <gumingtao@xiaomi.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The redzone area for SLUB exists between s->object_size and s->inuse
(which is at least the word-aligned object_size). If a cache were
created with an object_size smaller than sizeof(void *), the in-object
stored freelist pointer would overwrite the redzone (e.g. with boot
param "slub_debug=ZF"):
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): f6 f4 a5 40 1d e8 ...@..
Redzone (____ptrval____): 1a aa ..
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Store the freelist pointer out of line when object_size is smaller than
sizeof(void *) and redzoning is enabled.
Additionally remove the "smaller than sizeof(void *)" check under
CONFIG_DEBUG_VM in kmem_cache_sanity_check() as it is now redundant:
SLAB and SLOB both handle small sizes.
(Note that no caches within this size range are known to exist in the
kernel currently.)
Link: https://lkml.kernel.org/r/20210608183955.280836-3-keescook@chromium.org
Fixes: 81819f0fc828 ("SLUB core")
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Lin, Zhenpeng" <zplin@psu.edu>
Cc: Marco Elver <elver@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul E. McKenney reported [1] that commit 1f0723a4c0df ("mm, slub: enable
slub_debug static key when creating cache with explicit debug flags")
results in the lockdep complaint:
======================================================
WARNING: possible circular locking dependency detected
5.12.0+ #15 Not tainted
------------------------------------------------------
rcu_torture_sta/109 is trying to acquire lock:
ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20
but task is already holding lock:
ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (slab_mutex){+.+.}-{3:3}:
lock_acquire+0xb9/0x3a0
__mutex_lock+0x8d/0x920
slub_cpu_dead+0x15/0xf0
cpuhp_invoke_callback+0x17a/0x7c0
cpuhp_invoke_callback_range+0x3b/0x80
_cpu_down+0xdf/0x2a0
cpu_down+0x2c/0x50
device_offline+0x82/0xb0
remove_cpu+0x1a/0x30
torture_offline+0x80/0x140
torture_onoff+0x147/0x260
kthread+0x10a/0x140
ret_from_fork+0x22/0x30
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
check_prev_add+0x8f/0xbf0
__lock_acquire+0x13f0/0x1d80
lock_acquire+0xb9/0x3a0
cpus_read_lock+0x21/0xa0
static_key_enable+0x9/0x20
__kmem_cache_create+0x38d/0x430
kmem_cache_create_usercopy+0x146/0x250
kmem_cache_create+0xd/0x10
rcu_torture_stats+0x79/0x280
kthread+0x10a/0x140
ret_from_fork+0x22/0x30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(slab_mutex);
lock(cpu_hotplug_lock);
lock(slab_mutex);
lock(cpu_hotplug_lock);
*** DEADLOCK ***
1 lock held by rcu_torture_sta/109:
#0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250
stack backtrace:
CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
dump_stack+0x6d/0x89
check_noncircular+0xfe/0x110
? lock_is_held_type+0x98/0x110
check_prev_add+0x8f/0xbf0
__lock_acquire+0x13f0/0x1d80
lock_acquire+0xb9/0x3a0
? static_key_enable+0x9/0x20
? mark_held_locks+0x49/0x70
cpus_read_lock+0x21/0xa0
? static_key_enable+0x9/0x20
static_key_enable+0x9/0x20
__kmem_cache_create+0x38d/0x430
kmem_cache_create_usercopy+0x146/0x250
? rcu_torture_stats_print+0xd0/0xd0
kmem_cache_create+0xd/0x10
rcu_torture_stats+0x79/0x280
? rcu_torture_stats_print+0xd0/0xd0
kthread+0x10a/0x140
? kthread_park+0x80/0x80
ret_from_fork+0x22/0x30
This is because there's one order of locking from the hotplug callbacks:
lock(cpu_hotplug_lock); // from hotplug machinery itself
lock(slab_mutex); // in e.g. slab_mem_going_offline_callback()
And commit 1f0723a4c0df made the reverse sequence possible:
lock(slab_mutex); // in kmem_cache_create_usercopy()
lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable()
The simplest fix is to move static_key_enable() to a place before slab_mutex is
taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not
ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it
at least self-contained and obvious.
