66 Commits

Author SHA1 Message Date
Linus Torvalds
039aeb9deb ARM:
- Move the arch-specific code into arch/arm64/kvm
 - Start the post-32bit cleanup
 - Cherry-pick a few non-invasive pre-NV patches
 
 x86:
 - Rework of TLB flushing
 - Rework of event injection, especially with respect to nested virtualization
 - Nested AMD event injection facelift, building on the rework of generic code
 and fixing a lot of corner cases
 - Nested AMD live migration support
 - Optimization for TSC deadline MSR writes and IPIs
 - Various cleanups
 - Asynchronous page fault cleanups (from tglx, common topic branch with tip tree)
 - Interrupt-based delivery of asynchronous "page ready" events (host side)
 - Hyper-V MSRs and hypercalls for guest debugging
 - VMX preemption timer fixes
 
 s390:
 - Cleanups
 
 Generic:
 - switch vCPU thread wakeup from swait to rcuwait
 
 The other architectures, and the guest side of the asynchronous page fault
 work, will come next week.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp
 ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1
 5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4
 7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ
 asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy
 CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg==
 =v7Wn
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - Move the arch-specific code into arch/arm64/kvm

   - Start the post-32bit cleanup

   - Cherry-pick a few non-invasive pre-NV patches

  x86:
   - Rework of TLB flushing

   - Rework of event injection, especially with respect to nested
     virtualization

   - Nested AMD event injection facelift, building on the rework of
     generic code and fixing a lot of corner cases

   - Nested AMD live migration support

   - Optimization for TSC deadline MSR writes and IPIs

   - Various cleanups

   - Asynchronous page fault cleanups (from tglx, common topic branch
     with tip tree)

   - Interrupt-based delivery of asynchronous "page ready" events (host
     side)

   - Hyper-V MSRs and hypercalls for guest debugging

   - VMX preemption timer fixes

  s390:
   - Cleanups

  Generic:
   - switch vCPU thread wakeup from swait to rcuwait

  The other architectures, and the guest side of the asynchronous page
  fault work, will come next week"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
  KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
  KVM: check userspace_addr for all memslots
  KVM: selftests: update hyperv_cpuid with SynDBG tests
  x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
  x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
  x86/kvm/hyper-v: Add support for synthetic debugger interface
  x86/hyper-v: Add synthetic debugger definitions
  KVM: selftests: VMX preemption timer migration test
  KVM: nVMX: Fix VMX preemption timer migration
  x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
  KVM: x86/pmu: Support full width counting
  KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
  KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
  KVM: x86: acknowledgment mechanism for async pf page ready notifications
  KVM: x86: interrupt based APF 'page ready' event delivery
  KVM: introduce kvm_read_guest_offset_cached()
  KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
  KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
  Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
  KVM: VMX: Replace zero-length array with flexible-array
  ...
2020-06-03 15:13:47 -07:00
Will Deacon
082af5ec50 Merge branch 'for-next/scs' into for-next/core
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
  arm64: entry-ftrace.S: Update comment to indicate that x18 is live
  scs: Move DEFINE_SCS macro into core code
  scs: Remove references to asm/scs.h from core code
  scs: Move scs_overflow_check() out of architecture code
  arm64: scs: Use 'scs_sp' register alias for x18
  scs: Move accounting into alloc/free functions
  arm64: scs: Store absolute SCS stack pointer value in thread_info
  efi/libstub: Disable Shadow Call Stack
  arm64: scs: Add shadow stacks for SDEI
  arm64: Implement Shadow Call Stack
  arm64: Disable SCS for hypervisor code
  arm64: vdso: Disable Shadow Call Stack
  arm64: efi: Restore register x18 if it was corrupted
  arm64: Preserve register x18 when CPU is suspended
  arm64: Reserve register x18 from general allocation with SCS
  scs: Disable when function graph tracing is enabled
  scs: Add support for stack usage debugging
  scs: Add page accounting for shadow call stack allocations
  scs: Add support for Clang's Shadow Call Stack (SCS)
2020-05-28 18:03:40 +01:00
Will Deacon
51189c7a7e arm64: scs: Store absolute SCS stack pointer value in thread_info
Storing the SCS information in thread_info as a {base,offset} pair
introduces an additional load instruction on the ret-to-user path,
since the SCS stack pointer in x18 has to be converted back to an offset
by subtracting the base.

Replace the offset with the absolute SCS stack pointer value instead
and avoid the redundant load.

Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-18 17:47:22 +01:00
Will Deacon
d82755b2e7 KVM: arm64: Kill off CONFIG_KVM_ARM_HOST
CONFIG_KVM_ARM_HOST is just a proxy for CONFIG_KVM, so remove it in favour
of the latter.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200505154520.194120-2-tabba@google.com
2020-05-16 15:04:18 +01:00
Sami Tolvanen
5287569a79 arm64: Implement Shadow Call Stack
This change implements shadow stack switching, initial SCS set-up,
and interrupt shadow stacks for arm64.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-15 16:35:50 +01:00
Mark Rutland
62a679cb28 arm64: simplify ptrauth initialization
Currently __cpu_setup conditionally initializes the address
authentication keys and enables them in SCTLR_EL1, doing so differently
for the primary CPU and secondary CPUs, and skipping this work for CPUs
returning from an idle state. For the latter case, cpu_do_resume
restores the keys and SCTLR_EL1 value after the MMU has been enabled.

