Commit Graph

12687 Commits

Author SHA1 Message Date
Filipe Manana
f985078796 btrfs: add and use helpers for reading and writing last_log_commit
Currently, the last_log_commit of a root can be accessed concurrently
without any lock protection. Readers can be calling btrfs_inode_in_log()
early in a fsync call, which reads a root's last_log_commit, while a
writer can change the last_log_commit while a log tree if being synced,
at btrfs_sync_log(). Any races here should be harmless, and in the worst
case they may cause a fsync to log an inode when it's not really needed,
so nothing bad from a functional perspective.

To avoid data race warnings from tools like KCSAN and other issues such
as load and store tearing (amongst others, see [1]), create helpers to
access the last_log_commit field of a root using READ_ONCE() and
WRITE_ONCE(), and use these helpers everywhere.

[1] https://lwn.net/Articles/793253/

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:17 +02:00
Anand Jain
a5b8a5f9f8 btrfs: support cloned-device mount capability
Guilherme's previous work [1] aimed at the mounting of cloned devices
using a superblock flag SINGLE_DEV during mkfs.
 [1] https://lore.kernel.org/linux-btrfs/20230831001544.3379273-1-gpiccoli@igalia.com/

Building upon this work, here is in memory only approach. As it mounts
we determine if the same fsid is already mounted if then we generate a
random temp fsid which shall be used the mount, in memory only not
written to the disk. We distinguish devices by devt.

Example:
  $ fallocate -l 300m ./disk1.img
  $ mkfs.btrfs -f ./disk1.img
  $ cp ./disk1.img ./disk2.img
  $ cp ./disk1.img ./disk3.img
  $ mount -o loop ./disk1.img /btrfs
  $ mount -o ./disk2.img /btrfs1
  $ mount -o ./disk3.img /btrfs2

  $ btrfs fi show -m
  Label: none  uuid: 4a212b48-1bec-46a5-938a-783c8c1f0b02
	Total devices 1 FS bytes used 144.00KiB
	devid    1 size 300.00MiB used 88.00MiB path /dev/loop0

  Label: none  uuid: adabf2fe-5515-4ad0-95b4-7b1609218c16
	Total devices 1 FS bytes used 144.00KiB
	devid    1 size 300.00MiB used 88.00MiB path /dev/loop1

  Label: none  uuid: 1d77d0df-7d92-439e-adbd-20b9b86fdedb
	Total devices 1 FS bytes used 144.00KiB
	devid    1 size 300.00MiB used 88.00MiB path /dev/loop2

Co-developed-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:17 +02:00
Anand Jain
69d427f34c btrfs: add helper function find_fsid_by_disk
In preparation for adding support to mount multiple single-disk
btrfs filesystems with the same FSID, wrap find_fsid() into
find_fsid_by_disk().

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:17 +02:00
Filipe Manana
9ef17228e1 btrfs: stop reserving excessive space for block group item insertions
Space for block group item insertions, necessary after allocating a new
block group, is reserved in the delayed refs block reserve. Currently we
do this by incrementing the transaction handle's delayed_ref_updates
counter and then calling btrfs_update_delayed_refs_rsv(), which will
increase the size of the delayed refs block reserve by an amount that
corresponds to the same amount we use for delayed refs, given by
btrfs_calc_delayed_ref_bytes().

That is an excessive amount because it corresponds to the amount of space
needed to insert one item in a btree (btrfs_calc_insert_metadata_size())
times 2 when the free space tree feature is enabled. All we need is an
amount as given by btrfs_calc_insert_metadata_size(), since we only need to
insert a block group item in the extent tree (or block group tree if this
feature is enabled). By using btrfs_calc_insert_metadata_size() we will
need to reserve 2 times less space when using the free space tree, putting
less pressure on space reservation.