[1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/
Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz
Fixes: 1f0723a4c0df ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a minor addition to the allocator setup options to provide a
simple way to on demand enable back cache merging for builds that by
default run with CONFIG_SLAB_MERGE_DEFAULT not set.
Link: https://lkml.kernel.org/r/20210319194506.200159-1-aquini@redhat.com
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds a few crude tests for mem_dump_obj() to rcutorture
runs. Just to prevent bitrot, you understand!
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The mem_dump_obj() functionality adds a few hundred bytes, which is a
small price to pay. Except on kernels built with CONFIG_PRINTK=n, in
which mem_dump_obj() messages will be suppressed. This commit therefore
makes mem_dump_obj() be a static inline empty function on kernels built
with CONFIG_PRINTK=n and excludes all of its support functions as well.
This avoids kernel bloat on systems that cannot use mem_dump_obj().
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <linux-mm@kvack.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, krealloc() always calls ksize(), which unpoisons the whole
object including the redzone. This is inefficient, as kasan_krealloc()
repoisons the redzone for objects that fit into the same buffer.
This patch changes krealloc() instrumentation to use uninstrumented
__ksize() that doesn't unpoison the memory. Instead, kasan_kreallos() is
changed to unpoison the memory excluding the redzone.
For objects that don't fit into the old allocation, this patch disables
KASAN accessibility checks when copying memory into a new object instead
of unpoisoning it.
Link: https://lkml.kernel.org/r/9bef90327c9cb109d736c40115684fd32f49e6b0.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if krealloc() is called on a freed object with KASAN enabled,
it allocates and returns a new object, but doesn't copy any memory from
the old one as ksize() returns 0. This makes the caller believe that
krealloc() succeeded (KASAN report is printed though).
This patch adds an accessibility check into __do_krealloc(). If the check
fails, krealloc() returns NULL. This check duplicates the one in ksize();
this is fixed in the following patch.
This patch also adds a KASAN-KUnit test to check krealloc() behaviour when
it's called on a freed object.
Link: https://lkml.kernel.org/r/cbcf7b02be0a1ca11de4f833f2ff0b3f2c9b00c8.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: optimizations and fixes for HW_TAGS", v4.
This patchset makes the HW_TAGS mode more efficient, mostly by reworking
poisoning approaches and simplifying/inlining some internal helpers.
With this change, the overhead of HW_TAGS annotations excluding setting
and checking memory tags is ~3%. The performance impact caused by tags
will be unknown until we have hardware that supports MTE.
As a side-effect, this patchset speeds up generic KASAN by ~15%.
This patch (of 13):
Currently KASAN saves allocation stacks in both kasan_slab_alloc() and
kasan_kmalloc() annotations. This patch changes KASAN to save allocation
stacks for slab objects from kmalloc caches in kasan_kmalloc() only, and
stacks for other slab objects in kasan_slab_alloc() only.
This change requires ____kasan_kmalloc() knowing whether the object
belongs to a kmalloc cache. This is implemented by adding a flag field to
the kasan_info structure. That flag is only set for kmalloc caches via a
new kasan_cache_create_kmalloc() annotation.
Link: https://lkml.kernel.org/r/cover.1612546384.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/7c673ebca8d00f40a7ad6f04ab9a2bddeeae2097.1612546384.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inserts KFENCE hooks into the SLAB allocator.
To pass the originally requested size to KFENCE, add an argument
'orig_size' to slab_alloc*(). The additional argument is required to
preserve the requested original size for kmalloc() allocations, which
uses size classes (e.g. an allocation of 272 bytes will return an object
of size 512). Therefore, kmem_cache::size does not represent the
kmalloc-caller's requested size, and we must introduce the argument
'orig_size' to propagate the originally requested size to KFENCE.