This flow is rather difficult to follow, so instead let's move the
primary and secondary CPU initialization into their respective boot
paths. By following the example of cpu_do_resume and doing so once the
MMU is enabled, we can always initialize the keys from the values in
thread_struct, and avoid the machinery necessary to pass the keys in
secondary_data or open-coding initialization for the boot CPU.

This means we perform an additional RMW of SCTLR_EL1, but we already do
this in the cpu_do_resume path, and for other features in cpufeature.c,
so this isn't a major concern in a bringup path. Note that even while
the enable bits are clear, the key registers are accessible.

As this now renders the argument to __cpu_setup redundant, let's also
remove that entirely. Future extensions can follow a similar approach to
initialize values that differ for primary/secondary CPUs.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2020-04-28 11:23:21 +01:00
Kristina Martsenko
33e4523498 arm64: initialize and switch ptrauth kernel keys
Set up keys to use pointer authentication within the kernel. The kernel
will be compiled with APIAKey instructions, the other keys are currently
unused. Each task is given its own APIAKey, which is initialized during
fork. The key is changed during context switch and on kernel entry from
EL0.

The keys for idle threads need to be set before calling any C functions,
because it is not possible to enter and exit a function with different
keys.

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Modified secondary cores key structure, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-18 09:50:20 +00:00
Kristina Martsenko
be12984256 arm64: install user ptrauth keys at kernel exit time
As we're going to enable pointer auth within the kernel and use a
different APIAKey for the kernel itself, so move the user APIAKey
switch to EL0 exception return.

The other 4 keys could remain switched during task switch, but are also
moved to keep things consistent.

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: commit msg, re-positioned the patch, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-18 09:50:19 +00:00
Mark Rutland
1f377e043b arm64: asm-offsets: add S_FP
So that assembly code can more easily manipulate the FP (x29) within a
pt_regs, add an S_FP asm-offsets definition.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
2019-11-06 14:17:34 +00:00
Catalin Marinas
94fee4d437 arm64: vdso: Remove unnecessary asm-offsets.c definitions
Since the VDSO code has moved to C from assembly, there is no need to
define and maintain the corresponding asm offsets.

Fixes: 28b1a824a4f4 ("arm64: vdso: Substitute gettimeofday() with C implementation")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Cc: Shijith Thotton <sthotton@marvell.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Link: https://lkml.kernel.org/r/20190624135812.GC29120@arrakis.emea.arm.com
2019-06-26 07:28:10 +02:00
Vincenzo Frascino
f14d8025d2 arm64: compat: Generate asm offsets for signals
Update asm-offsets for arm64 to generate the correct offsets for
compat signals.

They will be useful for the implementation of the compat sigreturn
trampolines in vDSO context.

Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shijith Thotton <sthotton@marvell.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Link: https://lkml.kernel.org/r/20190621095252.32307-9-vincenzo.frascino@arm.com
2019-06-22 21:21:07 +02:00
Vincenzo Frascino
28b1a824a4 arm64: vdso: Substitute gettimeofday() with C implementation
To take advantage of the commonly defined vdso interface for gettimeofday()
the architectural code requires an adaptation.

Re-implement the gettimeofday VDSO in C in order to use lib/vdso.

With the new implementation arm64 gains support for CLOCK_BOOTTIME
and CLOCK_TAI.

[ tglx: Reformatted the function line breaks ]

Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shijith Thotton <sthotton@marvell.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Link: https://lkml.kernel.org/r/20190621095252.32307-5-vincenzo.frascino@arm.com
2019-06-22 21:21:06 +02:00
Thomas Gleixner
caab277b1d treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not see http www gnu org
  licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 503 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:07 +02:00
Linus Torvalds
0ef0fd3515 * ARM: support for SVE and Pointer Authentication in guests, PMU improvements
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
 memory and performance optimizations.
 
 * x86: support for accessing memory not backed by struct page, fixes and refactoring
 
 * Generic: dirty page tracking improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
 PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
 nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
 Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
 eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
 hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
 =D0+p
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - support for SVE and Pointer Authentication in guests
   - PMU improvements

  POWER:
   - support for direct access to the POWER9 XIVE interrupt controller
   - memory and performance optimizations

  x86:
   - support for accessing memory not backed by struct page
   - fixes and refactoring

  Generic:
   - dirty page tracking improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
  kvm: fix compilation on aarch64
  Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
  kvm: x86: Fix L1TF mitigation for shadow MMU
  KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
  KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
  KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
  KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
  kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
  tests: kvm: Add tests for KVM_SET_NESTED_STATE
  KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
  tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
  tests: kvm: Add tests to .gitignore
  KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
  KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
  KVM: Fix the bitmap range to copy during clear dirty
  KVM: arm64: Fix ptrauth ID register masking logic
  KVM: x86: use direct accessors for RIP and RSP
  KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
  KVM: x86: Omit caching logic for always-available GPRs
  kvm, x86: Properly check whether a pfn is an MMIO or not
  ...
2019-05-17 10:33:30 -07:00
Andrew Murray
630a16854d arm64: KVM: Encapsulate kvm_cpu_context in kvm_host_data
The virt/arm core allocates a kvm_cpu_context_t percpu, at present this is
a typedef to kvm_cpu_context and is used to store host cpu context. The
kvm_cpu_context structure is also used elsewhere to hold vcpu context.
In order to use the percpu to hold additional future host information we
encapsulate kvm_cpu_context in a new structure and rename the typedef and
percpu to match.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:35:24 +01:00
Mark Rutland
384b40caa8 KVM: arm/arm64: Context-switch ptrauth registers
When pointer authentication is supported, a guest may wish to use it.
This patch adds the necessary KVM infrastructure for this to work, with
a semi-lazy context switch of the pointer auth state.