So use helpers to reserve and release space for block group item
insertions that use btrfs_calc_insert_metadata_size() for calculation of
the space.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
Filipe Manana
f66e0209bd btrfs: stop reserving excessive space for block group item updates
Space for block group item updates, necessary after allocating or
deallocating an extent from a block group, is reserved in the delayed
refs block reserve. Currently we do this by incrementing the transaction
handle's delayed_ref_updates counter and then calling
btrfs_update_delayed_refs_rsv(), which will increase the size of the
delayed refs block reserve by an amount that corresponds to the same
amount we use for delayed refs, given by btrfs_calc_delayed_ref_bytes().

That is an excessive amount because it corresponds to the amount of space
needed to insert one item in a btree (btrfs_calc_insert_metadata_size())
times 2 when the free space tree feature is enabled. All we need is an
amount as given by btrfs_calc_metadata_size(), since we only need to
update an existing block group item in the extent tree (or block group
tree if this feature is enabled). By using btrfs_calc_metadata_size() we
will need to reserve 4 times less space when using the free space tree
and 2 times less space when not using it, putting less pressure on space
reservation.

So use helpers to reserve and release space for block group item updates
that use btrfs_calc_metadata_size() for calculation of the space.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
David Sterba
398fb9131f btrfs: reorder btrfs_inode to fill gaps
Previous commit created a hole in struct btrfs_inode, we can move
outstanding_extents there. This reduces size by 8 bytes from 1120 to
1112 on a release config.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
David Sterba
54c6537146 btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
The structure btrfs_ordered_inode_tree is used only in one place, in
btrfs_inode. The structure itself has a 4 byte hole which is wasted
space.

Move the btrfs_ordered_inode_tree members to btrfs_inode with a common
prefix 'ordered_tree_' where the hole can be utilized and shrink inode
size.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
Josef Bacik
cb6cbab790 btrfs: adjust overcommit logic when very close to full
A user reported some unpleasant behavior with very small file systems.
The reproducer is this

  $ mkfs.btrfs -f -m single -b 8g /dev/vdb
  $ mount /dev/vdb /mnt/test
  $ dd if=/dev/zero of=/mnt/test/testfile bs=512M count=20

This will result in usage that looks like this

  Overall:
      Device size:                   8.00GiB
      Device allocated:              8.00GiB
      Device unallocated:            1.00MiB
      Device missing:                  0.00B
      Device slack:                  2.00GiB
      Used:                          5.47GiB
      Free (estimated):              2.52GiB      (min: 2.52GiB)
      Free (statfs, df):               0.00B
      Data ratio:                       1.00
      Metadata ratio:                   1.00
      Global reserve:                5.50MiB      (used: 0.00B)
      Multiple profiles:                  no

  Data,single: Size:7.99GiB, Used:5.46GiB (68.41%)
     /dev/vdb        7.99GiB

  Metadata,single: Size:8.00MiB, Used:5.77MiB (72.07%)
     /dev/vdb        8.00MiB

  System,single: Size:4.00MiB, Used:16.00KiB (0.39%)
     /dev/vdb        4.00MiB

  Unallocated:
     /dev/vdb        1.00MiB

As you can see we've gotten ourselves quite full with metadata, with all
of the disk being allocated for data.

On smaller file systems there's not a lot of time before we get full, so
our overcommit behavior bites us here.  Generally speaking data
reservations result in chunk allocations as we assume reservation ==
actual use for data.  This means at any point we could end up with a
chunk allocation for data, and if we're very close to full we could do
this before we have a chance to figure out that we need another metadata
chunk.

Address this by adjusting the overcommit logic.  Simply put we need to
take away 1 chunk from the available chunk space in case of a data
reservation.  This will allow us to stop overcommitting before we
potentially lose this space to a data allocation.  With this fix in
place we properly allocate a metadata chunk before we're completely
full, allowing for enough slack space in metadata.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
Josef Bacik
6f2d3c0196 btrfs: increase ->free_chunk_space in btrfs_grow_device
My overcommit patch exposed a bug with btrfs/177 [1].  The problem here is
that when we grow the device we're not adding to ->free_chunk_space, so
subsequent allocations can cause ->free_chunk_space to wrap, which
causes problems in can_overcommit because we add this to ->total_bytes,
which causes the counter to wrap and gives us an unexpected ENOSPC.