Without the originally requested size, we would not be able to detect
out-of-bounds accesses for objects placed at the end of a KFENCE object
page if that object is not equal to the kmalloc-size class it was
bucketed into.
When KFENCE is disabled, there is no additional overhead, since
slab_alloc*() functions are __always_inline.
Link: https://lkml.kernel.org/r/20201103175841.3495947-5-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The currently existing kasan_check_read/write() annotations are intended
to be used for kernel modules that have KASAN compiler instrumentation
disabled. Thus, they are only relevant for the software KASAN modes that
rely on compiler instrumentation.
However there's another use case for these annotations: ksize() checks
that the object passed to it is indeed accessible before unpoisoning the
whole object. This is currently done via __kasan_check_read(), which is
compiled away for the hardware tag-based mode that doesn't rely on
compiler instrumentation. This leads to KASAN missing detecting some
memory corruptions.
Provide another annotation called kasan_check_byte() that is available
for all KASAN modes. As the implementation rename and reuse
kasan_check_invalid_free(). Use this new annotation in ksize().
To avoid having ksize() as the top frame in the reported stack trace
pass _RET_IP_ to __kasan_check_byte().
Also add a new ksize_uaf() test that checks that a use-after-free is
detected via ksize() itself, and via plain accesses that happen later.
Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5
Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB currently account kmalloc() and kmalloc_node() allocations larger
than order-1 page per-node. But it forget to update the per-memcg
vmstats. So it can lead to inaccurate statistics of "slab_unreclaimable"
which is from memory.stat. Fix it by using mod_lruvec_page_state instead
of mod_node_page_state.
Link: https://lkml.kernel.org/r/20210223092423.42420-1-songmuchun@bytedance.com
Fixes: 6a486c0ad4dc ("mm, sl[ou]b: improve memory accounting")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB has been using get/put_online_cpus() around creating, destroying and
shrinking kmem caches since 95402b382901 ("cpu-hotplug: replace
per-subsystem mutexes with get_online_cpus()") in 2008, which is supposed
to be replacing a private mutex (cache_chain_mutex, called slab_mutex
today) with system-wide mechanism, but in case of SLAB it's in fact used
in addition to the existing mutex, without explanation why.
SLUB appears to have avoided the cpu hotplug lock initially, but gained it
due to common code unification, such as 20cea9683ecc ("mm, sl[aou]b: Move
kmem_cache_create mutex handling to common code").
Regardless of the history, checking if the hotplug lock is actually needed
today suggests that it's not, and therefore it's better to avoid this
system-wide lock and the ordering this imposes wrt other locks (such as
slab_mutex).
Specifically, in SLAB we have for_each_online_cpu() in do_tune_cpucache()
protected by slab_mutex, and cpu hotplug callbacks that also take the
slab_mutex, which is also taken by the common slab function that currently
also take the hotplug lock. Thus the slab_mutex protection should be
sufficient. Also per-cpu array caches are allocated for each possible
cpu, so not affected by their online/offline state.
In SLUB we have for_each_online_cpu() in functions that show statistics
and are already unprotected today, as racing with hotplug is not harmful.
Otherwise SLUB relies on percpu allocator. The slub_cpu_dead() hotplug
callback takes the slab_mutex.
To sum up, this patch removes get/put_online_cpus() calls from slab as it
should be safe without further adjustments.
Link: https://lkml.kernel.org/r/20210113131634.3671-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Qian Cai <cai@redhat.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 03afc0e25f7f ("slab: get_online_mems for
kmem_cache_{create,destroy,shrink}") we are taking memory hotplug lock for
SLAB and SLUB when creating, destroying or shrinking a cache. It is quite
a heavy lock and it's best to avoid it if possible, as we had several
issues with lockdep complaining about ordering in the past, see e.g.
e4f8e513c3d3 ("mm/slub: fix a deadlock in show_slab_objects()").