Pointer authentication feature is only enabled when VHE is built
in the kernel and present in the CPU implementation so only VHE code
paths are modified.

When we schedule a vcpu, we disable guest usage of pointer
authentication instructions and accesses to the keys. While these are
disabled, we avoid context-switching the keys. When we trap the guest
trying to use pointer authentication functionality, we change to eagerly
context-switching the keys, and enable the feature. The next time the
vcpu is scheduled out/in, we start again. However the host key save is
optimized and implemented inside ptrauth instruction/register access
trap.

Pointer authentication consists of address authentication and generic
authentication, and CPUs in a system might have varied support for
either. Where support for either feature is not uniform, it is hidden
from guests via ID register emulation, as a result of the cpufeature
framework in the host.

Unfortunately, address authentication and generic authentication cannot
be trapped separately, as the architecture provides a single EL2 trap
covering both. If we wish to expose one without the other, we cannot
prevent a (badly-written) guest from intermittently using a feature
which is not uniformly supported (when scheduled on a physical CPU which
supports the relevant feature). Hence, this patch expects both type of
authentication to be present in a cpu.

This switch of key is done from guest enter/exit assembly as preparation
for the upcoming in-kernel pointer authentication support. Hence, these
key switching routines are not implemented in C code as they may cause
pointer authentication key signing error in some situations.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[Only VHE, key switch in full assembly, vcpu_has_ptrauth checks
, save host key in ptrauth exception trap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
[maz: various fixups]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:30:40 +01:00
Vincenzo Frascino
81fb8736dd arm64: vdso: Fix clock_getres() for CLOCK_REALTIME
clock_getres() in the vDSO library has to preserve the same behaviour
of posix_get_hrtimer_res().

In particular, posix_get_hrtimer_res() does:

    sec = 0;
    ns = hrtimer_resolution;

where 'hrtimer_resolution' depends on whether or not high resolution
timers are enabled, which is a runtime decision.

The vDSO incorrectly returns the constant CLOCK_REALTIME_RES. Fix this
by exposing 'hrtimer_resolution' in the vDSO datapage and returning that
instead.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
[will: Use WRITE_ONCE(), move adr off COARSE path, renumber labels, use 'w' reg]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-16 18:15:56 +01:00
Julien Thierry
133d051863 arm64: Make PMR part of task context
In order to replace PSR.I interrupt disabling/enabling with ICC_PMR_EL1
interrupt masking, ICC_PMR_EL1 needs to be saved/restored when
taking/returning from an exception. This mimics the way hardware saves
and restores PSR.I bit in spsr_el1 for exceptions and ERET.

Add PMR to the registers to save in the pt_regs struct upon kernel entry,
and restore it before ERET. Also, initialize it to a sane value when
creating new tasks.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:18 +00:00
Andrew Murray
83a680dd97 arm64: asm-offsets: remove unused offsets
There are a number of offsets defined in asm-offsets.c which no longer
have any users. Let's clean this up by removing them.

All the remaining offsets are in use.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-01-21 16:26:29 +00:00
Ard Biesheuvel
0a1213fa74 arm64: enable per-task stack canaries
This enables the use of per-task stack canary values if GCC has
support for emitting the stack canary reference relative to the
value of sp_el0, which holds the task struct pointer in the arm64
kernel.

The $(eval) extends KBUILD_CFLAGS at the moment the make rule is
applied, which means asm-offsets.o (which we rely on for the offset
value) is built without the arguments, and everything built afterwards
has the options set.

Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-12 18:45:31 +00:00
Marc Zyngier
b4f18c063a arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests
In order to forward the guest's ARCH_WORKAROUND_2 calls to EL3,
add a small(-ish) sequence to handle it at EL2. Special care must
be taken to track the state of the guest itself by updating the
workaround flags. We also rely on patching to enable calls into
the firmware.

Note that since we need to execute branches, this always executes
after the Spectre-v2 mitigation has been applied.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-05-31 18:00:57 +01:00
Ard Biesheuvel
24534b3511 arm64: assembler: add macros to conditionally yield the NEON under PREEMPT
Add support macros to conditionally yield the NEON (and thus the CPU)
that may be called from the assembler code.

In some cases, yielding the NEON involves saving and restoring a non
trivial amount of context (especially in the CRC folding algorithms),
and so the macro is split into three, and the code in between is only
executed when the yield path is taken, allowing the context to be preserved.
The third macro takes an optional label argument that marks the resume
path after a yield has been performed.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-04-11 18:50:34 +01:00
Christoffer Dall
4464e210de KVM: arm64: Avoid storing the vcpu pointer on the stack
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch.  We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.

This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.

This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address.  We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().

The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.

Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 10:53:09 +00:00
James Morse
0067df413b KVM: arm64: Handle RAS SErrors from EL2 on guest exit
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.

There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.

The current SError from EL2 code unmasks SError and tries to fence any
pending SError into a single instruction window. It then leaves SError
unmasked.

With the v8.2 RAS Extensions we may take an SError for a 'corrected'
error, but KVM is only able to handle SError from EL2 if they occur
during this single instruction window...

