8 Commits

Author SHA1 Message Date
Roman Gushchin
abbdd0813f bpf: Eliminate rlimit-based memory accounting for bpf ringbuffer
Do not use rlimit-based memory accounting for bpf ringbuffer.
It has been replaced with the memcg-based memory accounting.

bpf_ringbuf_alloc() can't return anything except ERR_PTR(-ENOMEM)
and a valid pointer, so to simplify the code make it return NULL
in the first case. This allows to drop a couple of lines in
ringbuf_map_alloc() and also makes it look similar to other memory
allocating function like kmalloc().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-28-guro@fb.com
2020-12-02 18:32:47 -08:00
Roman Gushchin
be4035c734 bpf: Memcg-based memory accounting for bpf ringbuffer
Enable the memcg-based memory accounting for the memory used by
the bpf ringbuffer.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-15-guro@fb.com
2020-12-02 18:32:45 -08:00
Martin KaFai Lau
f4d0525921 bpf: Add map_meta_equal map ops
Some properties of the inner map is used in the verification time.
When an inner map is inserted to an outer map at runtime,
bpf_map_meta_equal() is currently used to ensure those properties
of the inserting inner map stays the same as the verification
time.

In particular, the current bpf_map_meta_equal() checks max_entries which
turns out to be too restrictive for most of the maps which do not use
max_entries during the verification time.  It limits the use case that
wants to replace a smaller inner map with a larger inner map.  There are
some maps do use max_entries during verification though.  For example,
the map_gen_lookup in array_map_ops uses the max_entries to generate
the inline lookup code.

To accommodate differences between maps, the map_meta_equal is added
to bpf_map_ops.  Each map-type can decide what to check when its
map is used as an inner map during runtime.

Also, some map types cannot be used as an inner map and they are
currently black listed in bpf_map_meta_alloc() in map_in_map.c.
It is not unusual that the new map types may not aware that such
blacklist exists.  This patch enforces an explicit opt-in
and only allows a map to be used as an inner map if it has
implemented the map_meta_equal ops.  It is based on the
discussion in [1].

All maps that support inner map has its map_meta_equal points
to bpf_map_meta_equal in this patch.  A later patch will
relax the max_entries check for most maps.  bpf_types.h
counts 28 map types.  This patch adds 23 ".map_meta_equal"
by using coccinelle.  -5 for
	BPF_MAP_TYPE_PROG_ARRAY
	BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE
	BPF_MAP_TYPE_STRUCT_OPS
	BPF_MAP_TYPE_ARRAY_OF_MAPS
	BPF_MAP_TYPE_HASH_OF_MAPS

The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc()
is moved such that the same error is returned.

[1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com
2020-08-28 15:41:30 +02:00
David S. Miller
71930d6102 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
All conflicts seemed rather trivial, with some guidance from
Saeed Mameed on the tc_ct.c one.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-11 00:46:00 -07:00
Alexei Starovoitov
bba1dc0b55 bpf: Remove redundant synchronize_rcu.
bpf_free_used_maps() or close(map_fd) will trigger map_free callback.
bpf_free_used_maps() is called after bpf prog is no longer executing:
bpf_prog_put->call_rcu->bpf_prog_free->bpf_free_used_maps.
Hence there is no need to call synchronize_rcu() to protect map elements.

Note that hash_of_maps and array_of_maps update/delete inner maps via
sys_bpf() that calls maybe_wait_bpf_programs() and synchronize_rcu().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/bpf/20200630043343.53195-2-alexei.starovoitov@gmail.com
2020-07-01 08:07:13 -07:00
Andrii Nakryiko
517bbe1994 bpf: Enforce BPF ringbuf size to be the power of 2
BPF ringbuf assumes the size to be a multiple of page size and the power of
2 value. The latter is important to avoid division while calculating position
inside the ring buffer and using (N-1) mask instead. This patch fixes omission
to enforce power-of-2 size rule.

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200630061500.1804799-1-andriin@fb.com
2020-06-30 16:31:55 +02:00
Andrey Ignatov
2872e9ac33 bpf: Set map_btf_{name, id} for all map types
Set map_btf_name and map_btf_id for all map types so that map fields can
be accessed by bpf programs.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/a825f808f22af52b018dbe82f1c7d29dab5fc978.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
Andrii Nakryiko
457f44363a bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
  - more efficient memory utilization by sharing ring buffer across CPUs;
  - preserving ordering of events that happen sequentially in time, even
  across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer.  Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
  - variable-length records;
  - if there is no more space left in ring buffer, reservation fails, no
    blocking;
  - memory-mappable data area for user-space applications for ease of
    consumption and high performance;
  - epoll notifications for new incoming data;
  - but still the ability to do busy polling for new data to achieve the
    lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
  - bpf_ringbuf_output() allows to *copy* data from one place to a ring
    buffer, similarly to bpf_perf_event_output();
  - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
    split the whole process into two steps. First, a fixed amount of space is
    reserved. If successful, a pointer to a data inside ring buffer data area
    is returned, which BPF programs can use similarly to a data inside
    array/hash maps. Once ready, this piece of memory is either committed or
    discarded. Discard is similar to commit, but makes consumer ignore the
    record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
  - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
  - BPF_RB_RING_SIZE returns the size of ring buffer;
  - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
    consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
  - consumer counter shows up to which logical position consumer consumed the
    data;
  - producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
  - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
    outlined above (ordering and memory consumption);
  - linked list-based implementations; while some were multi-producer designs,
    consuming these from user-space would be very complicated and most
    probably not performant; memory-mapping contiguous piece of memory is
    simpler and more performant for user-space consumers;
  - io_uring is SPSC, but also requires fixed-sized elements. Naively turning
    SPSC queue into MPSC w/ lock would have subpar performance compared to
    locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
    elements would be too limiting for BPF programs, given existing BPF
    programs heavily rely on variable-sized perf buffer already;
  - specialized implementations (like a new printk ring buffer, [0]) with lots
    of printk-specific limitations and implications, that didn't seem to fit
    well for intended use with BPF programs.

  [0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:22 -07:00