Fix this by properly updating ->free_chunk_space with the new available
space in btrfs_grow_device.

[1] First version of the fix:
    https://lore.kernel.org/linux-btrfs/b97e47ce0ce1d41d221878de7d6090b90aa7a597.1695065233.git.josef@toxicpanda.com/

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
Josef Bacik
e9fd2c0523 btrfs: fix ->free_chunk_space math in btrfs_shrink_device
There are two bugs in how we adjust ->free_chunk_space in
btrfs_shrink_device.  First we're removing the entire diff between
new_size and old_size from ->free_chunk_space.  This only works if we're
reducing the free area, which we could potentially not be.  So adjust
the math to only subtract the diff in the free space from
->free_chunk_space.

Additionally in the error case we're unconditionally adding the diff
back into ->free_chunk_space, which we need to only do if this device is
writeable.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
efba145449 btrfs: make sure we cache next state in find_first_extent_bit()
Currently, at find_first_extent_bit(), when we are given a cached extent
state that happens to have its end offset match the desired range start,
we find the next extent state using that cached state, with next_state()
calls, and then return it.

We then try to cache that next state by calling cache_state_if_flags(),
but that will not cache the state because we haven't reset *cached_state
to NULL, so we end up with the cached_state unchanged, and if the caller
is iterating over extent states in the io tree, its next call to
find_first_extent_bit() will not use the current cached state as its end
offset does not match the minimum start range offset, therefore the cached
state is reset and we have to search the rbtree to find the next suitable
extent state record.

So fix this by resetting the cached state to NULL (and dropping our ref
on it) when we have a suitable cached state and we found a next state by
using next_state() starting from the cached state. This makes use cases
of calling find_first_extent_bit() to go over all ranges in the io tree
to do a single rbtree full search, only on the first call, and the next
calls will just do next_state() (rb_next() wrapper) calls, which is more
efficient.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
0f8ac74d41 btrfs: use extent_io_tree_release() to empty dirty log pages
When freeing a log tree, during a transaction commit, we clear its dirty
log pages io tree by calling clear_extent_bits() using a range from 0 to
(u64)-1. This will iterate the io tree's rbtree and call rb_erase() on
each node before freeing it, which will often trigger rebalance operations
on the rbtree. A better alternative it to use extent_io_tree_release(),
which will not do deletions and trigger rebalances.

So use extent_io_tree_release() instead of clear_extent_bits().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
63ffc1f7c4 btrfs: make tree iteration in extent_io_tree_release() more efficient
Currently extent_io_tree_release() is a loop that keeps getting the first
node in the io tree, using rb_first() which is a loop that gets to the
leftmost node of the rbtree, and then for each node it calls rb_erase(),
which often requires rebalancing the rbtree.

We can make this more efficient by using
rbtree_postorder_for_each_entry_safe() to free each node without having
to delete it from the rbtree and without looping to get the first node.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
df2a8e70c3 btrfs: collapse wait_on_state() to its caller wait_extent_bit()
The wait_on_state() function is very short and has a single caller, which
is wait_extent_bit(), so remove the function and put its code into the
caller.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
28967c7622 btrfs: remove redundant memory barrier from extent_io_tree_release()
The memory barrier at extent_io_tree_release() is redundant. Holding
spin_lock here is not enough to drop the barrier completely.  We only
change the waitqueue of an extent state record while holding the tree
lock - see wait_on_state().

The update to waitqueue state will not become stale because there will
be an spin_unlock/spin_lock sequence between the change and waiting,
this implies a full memory barrier.