The problem scenario in 03afc0e25f7f (solved by the memory hotplug lock)
can be summarized as follows: while there's slab_mutex synchronizing new
kmem cache creation and SLUB's MEM_GOING_ONLINE callback
slab_mem_going_online_callback(), we may miss creation of kmem_cache_node
for the hotplugged node in the new kmem cache, because the hotplug
callback doesn't yet see the new cache, and cache creation in
init_kmem_cache_nodes() only inits kmem_cache_node for nodes in the
N_NORMAL_MEMORY nodemask, which however may not yet include the new node,
as that happens only later after the MEM_GOING_ONLINE callback.
Instead of using get/put_online_mems(), the problem can be solved by SLUB
maintaining its own nodemask of nodes for which it has allocated the
per-node kmem_cache_node structures. This nodemask would generally mirror
the N_NORMAL_MEMORY nodemask, but would be updated only in under SLUB's
control in its memory hotplug callbacks under the slab_mutex. This patch
adds such nodemask and its handling.
Commit 03afc0e25f7f mentiones "issues like [the one above]", but there
don't appear to be further issues. All the paths (shared for SLAB and
SLUB) taking the memory hotplug locks are also taking the slab_mutex,
except kmem_cache_shrink() where 03afc0e25f7f replaced slab_mutex with
get/put_online_mems().
We however cannot simply restore slab_mutex in kmem_cache_shrink(), as
SLUB can enters the function from a write to sysfs 'shrink' file, thus
holding kernfs lock, and in kmem_cache_create() the kernfs lock is nested
within slab_mutex. But on closer inspection we don't actually need to
protect kmem_cache_shrink() from hotplug callbacks: While SLUB's
__kmem_cache_shrink() does for_each_kmem_cache_node(), missing a new node
added in parallel hotplug is not fatal, and parallel hotremove does not
free kmem_cache_node's anymore after the previous patch, so use-after free
cannot happen. The per-node shrinking itself is protected by
n->list_lock. Same is true for SLAB, and SLOB is no-op.
SLAB also doesn't need the memory hotplug locking, which it only gained by
03afc0e25f7f through the shared paths in slab_common.c. Its memory
hotplug callbacks are also protected by slab_mutex against races with
these paths. The problem of SLUB relying on N_NORMAL_MEMORY doesn't apply
to SLAB, as its setup_kmem_cache_nodes relies on N_ONLINE, and the new
node is already set there during the MEM_GOING_ONLINE callback, so no
special care is needed for SLAB.
As such, this patch removes all get/put_online_mems() usage by the slab
subsystem.
Link: https://lkml.kernel.org/r/20210113131634.3671-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Qian Cai <cai@redhat.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This argument hasn't been used since e153362a50a3 ("slub: Remove objsize
check in kmem_cache_flags()") so simply remove it.
Link: https://lkml.kernel.org/r/20210126095733.974665-1-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are kernel facilities such as per-CPU reference counts that give
error messages in generic handlers or callbacks, whose messages are
unenlightening. In the case of per-CPU reference-count underflow, this
is not a problem when creating a new use of this facility because in that
case the bug is almost certainly in the code implementing that new use.
However, trouble arises when deploying across many systems, which might
exercise corner cases that were not seen during development and testing.
Here, it would be really nice to get some kind of hint as to which of
several uses the underflow was caused by.
This commit therefore exposes a mem_dump_obj() function that takes
a pointer to memory (which must still be allocated if it has been
dynamically allocated) and prints available information on where that
memory came from. This pointer can reference the middle of the block as
well as the beginning of the block, as needed by things like RCU callback
functions and timer handlers that might not know where the beginning of
the memory block is. These functions and handlers can use mem_dump_obj()
to print out better hints as to where the problem might lie.