The RAS Extensions give us a new instruction to synchronise and
consume SErrors. The RAS Extensions document (ARM DDI0587),
'2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising
SError interrupts generated by 'instructions, translation table walks,
hardware updates to the translation tables, and instruction fetches on
the same PE'. This makes ESB equivalent to KVMs existing
'dsb, mrs-daifclr, isb' sequence.

Use the alternatives to synchronise and consume any SError using ESB
instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT
in the exit_code so that we can restart the vcpu if it turns out this
SError has no impact on the vcpu.

Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-16 15:09:36 +00:00
James Morse
f5df269618 arm64: kernel: Add arch-specific SDEI entry code and CPU masking
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.

Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),

Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.

This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.

Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.

Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.

When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13 10:45:17 +00:00
Will Deacon
51a0048beb arm64: mm: Map entry trampoline into trampoline and kernel page tables
The exception entry trampoline needs to be mapped at the same virtual
address in both the trampoline page table (which maps nothing else)
and also the kernel page table, so that we can swizzle TTBR1_EL1 on
exceptions from and return to EL0.

This patch maps the trampoline at a fixed virtual address in the fixmap
area of the kernel virtual address space, which allows the kernel proper
to be randomized with respect to the trampoline when KASLR is enabled.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:50 +00:00
Ard Biesheuvel
7326749801 arm64: unwind: reference pt_regs via embedded stack frame
As it turns out, the unwind code is slightly broken, and probably has
been for a while. The problem is in the dumping of the exception stack,
which is intended to dump the contents of the pt_regs struct at each
level in the call stack where an exception was taken and routed to a
routine marked as __exception (which means its stack frame is right
below the pt_regs struct on the stack).

'Right below the pt_regs struct' is ill defined, though: the unwind
code assigns 'frame pointer + 0x10' to the .sp member of the stackframe
struct at each level, and dump_backtrace() happily dereferences that as
the pt_regs pointer when encountering an __exception routine. However,
the actual size of the stack frame created by this routine (which could
be one of many __exception routines we have in the kernel) is not known,
and so frame.sp is pretty useless to figure out where struct pt_regs
really is.

So it seems the only way to ensure that we can find our struct pt_regs
when walking the stack frames is to put it at a known fixed offset of
the stack frame pointer that is passed to such __exception routines.
The simplest way to do that is to put it inside pt_regs itself, which is
the main change implemented by this patch. As a bonus, doing this allows
us to get rid of a fair amount of cruft related to walking from one stack
to the other, which is especially nice since we intend to introduce yet
another stack for overflow handling once we add support for vmapped
stacks. It also fixes an inconsistency where we only add a stack frame
pointing to ELR_EL1 if we are executing from the IRQ stack but not when
we are executing from the task stack.

To consistly identify exceptions regs even in the presence of exceptions
taken from entry code, we must check whether the next frame was created
by entry text, rather than whether the current frame was crated by
exception text.

To avoid backtracing using PCs that fall in the idmap, or are controlled
by userspace, we must explcitly zero the FP and LR in startup paths, and
must ensure that the frame embedded in pt_regs is zeroed upon entry from
EL0. To avoid these NULL entries showin in the backtrace, unwind_frame()
is updated to avoid them.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: compare current frame against .entry.text, avoid bogus PCs]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
2017-08-09 14:07:13 +01:00
Andy Gross
680a0873e1 arm: kernel: Add SMC structure parameter
This patch adds a quirk parameter to the arm_smccc_(smc/hvc) calls.
The quirk structure allows for specialized SMC operations due to SoC
specific requirements.  The current arm_smccc_(smc/hvc) is renamed and
macros are used instead to specify the standard arm_smccc_(smc/hvc) or
the arm_smccc_(smc/hvc)_quirk function.

This patch and partial implementation was suggested by Will Deacon.

Signed-off-by: Andy Gross <andy.gross@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-03 18:46:33 +00:00
Catalin Marinas
4b65a5db36 arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1
This patch adds the uaccess macros/functions to disable access to user
space by setting TTBR0_EL1 to a reserved zeroed page. Since the value
written to TTBR0_EL1 must be a physical address, for simplicity this
patch introduces a reserved_ttbr0 page at a constant offset from
swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value
adjusted by the reserved_ttbr0 offset.

Enabling access to user is done by restoring TTBR0_EL1 with the value
from the struct thread_info ttbr0 variable. Interrupts must be disabled
during the uaccess_ttbr0_enable code to ensure the atomicity of the
thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the
get_thread_info asm macro from entry.S to assembler.h for reuse in the
uaccess_ttbr0_* macros.

Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-21 18:48:53 +00:00
Mark Rutland
c02433dd6d arm64: split thread_info from task stack
This patch moves arm64's struct thread_info from the task stack into
task_struct. This protects thread_info from corruption in the case of
stack overflows, and makes its address harder to determine if stack
addresses are leaked, making a number of attacks more difficult. Precise
detection and handling of overflow is left for subsequent patches.

Largely, this involves changing code to store the task_struct in sp_el0,
and acquire the thread_info from the task struct. Core code now
implements current_thread_info(), and as noted in <linux/sched.h> this
relies on offsetof(task_struct, thread_info) == 0, enforced by core
code.

This change means that the 'tsk' register used in entry.S now points to
a task_struct, rather than a thread_info as it used to. To make this
clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets
appropriately updated to account for the structural change.

Userspace clobbers sp_el0, and we can no longer restore this from the
stack. Instead, the current task is cached in a per-cpu variable that we
can safely access from early assembly as interrupts are disabled (and we
are thus not preemptible).