So remove the explicit smp_mb() barrier.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reword reasoning ]
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
a1c20d15ee btrfs: make wait_extent_bit() static
The function wait_extent_bit() is not used outside extent-io-tree.c so
make it static. Furthermore the function doesn't have the 'btrfs_' prefix.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
bea22a58c9 btrfs: update stale comment at extent_io_tree_release()
There's this comment at extent_io_tree_release() that mentions io btrees,
but this function is no longer used only for io btrees. Originally it was
added as a static function named clear_btree_io_tree() at transaction.c,
in commit 663dfbb077 ("Btrfs: deal with convert_extent_bit errors to
avoid fs corruption"), as it was used only for cleaning one of the io
trees that track dirty extent buffers, the dirty_log_pages io tree of a
a root and the dirty_pages io tree of a transaction. Later it was renamed
and exported and now it's used to cleanup other io trees such as the
allocation state io tree of a device or the csums range io tree of a log
root.

So remove that comment and replace it with one at the top of the function
that is more complete, mentioning what the function does and that it's
expected to be called only when a task is sure no one else will need to
use the tree anymore, as well as there should be no locked ranges in the
tree and therefore no waiters on its extent state records. Also add an
assertion to check that there are no locked extent state records in the
tree.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
c91ea4bfa6 btrfs: make extent state merges more efficient during insertions
When inserting a new extent state record into an io tree that happens to
be mergeable, we currently do the following:

1) Insert the extent state record in the io tree's rbtree. This requires
   going down the tree to find where to insert it, and during the
   insertion we often need to balance the rbtree;

2) We then check if the previous node is mergeable, so we call rb_prev()
   to find it, which requires some looping to find the previous node;

3) If the previous node is mergeable, we adjust our node to include the
   range of the previous node and then delete the previous node from the
   rbtree, which again may need to balance the rbtree;

4) Then we check if the next node is mergeable with the node we inserted,
   so we call rb_next(), which requires some looping too. If the next node
   is indeed mergeable, we expand the range of our node to include the
   next node's range and then delete the next node from the rbtree, which
   again may need to balance the tree.

So these are quite of lot of iterations and looping over the rbtree, and
some of the operations may need to rebalance the rb tree. This can be made
a bit more efficient by:

1) When iterating the rbtree, once we find a node that is mergeable with
   the node we want to insert, we can just adjust that node's range with
   the range of the node to insert - this avoids continuing iterating
   over the tree and deleting a node from the rbtree;

2) If we expand the range of a mergeable node, then we find the next or
   the previous node, depending on other we merged a range to the right or
   to the left of the node we are currently at during the iteration. This
   merging is as before, we find the next or previous node with rb_next()
   or rb_prev() and if that other node is mergeable with the current one,
   we adjust the range of the current node and remove the other node from
   the rbtree;

3) Whenever we need to insert the new extent state record it's because
   we don't have any extent state record in the rbtree which can be
   merged, so we can remove the call to merge_state() after the insertion,
   saving rb_next() and rb_prev() calls, which require some looping.

So update the insertion function insert_state() to have this behaviour.

Running dbench for 120 seconds and capturing the execution times of
set_extent_bit() at pin_down_extent(), resulted in the following data
(time values are in nanoseconds):

Before this change:

  Count: 2278299
  Range:  0.000 - 4003728.000; Mean: 713.436; Median: 612.000; Stddev: 3606.952
  Percentiles:  90th: 1187.000; 95th: 1350.000; 99th: 1724.000
       0.000 -       7.534:       5 |
       7.534 -      35.418:      36 |
      35.418 -     154.403:     273 |
     154.403 -     662.138: 1244016 #####################################################
     662.138 -    2828.745: 1031335 ############################################
    2828.745 -   12074.102:    1395 |
   12074.102 -   51525.930:     806 |
   51525.930 -  219874.955:     162 |
  219874.955 -  938254.688:      22 |
  938254.688 - 4003728.000:       3 |

After this change:

  Count: 2275862
  Range:  0.000 - 1605175.000; Mean: 678.903; Median: 590.000; Stddev: 2149.785
  Percentiles:  90th: 1105.000; 95th: 1245.000; 99th: 1590.000
       0.000 -      10.219:      10 |
      10.219 -      40.957:      36 |
      40.957 -     155.907:     262 |
     155.907 -     585.789: 1127214 ####################################################
     585.789 -    2193.431: 1145134 #####################################################
    2193.431 -    8205.578:    1648 |
    8205.578 -   30689.378:    1039 |
   30689.378 -  114772.699:     362 |
  114772.699 -  429221.537:      52 |
  429221.537 - 1605175.000:      10 |

Maximum duration (range), average duration, percentiles and standard
deviation are all better.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
David Sterba
893fe24399 btrfs: change test_range_bit to scan the whole range
The semantics of test_range_bit() with filled == 0 is now in it's own
helper so test_range_bit will check the whole range unconditionally.
The detection logic is flipped and assumes success by default and
catches exceptions.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
David Sterba
99be1a66e1 btrfs: add specific helper for range bit test exists
The existing helper test_range_bit works in two ways, checks if the whole
range contains all the bits, or stop on the first occurrence.  By adding
a specific helper for the latter case, the inner loop can be simplified
and contains fewer conditionals, making it a bit faster.

There's no caller that uses the cached state pointer so this reduces the
argument count further.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
6422b4cd95 btrfs: move btrfs_realloc_node() from ctree.c into defrag.c
btrfs_realloc_node() is only used by the defrag code. Nowadays we have a
defrag.c file, so move it, and its helper close_blocks(), into defrag.c.

During the move also do a few minor cosmetic changes:

1) Change the return value of close_blocks() from int to bool;

2) Use SZ_32K instead of 32768 at close_blocks();

3) Make some variables const in btrfs_realloc_node(), 'blocksize' and
   'end_slot';

4) Get rid of 'parent_nritems' variable, in both places where it was
   used it could be replaced by calling btrfs_header_nritems(parent);

5) Change the type of a couple variables from int to bool;

6) Rename variable 'err' to 'ret', as that's the most common name we
   use to track the return value of a function;

7) Move some variables from the top scope to the scope of the for loop
   where they are used.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
79d25df0d7 btrfs: export comp_keys() from ctree.c as btrfs_comp_keys()
Export comp_keys() out of ctree.c, as btrfs_comp_keys(), so that in a
later patch we can move out defrag specific code from ctree.c into
defrag.c.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
95f93bc4cb btrfs: rename and export __btrfs_cow_block()
Rename and export __btrfs_cow_block() as btrfs_force_cow_block(). This is
to allow to move defrag specific code out of ctree.c and into defrag.c in
one of the next patches.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
b8bf4e4d6a btrfs: use round_down() to align block offset at btrfs_cow_block()
At btrfs_cow_block() we can use round_down() to align the extent buffer's
logical offset to the start offset of a metadata block group, instead of
the less easy to read set of bitwise operations (two plus one subtraction).
So replace the bitwise operations with a round_down() call.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Filipe Manana
7bff16e3ff btrfs: remove noinline attribute from btrfs_cow_block()
It's pointless to have the noiline attribute for btrfs_cow_block(), as the
function is exported and widely used. So remove it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:14 +02:00
Anand Jain
5966930dfd btrfs: remove incomplete metadata_uuid conversion fixup logic
Previous commit ("btrfs: reject devices with CHANGING_FSID_V2") has
stopped the assembly of devices with the CHANGING_FSID_V2 flag in the
kernel. Such devices can be scanned but will not be registered and can't
be mounted without a manual fix by btrfstune.  Remove the related logic
and now unused code.

The original motivation was to allow an interrupted partial conversion
fix itself on next mount, in case the system has to be rebooted. This is
a convenience but brings a lot of complexity the device scanning and
handling the partial states.  It's hard to estimate if this was ever
needed in practice, expecting the typical use case like a manual
conversion of an unmounted filesystem where the user can verify the
success and rerun it eventually.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add historical context ]
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
Anand Jain
197a9ecee6 btrfs: reject devices with CHANGING_FSID_V2
The BTRFS_SUPER_FLAG_CHANGING_FSID_V2 flag indicates a transient state
where the device in the userspace btrfstune -m|-M operation failed to
complete changing the fsid.