The information printed can depend on kernel configuration. For example,
the allocation return address can be printed only for slab and slub,
and even then only when the necessary debug has been enabled. For slab,
build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space
to the next power of two or use the SLAB_STORE_USER when creating the
kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and
boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create()
if more focused use is desired. Also for slub, use CONFIG_STACKTRACE
to enable printing of the allocation-time stack trace.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
[ paulmck: Convert to printing and change names per Joonsoo Kim. ]
[ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ]
[ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ]
[ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ]
[ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ]
[ paulmck: Explicitly check for small pointers per Naresh Kamboju. ]
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The reason cache merging is disabled with KASAN is because KASAN puts its
metadata right after the allocated object. When the merged caches have
slightly different sizes, the metadata ends up in different places, which
KASAN doesn't support.
It might be possible to adjust the metadata allocation algorithm and make
it friendly to the cache merging code. Instead this change takes a simpler
approach and allows merging caches when no metadata is present. Which is
the case for hardware tag-based KASAN with kasan.mode=prod.
Link: https://lkml.kernel.org/r/37497e940bfd4b32c0a93a702a9ae4cf061d5392.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ia114847dfb2244f297d2cb82d592bf6a07455dba
Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "slab: provide and use krealloc_array()", v3.
Andy brought to my attention the fact that users allocating an array of
equally sized elements should check if the size multiplication doesn't
overflow. This is why we have helpers like kmalloc_array().
However we don't have krealloc_array() equivalent and there are many users
who do their own multiplication when calling krealloc() for arrays.
This series provides krealloc_array() and uses it in a couple places.
A separate series will follow adding devm_krealloc_array() which is needed
in the xilinx adc driver.
This patch (of 9):
__GFP_ZERO is ignored by krealloc() (unless we fall-back to kmalloc()
path, in which case it's honored). Point that out in the kerneldoc.
Link: https://lkml.kernel.org/r/20201109110654.12547-1-brgl@bgdev.pl
Link: https://lkml.kernel.org/r/20201109110654.12547-2-brgl@bgdev.pl
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: Christian Knig <christian.koenig@amd.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: James Morse <james.morse@arm.com>
Cc: Robert Richter <rric@kernel.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_unreclaimable_slab() acquires the slab_mutex first, and it won't
remove any slab_caches list entry when itering the slab_caches lists.
Thus we do not need list_for_each_entry_safe here, which is against
removal of list entry.
Link: https://lkml.kernel.org/r/20200926043440.GA180545@rlk
Signed-off-by: Hui Su <sh_def@163.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop the repeated word "and".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-12-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of having two sets of kmem_caches: one for system-wide and
non-accounted allocations and the second one shared by all accounted
allocations, we can use just one.
The idea is simple: space for obj_cgroup metadata can be allocated on
demand and filled only for accounted allocations.
It allows to remove a bunch of code which is required to handle kmem_cache
clones for accounted allocations. There is no more need to create them,
accumulate statistics, propagate attributes, etc. It's a quite
significant simplification.
Also, because the total number of slab_caches is reduced almost twice (not
all kmem_caches have a memcg clone), some additional memory savings are
expected. On my devvm it additionally saves about 3.5% of slab memory.
[guro@fb.com: fix build on MIPS]
Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_accumulate_slabinfo() is never called with a non-root kmem_cache as
a first argument, so the is_root_cache(s) check is redundant and can be
removed without any functional change.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-17-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there are two lists of kmem_caches:
1) slab_caches, which contains all kmem_caches,
2) slab_root_caches, which contains only root kmem_caches.
And there is some preprocessor magic to have a single list if
CONFIG_MEMCG_KMEM isn't enabled.
It was required earlier because the number of non-root kmem_caches was
proportional to the number of memory cgroups and could reach really big
values. Now, when it cannot exceed the number of root kmem_caches, there
is really no reason to maintain two lists.
We never iterate over the slab_root_caches list on any hot paths, so it's
perfectly fine to iterate over slab_caches and filter out non-root
kmem_caches.