Both secondary entry and idle are updated to stash the sp and task
pointer separately.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11 18:25:46 +00:00
Mark Rutland
3fe12da4c7 arm64: asm-offsets: remove unused definitions
Subsequent patches will move the thread_info::{task,cpu} fields, and the
current TI_{TASK,CPU} offset definitions are not used anywhere.

This patch removes the redundant definitions.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11 18:25:42 +00:00
Suzuki K Poulose
116c81f427 arm64: Work around systems with mismatched cache line sizes
Systems with differing CPU i-cache/d-cache line sizes can cause
problems with the cache management by software when the execution
is migrated from one to another. Usually, the application reads
the cache size on a CPU and then uses that length to perform cache
operations. However, if it gets migrated to another CPU with a smaller
cache line size, things could go completely wrong. To prevent such
cases, always use the smallest cache line size among the CPUs. The
kernel CPU feature infrastructure already keeps track of the safe
value for all CPUID registers including CTR. This patch works around
the problem by :

For kernel, dynamically patch the kernel to read the cache size
from the system wide copy of CTR_EL0.

For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT)
and emulate the mrs instruction to return the system wide safe value
of CTR_EL0.

For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0
via read_system_reg), we keep track of the pointer to table entry for
CTR_EL0 in the CPU feature infrastructure.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-09 15:03:29 +01:00
Linus Torvalds
e831101a73 arm64 updates for 4.8:
- Kexec support for arm64
 - Kprobes support
 - Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
 - Trapping of user space cache maintenance operations and emulation in
   the kernel (CPU errata workaround)
 - Clean-up of the early page tables creation (kernel linear mapping, EFI
   run-time maps) to avoid splitting larger blocks (e.g. pmds) into
   smaller ones (e.g. ptes)
 - VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
 - ARCH_HAS_KCOV enabled for arm64
 - Optimise IP checksum helpers
 - SWIOTLB optimisation to only allocate/initialise the buffer if the
   available RAM is beyond the 32-bit mask
 - Properly handle the "nosmp" command line argument
 - Fix for the initialisation of the CPU debug state during early boot
 - vdso-offsets.h build dependency workaround
 - Build fix when RANDOMIZE_BASE is enabled with MODULES off
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
 gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
 YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
 NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
 EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
 D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
 KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
 4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
 IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
 6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
 t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
 7++5WHXHAegeJCDNAKY2
 =iJOY
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Kexec support for arm64

 - Kprobes support

 - Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs

 - Trapping of user space cache maintenance operations and emulation in
   the kernel (CPU errata workaround)

 - Clean-up of the early page tables creation (kernel linear mapping,
   EFI run-time maps) to avoid splitting larger blocks (e.g.  pmds) into
   smaller ones (e.g.  ptes)

 - VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()

 - ARCH_HAS_KCOV enabled for arm64

 - Optimise IP checksum helpers

 - SWIOTLB optimisation to only allocate/initialise the buffer if the
   available RAM is beyond the 32-bit mask

 - Properly handle the "nosmp" command line argument

 - Fix for the initialisation of the CPU debug state during early boot

 - vdso-offsets.h build dependency workaround

 - Build fix when RANDOMIZE_BASE is enabled with MODULES off

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
  arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
  arm64: Only select ARM64_MODULE_PLTS if MODULES=y
  arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
  arm64: mm: make create_mapping_late() non-allocating
  arm64: Honor nosmp kernel command line option
  arm64: Fix incorrect per-cpu usage for boot CPU
  arm64: kprobes: Add KASAN instrumentation around stack accesses
  arm64: kprobes: Cleanup jprobe_return
  arm64: kprobes: Fix overflow when saving stack
  arm64: kprobes: WARN if attempting to step with PSTATE.D=1
  arm64: debug: remove unused local_dbg_{enable, disable} macros
  arm64: debug: remove redundant spsr manipulation
  arm64: debug: unmask PSTATE.D earlier
  arm64: localise Image objcopy flags
  arm64: ptrace: remove extra define for CPSR's E bit
  kprobes: Add arm64 case in kprobe example module
  arm64: Add kernel return probes support (kretprobes)
  arm64: Add trampoline code for kretprobes
  arm64: kprobes instruction simulation support
  arm64: Treat all entry code as non-kprobe-able
  ...
2016-07-27 11:16:05 -07:00
Catalin Marinas
a95b0644b3 Merge branch 'for-next/kprobes' into for-next/core
* kprobes:
  arm64: kprobes: Add KASAN instrumentation around stack accesses
  arm64: kprobes: Cleanup jprobe_return
  arm64: kprobes: Fix overflow when saving stack
  arm64: kprobes: WARN if attempting to step with PSTATE.D=1
  kprobes: Add arm64 case in kprobe example module
  arm64: Add kernel return probes support (kretprobes)
  arm64: Add trampoline code for kretprobes
  arm64: kprobes instruction simulation support
  arm64: Treat all entry code as non-kprobe-able
  arm64: Blacklist non-kprobe-able symbol
  arm64: Kprobes with single stepping support
  arm64: add conditional instruction simulation support
  arm64: Add more test functions to insn.c
  arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature
2016-07-21 18:20:41 +01:00
William Cohen
da6a91252a arm64: Add trampoline code for kretprobes
The trampoline code is used by kretprobes to capture a return from a probed
function.  This is done by saving the registers, calling the handler, and
restoring the registers. The code then returns to the original saved caller
return address. It is necessary to do this directly instead of using a
software breakpoint because the code used in processing that breakpoint
could itself be kprobe'd and cause a problematic reentry into the debug
exception handler.