This flag makes the kernel to automatically determine the other
partner devices to which a given device can be associated, based on the
fsid, metadata_uuid and generation values.

btrfstune -m|M feature is especially useful in virtual cloud setups, where
compute instances (disk images) are quickly copied, fsid changed, and
launched. Given numerous disk images with the same metadata_uuid but
different fsid, there's no clear way a device can be correctly assembled
with the proper partners when the CHANGING_FSID_V2 flag is set. So, the
disk could be assembled incorrectly, as in the example below:

Before this patch:

Consider the following two filesystems:
   /dev/loop[2-3] are raw copies of /dev/loop[0-1] and the btrsftune -m
operation fails.

In this scenario, as the /dev/loop0's fsid change is interrupted, and the
CHANGING_FSID_V2 flag is set as shown below.

  $ p="device|devid|^metadata_uuid|^fsid|^incom|^generation|^flags"

  $ btrfs inspect dump-super /dev/loop0 | egrep '$p'
  superblock: bytenr=65536, device=/dev/loop0
  flags			0x1000000001
  fsid			7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
  metadata_uuid		bb040a9f-233a-4de2-ad84-49aa5a28059b
  generation		9
  num_devices		2
  incompat_flags	0x741
  dev_item.devid	1

  $ btrfs inspect dump-super /dev/loop1 | egrep '$p'
  superblock: bytenr=65536, device=/dev/loop1
  flags			0x1
  fsid			11d2af4d-1b71-45a9-83f6-f2100766939d
  metadata_uuid		bb040a9f-233a-4de2-ad84-49aa5a28059b
  generation		10
  num_devices		2
  incompat_flags	0x741
  dev_item.devid	2

  $ btrfs inspect dump-super /dev/loop2 | egrep '$p'
  superblock: bytenr=65536, device=/dev/loop2
  flags			0x1
  fsid			7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
  metadata_uuid		bb040a9f-233a-4de2-ad84-49aa5a28059b
  generation		8
  num_devices		2
  incompat_flags	0x741
  dev_item.devid	1

  $ btrfs inspect dump-super /dev/loop3 | egrep '$p'
  superblock: bytenr=65536, device=/dev/loop3
  flags			0x1
  fsid			7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
  metadata_uuid		bb040a9f-233a-4de2-ad84-49aa5a28059b
  generation		8
  num_devices		2
  incompat_flags	0x741
  dev_item.devid	2

It is normal that some devices aren't instantly discovered during
system boot or iSCSI discovery. The controlled scan below demonstrates
this.

  $ btrfs device scan --forget
  $ btrfs device scan /dev/loop0
  Scanning for btrfs filesystems on '/dev/loop0'
  $ mount /dev/loop3 /btrfs
  $ btrfs filesystem show -m
  Label: none  uuid: 7d4b4b93-2b27-4432-b4e4-4be1fbccbd45
	Total devices 2 FS bytes used 144.00KiB
	devid    1 size 300.00MiB used 48.00MiB path /dev/loop0
	devid    2 size 300.00MiB used 40.00MiB path /dev/loop3

/dev/loop0 and /dev/loop3 are incorrectly partnered.

This kernel patch removes functions and code connected to the
CHANGING_FSID_V2 flag.