It allows to remove a lot of config-dependent code and two pointers from
the kmem_cache structure.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-16-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_kmem_get_cache() function became really trivial, so let's just
inline it into the single call point: memcg_slab_pre_alloc_hook().
It will make the code less bulky and can also help the compiler to
generate a better code.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because the number of non-root kmem_caches doesn't depend on the number of
memory cgroups anymore and is generally not very big, there is no more
need for a dedicated workqueue.
Also, as there is no more need to pass any arguments to the
memcg_create_kmem_cache() except the root kmem_cache, it's possible to
just embed the work structure into the kmem_cache and avoid the dynamic
allocation of the work structure.
This will also simplify the synchronization: for each root kmem_cache
there is only one work. So there will be no more concurrent attempts to
create a non-root kmem_cache for a root kmem_cache: the second and all
following attempts to queue the work will fail.
On the kmem_cache destruction path there is no more need to call the
expensive flush_workqueue() and wait for all pending works to be finished.
Instead, cancel_work_sync() can be used to cancel/wait for only one work.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is fairly big but mostly red patch, which makes all accounted slab
allocations use a single set of kmem_caches instead of creating a separate
set for each memory cgroup.
Because the number of non-root kmem_caches is now capped by the number of
root kmem_caches, there is no need to shrink or destroy them prematurely.
They can be perfectly destroyed together with their root counterparts.
This allows to dramatically simplify the management of non-root
kmem_caches and delete a ton of code.
This patch performs the following changes:
1) introduces memcg_params.memcg_cache pointer to represent the
kmem_cache which will be used for all non-root allocations
2) reuses the existing memcg kmem_cache creation mechanism
to create memcg kmem_cache on the first allocation attempt
3) memcg kmem_caches are named <kmemcache_name>-memcg,
e.g. dentry-memcg
4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache
or schedule it's creation and return the root cache
5) removes almost all non-root kmem_cache management code
(separate refcounter, reparenting, shrinking, etc)
6) makes slab debugfs to display root_mem_cgroup css id and never
show :dead and :deact flags in the memcg_slabinfo attribute.
Following patches in the series will simplify the kmem_cache creation.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deprecate memory.kmem.slabinfo.
An empty file will be presented if corresponding config options are
enabled.
The interface is implementation dependent, isn't present in cgroup v2, and
is generally useful only for core mm debugging purposes. In other words,
it doesn't provide any value for the absolute majority of users.
A drgn-based replacement can be found in
tools/cgroup/memcg_slabinfo.py. It does support cgroup v1 and v2,
mimics memory.kmem.slabinfo output and also allows to get any
additional information without a need to recompile the kernel.
If a drgn-based solution is too slow for a task, a bpf-based tracing tool
can be used, which can easily keep track of all slab allocations belonging
to a memory cgroup.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to prepare for per-object slab memory accounting, convert
NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes.
To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and
NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB).
Internally global and per-node counters are stored in pages, however memcg
and lruvec counters are stored in bytes. This scheme may look weird, but
only for now. As soon as slab pages will be shared between multiple
cgroups, global and node counters will reflect the total number of slab
pages. However memcg and lruvec counters will be used for per-memcg slab
memory tracking, which will take separate kernel objects in the account.
Keeping global and node counters in pages helps to avoid additional
overhead.
The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it
will fit into atomic_long_t we use for vmstats.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmalloc cannot allocate memory from HIGHMEM. Allocating large amounts of
memory currently bypasses the check and will simply leak the memory when
page_address() returns NULL. To fix this, factor the GFP_SLAB_BUG_MASK
check out of slab & slub, and call it from kmalloc_order() as well. In
order to make the code clear, the warning message is put in one place.
Signed-off-by: Long Li <lonuxli.64@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Other mm routines such as kfree() and kzfree() silently do the right thing
if passed a NULL pointer, so ksize() should do the same.
Signed-off-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200616225409.4670-1-william.kucharski@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>