Signed-off-by: William Cohen <wcohen@redhat.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: removed unnecessary masking of the PSTATE bits]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-19 15:03:22 +01:00
Kevin Brodsky
49eea433b3 arm64: Add support for CLOCK_MONOTONIC_RAW in clock_gettime() vDSO
So far the arm64 clock_gettime() vDSO implementation only supported
the following clocks, falling back to the syscall for the others:
- CLOCK_REALTIME{,_COARSE}
- CLOCK_MONOTONIC{,_COARSE}

This patch adds support for the CLOCK_MONOTONIC_RAW clock, taking
advantage of the recent refactoring of the vDSO time functions. Like
the non-_COARSE clocks, this only works when the "arch_sys_counter"
clocksource is in use (allowing us to read the current time from the
virtual counter register), otherwise we also have to fall back to the
syscall.

Most of the data is shared with CLOCK_MONOTONIC, and the algorithm is
similar. The reference implementation in kernel/time/timekeeping.c
shows that:
- CLOCK_MONOTONIC = tk->wall_to_monotonic + tk->xtime_sec +
  timekeeping_get_ns(&tk->tkr_mono)
- CLOCK_MONOTONIC_RAW = tk->raw_time + timekeeping_get_ns(&tk->tkr_raw)
- tkr_mono and tkr_raw are identical (in particular, same
  clocksource), except these members:
  * mult (only mono's multiplier is NTP-adjusted)
  * xtime_nsec (always 0 for raw)

Therefore, tk->raw_time and tkr_raw->mult are now also stored in the
vDSO data page.

Cc: Ali Saidi <ali.saidi@arm.com>
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-12 16:06:32 +01:00
James Morse
e19a6ee246 arm64: kernel: Save and restore UAO and addr_limit on exception entry
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.

Based on a similar patch for arm from Russell King.

Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-07 15:55:37 +01:00
James Morse
82869ac57b arm64: kernel: Add support for hibernate/suspend-to-disk
Add support for hibernate/suspend-to-disk.

Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.

Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.

To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 13:36:22 +01:00
James Morse
cabe1c81ea arm64: Change cpu_resume() to enable mmu early then access sleep_sp by va
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can
be accessed by VA, which avoids the need to convert-addresses and clean to
PoC on the suspend path.

MMU setup is shared with the boot path, meaning the swapper_pg_dir is
restored directly: ttbr1_el1 is no longer saved/restored.

struct sleep_save_sp is removed, replacing it with a single array of
pointers.

cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1,
mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by
__cpu_setup(). However these values all contain res0 bits that may be used
to enable future features.

Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 12:05:46 +01:00
James Morse
adc9b2dfd0 arm64: kernel: Rework finisher callback out of __cpu_suspend_enter()
Hibernate could make use of the cpu_suspend() code to save/restore cpu
state, however it needs to be able to return '0' from the 'finisher'.

Rework cpu_suspend() so that the finisher is called from C code,
independently from the save/restore of cpu state. Space to save the context
in is allocated in the caller's stack frame, and passed into
__cpu_suspend_enter().

Hibernate's use of this API will look like a copy of the cpu_suspend()
function.

Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28 12:05:46 +01:00
Linus Torvalds
588ab3f9af arm64 updates for 4.6:
- Initial page table creation reworked to avoid breaking large block
   mappings (huge pages) into smaller ones. The ARM architecture requires
   break-before-make in such cases to avoid TLB conflicts but that's not
   always possible on live page tables
 
 - Kernel virtual memory layout: the kernel image is no longer linked to
   the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
   the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
   in physical RAM
 
 - Kernel ASLR: position independent kernel Image and modules being
   randomly mapped in the vmalloc space with the randomness is provided
   by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
   acked by Matt Fleming)
 
 - Implement relative exception tables for arm64, required by KASLR
   (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
   actual x86 conversion to deferred to 4.7 because of the merge
   dependencies)
 
 - Support for the User Access Override feature of ARMv8.2: this allows
   uaccess functions (get_user etc.) to be implemented using LDTR/STTR
   instructions. Such instructions, when run by the kernel, perform
   unprivileged accesses adding an extra level of protection. The
   set_fs() macro is used to "upgrade" such instruction to privileged
   accesses via the UAO bit
 
 - Half-precision floating point support (part of ARMv8.2)
 
 - Optimisations for CPUs with or without a hardware prefetcher (using
   run-time code patching)
 
 - copy_page performance improvement to deal with 128 bytes at a time
 
 - Sanity checks on the CPU capabilities (via CPUID) to prevent
   incompatible secondary CPUs from being brought up (e.g. weird
   big.LITTLE configurations)
 
 - valid_user_regs() reworked for better sanity check of the sigcontext
   information (restored pstate information)
 
 - ACPI parking protocol implementation
 
 - CONFIG_DEBUG_RODATA enabled by default
 
 - VDSO code marked as read-only
 
 - DEBUG_PAGEALLOC support
 
 - ARCH_HAS_UBSAN_SANITIZE_ALL enabled
 
 - Erratum workaround Cavium ThunderX SoC
 
 - set_pte_at() fix for PROT_NONE mappings
 
 - Code clean-ups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
 RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
 hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
 50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
 DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
 YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
 OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
 EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
 3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
 dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
 xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
 LepccTgykiUBqW5TRzPz
 =/oS+
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "Here are the main arm64 updates for 4.6.  There are some relatively
  intrusive changes to support KASLR, the reworking of the kernel
  virtual memory layout and initial page table creation.

  Summary:

   - Initial page table creation reworked to avoid breaking large block
     mappings (huge pages) into smaller ones.  The ARM architecture
     requires break-before-make in such cases to avoid TLB conflicts but
     that's not always possible on live page tables

   - Kernel virtual memory layout: the kernel image is no longer linked
     to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
     of the vmalloc space, allowing the kernel to be loaded (nearly)
     anywhere in physical RAM

   - Kernel ASLR: position independent kernel Image and modules being
     randomly mapped in the vmalloc space with the randomness is
     provided by UEFI (efi_get_random_bytes() patches merged via the
     arm64 tree, acked by Matt Fleming)

   - Implement relative exception tables for arm64, required by KASLR
     (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
     but actual x86 conversion to deferred to 4.7 because of the merge
     dependencies)

   - Support for the User Access Override feature of ARMv8.2: this
     allows uaccess functions (get_user etc.) to be implemented using
     LDTR/STTR instructions.  Such instructions, when run by the kernel,
     perform unprivileged accesses adding an extra level of protection.
     The set_fs() macro is used to "upgrade" such instruction to
     privileged accesses via the UAO bit

   - Half-precision floating point support (part of ARMv8.2)

   - Optimisations for CPUs with or without a hardware prefetcher (using
     run-time code patching)

   - copy_page performance improvement to deal with 128 bytes at a time

   - Sanity checks on the CPU capabilities (via CPUID) to prevent
     incompatible secondary CPUs from being brought up (e.g.  weird
     big.LITTLE configurations)

   - valid_user_regs() reworked for better sanity check of the
     sigcontext information (restored pstate information)

   - ACPI parking protocol implementation

   - CONFIG_DEBUG_RODATA enabled by default

   - VDSO code marked as read-only

   - DEBUG_PAGEALLOC support

   - ARCH_HAS_UBSAN_SANITIZE_ALL enabled

   - Erratum workaround Cavium ThunderX SoC

   - set_pte_at() fix for PROT_NONE mappings

   - Code clean-ups"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
  arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
  arm64: kasan: Use actual memory node when populating the kernel image shadow
  arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
  arm64: Fix misspellings in comments.
  arm64: efi: add missing frame pointer assignment
  arm64: make mrs_s prefixing implicit in read_cpuid
  arm64: enable CONFIG_DEBUG_RODATA by default
  arm64: Rework valid_user_regs
  arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
  arm64: KVM: Move kvm_call_hyp back to its original localtion
  arm64: mm: treat memstart_addr as a signed quantity
  arm64: mm: list kernel sections in order
  arm64: lse: deal with clobbered IP registers after branch via PLT
  arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
  arm64: kconfig: add submenu for 8.2 architectural features
  arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
  arm64: Add support for Half precision floating point
  arm64: Remove fixmap include fragility
  arm64: Add workaround for Cavium erratum 27456
  arm64: mm: Mark .rodata as RO
  ...
2016-03-17 20:03:47 -07:00
Marc Zyngier
5f05a72aed arm64: KVM: Move most of the fault decoding to C
The fault decoding process (including computing the IPA in the case
of a permission fault) would be much better done in C code, as we
have a reasonable infrastructure to deal with the VHE/non-VHE
differences.

Let's move the whole thing to C, including the workaround for
erratum 834220, and just patch the odd ESR_EL2 access remaining
in hyp-entry.S.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-29 18:34:18 +00:00
Suzuki K Poulose
bb9052744f arm64: Handle early CPU boot failures
A secondary CPU could fail to come online due to insufficient
capabilities and could simply die or loop in the kernel.
e.g, a CPU with no support for the selected kernel PAGE_SIZE
loops in kernel with MMU turned off.
or a hotplugged CPU which doesn't have one of the advertised
system capability will die during the activation.

There is no way to synchronise the status of the failing CPU
back to the master. This patch solves the issue by adding a
field to the secondary_data which can be updated by the failing
CPU. If the secondary CPU fails even before turning the MMU on,
it updates the status in a special variable reserved in the head.txt
section to make sure that the update can be cache invalidated safely
without possible sharing of cache write back granule.

Here are the possible states :

 -1. CPU_MMU_OFF - Initial value set by the master CPU, this value
indicates that the CPU could not turn the MMU on, hence the status
could not be reliably updated in the secondary_data. Instead, the
CPU has updated the status @ __early_cpu_boot_status.

 0. CPU_BOOT_SUCCESS - CPU has booted successfully.

 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the
master CPU to synchronise by issuing a cpu_ops->cpu_kill.

 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is
looping in the kernel. This information could be used by say,
kexec to check if it is really safe to do a kexec reboot.

 3. CPU_PANIC_KERNEL - CPU detected some serious issues which
requires kernel to crash immediately. The secondary CPU cannot
call panic() until it has initialised the GIC. This flag can
be used to instruct the master to do so.

Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[catalin.marinas@arm.com: conflict resolution]
[catalin.marinas@arm.com: converted "status" from int to long]
[catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-25 10:32:23 +00:00
Linus Torvalds
1baa5efbeb * s390: Support for runtime instrumentation within guests,
support of 248 VCPUs.
 
 * ARM: rewrite of the arm64 world switch in C, support for
 16-bit VM identifiers.  Performance counter virtualization
 missed the boat.
 
 * x86: Support for more Hyper-V features (synthetic interrupt
 controller), MMU cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJWlSKwAAoJEL/70l94x66DY0UIAK5vp4zfQoQOJC4KP4Xgxwdu
 kpnK2Boz3/74o1b0y5+eJZoUZCsXCVLtmP5uhmMxUYWDgByFG2X8ZDhPFwB5FYLT
 2dN+Lr4tsolgIfRdHZtrT6Svp9SDL039bWTdscnbR6l37/j9FRWvpKdhI3orloFD
 /i4CSW2dVIq1/9Xctwu/rtcOEesEx4Cad+6YV3/530eVAXFzE908nXfmqJNZTocY
 YCGcmrMVCOu0ng5QM4xSzmmYjKMLUcRs+QzZWkVBzdJtTgwZUr09yj7I2dZ1yj/i
 cxYrJy6shSwE74XkXsmvG+au3C5u3vX4tnXjBFErnPJ99oqzHatVnFWNRhj4dLQ=
 =PIj1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "PPC changes will come next week.

   - s390: Support for runtime instrumentation within guests, support of
     248 VCPUs.

   - ARM: rewrite of the arm64 world switch in C, support for 16-bit VM
     identifiers.  Performance counter virtualization missed the boat.

   - x86: Support for more Hyper-V features (synthetic interrupt
     controller), MMU cleanups"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (115 commits)
  kvm: x86: Fix vmwrite to SECONDARY_VM_EXEC_CONTROL
  kvm/x86: Hyper-V SynIC timers tracepoints
  kvm/x86: Hyper-V SynIC tracepoints
  kvm/x86: Update SynIC timers on guest entry only
  kvm/x86: Skip SynIC vector check for QEMU side
  kvm/x86: Hyper-V fix SynIC timer disabling condition
  kvm/x86: Reorg stimer_expiration() to better control timer restart
  kvm/x86: Hyper-V unify stimer_start() and stimer_restart()
  kvm/x86: Drop stimer_stop() function
  kvm/x86: Hyper-V timers fix incorrect logical operation
  KVM: move architecture-dependent requests to arch/
  KVM: renumber vcpu->request bits
  KVM: document which architecture uses each request bit
  KVM: Remove unused KVM_REQ_KICK to save a bit in vcpu->requests
  kvm: x86: Check kvm_write_guest return value in kvm_write_wall_clock
  KVM: s390: implement the RI support of guest
  kvm/s390: drop unpaired smp_mb
  kvm: x86: fix comment about {mmu,nested_mmu}.gva_to_gpa
  KVM: x86: MMU: Use clear_page() instead of init_shadow_page_table()
  arm/arm64: KVM: Detect vGIC presence at runtime
  ...
2016-01-12 13:22:12 -08:00
Jens Wiklander
14457459f9 ARM: 8480/2: arm64: add implementation for arm-smccc
Adds implementation for arm-smccc and enables CONFIG_HAVE_SMCCC.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-01-04 16:24:45 +00:00
Marc Zyngier
23a13465c8 arm64: KVM: Cleanup asm-offset.c
As we've now rewritten most of our code-base in C, most of the
KVM-specific code in asm-offset.c is useless. Delete-time again!

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-12-14 11:30:43 +00:00
Marc Zyngier
9d8415d6c1 arm64: KVM: Turn system register numbers to an enum
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.

Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-12-14 11:30:43 +00:00
Will Deacon
5aec715d7d arm64: mm: rewrite ASID allocator and MM context-switching code
Our current switch_mm implementation suffers from a number of problems:

  (1) The ASID allocator relies on IPIs to synchronise the CPUs on a
      rollover event

  (2) Because of (1), we cannot allocate ASIDs with interrupts disabled
      and therefore make use of a TIF_SWITCH_MM flag to postpone the
      actual switch to finish_arch_post_lock_switch

  (3) We run context switch with a reserved (invalid) TTBR0 value, even
      though the ASID and pgd are updated atomically

  (4) We take a global spinlock (cpu_asid_lock) during context-switch

  (5) We use h/w broadcast TLB operations when they are not required
      (e.g. in flush_context)

This patch addresses these problems by rewriting the ASID algorithm to
match the bitmap-based arch/arm/ implementation more closely. This in
turn allows us to remove much of the complications surrounding switch_mm,
including the ugly thread flag.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:55:41 +01:00
Vladimir Murzin
48f8bd5775 arm64: KVM: remove remaining reference to vgic_sr_vectors
Since commit 8a14849 (arm64: KVM: Switch vgic save/restore to
alternative_insn) vgic_sr_vectors is not used anymore, so remove
remaining leftovers and kill the structure.

Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-08-12 11:28:23 +01:00
Alex Bennée
84e690bfbe KVM: arm64: introduce vcpu->arch.debug_ptr
This introduces a level of indirection for the debug registers. Instead
of using the sys_regs[] directly we store registers in a structure in
the vcpu. The new kvm_arm_reset_debug_ptr() sets the debug ptr to the
guest context.

Because we no longer give the sys_regs offset for the sys_reg_desc->reg
field, but instead the index into a debug-specific struct we need to
add a number of additional trap functions for each register. Also as the
generic generic user-space access code no longer works we have
introduced a new pair of function pointers to the sys_reg_desc structure
to override the generic code when needed.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-07-21 12:50:25 +01:00