With this patch, now devices with the CHANGING_FSID_V2 flag are rejected.
And its partner will fail to mount with the extra -o degraded option.
The check is removed from open_ctree(), devices are rejected during
scanning which in turn fails the mount.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
ab7c8bbf3a btrfs: relocation: constify parameters where possible
Lots of the functions in relocation.c don't change pointer parameters
but lack the annotations. Add them and reformat according to current
coding style if needed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
32f2abca38 btrfs: relocation: return bool from btrfs_should_ignore_reloc_root
btrfs_should_ignore_reloc_root() is a predicate so it should return
bool.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
c71d3c698c btrfs: switch btrfs_backref_cache::is_reloc to bool
The btrfs_backref_cache::is_reloc is an indicator variable and should
use a bool type.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
733fa44de3 btrfs: relocation: open code mapping_tree_init
There's only one user of mapping_tree_init, we don't need a helper for
the simple initialization.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
d23d42e39b btrfs: relocation: switch bitfields to bool in reloc_control
Use bool types for the indicators instead of bitfields. The structure
size slightly grows but the new types are placed within the padding.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
8daf07cf2b btrfs: relocation: use enum for stages
Add an enum type for data relocation stages.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
David Sterba
a3bb700f43 btrfs: relocation: use more natural types for tree_block bitfields
We don't need to use bitfields for tree_block::level and
tree_block::key_ready, there's enough padding in the structure for
proper types.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
Filipe Manana
1723270f0c btrfs: move btrfs_defrag_root() to defrag.{c,h}
The btrfs_defrag_root() function does not really belong in the
transaction.{c,h} module and as we have a defrag.{c,h} nowadays,
move it to there instead. This also allows to stop exporting
btrfs_defrag_leaves(), so we can make it static.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename info to fs_info for consistency ]
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:13 +02:00
Filipe Manana
8befc61cbb btrfs: remove redundant root argument from fixup_inode_link_count()
The root argument for fixup_inode_link_count() always matches the root of
the given inode, so remove the root argument and get it from the inode
argument. This also applies to the helpers count_inode_extrefs() and
count_inode_refs() used by fixup_inode_link_count() - they don't need the
root argument, as it always matches the root of the inode passed to them.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
0a325e620e btrfs: remove redundant root argument from maybe_insert_hole()
The root argument for maybe_insert_hole() always matches the root of the
given inode, so remove the root argument and get it from the inode
argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
04bd8e9410 btrfs: remove redundant root argument from btrfs_delayed_update_inode()
The root argument for btrfs_delayed_update_inode() always matches the root
of the given inode, so remove the root argument and get it from the inode
argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
07a274a886 btrfs: remove redundant root argument from btrfs_update_inode_item()
The root argument for btrfs_update_inode_item() always matches the root of
the given inode, so remove the root argument and get it from the inode
argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
8b9d032225 btrfs: remove redundant root argument from btrfs_update_inode()
The root argument for btrfs_update_inode() always matches the root of the
given inode, so remove the root argument and get it from the inode
argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
0a5d0dc55f btrfs: remove redundant root argument from btrfs_update_inode_fallback()
The root argument for btrfs_update_inode_fallback() always matches the
root of the given inode, so remove the root argument and get it from the
inode argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
cddaaacca9 btrfs: remove noinline from btrfs_update_inode()
The noinline attribute of btrfs_update_inode() is pointless as the
function is exported and widely used, so remove it.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
2199cb0f5e btrfs: simplify error check condition at btrfs_dirty_inode()
The following condition at btrfs_dirty_inode() is redundant:

  if (ret && (ret == -ENOSPC || ret == -EDQUOT))

The first check for a non-zero 'ret' value is pointless, we can simplify
this to simply:

  if (ret == -ENOSPC || ret == -EDQUOT)

Not only this makes it easier to read, it also slightly reduces the text
size of the btrfs kernel module:

  $ size fs/btrfs/btrfs.ko.before
     text	   data	    bss	    dec	    hex	filename
  1641400	 168265	  16864	1826529	 1bdee1	fs/btrfs/btrfs.ko.before

  $ size fs/btrfs/btrfs.ko.after
     text	   data	    bss	    dec	    hex	filename
  1641224	 168181	  16864	1826269	 1bdddd	fs/btrfs/btrfs.ko.after

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Boris Burkov
e076145115 btrfs: qgroup: only set QUOTA_ENABLED when done reading qgroups
In open_ctree, we set BTRFS_FS_QUOTA_ENABLED as soon as we see a
quota_root, as opposed to after we are done setting up the qgroup
structures. In the quota_enable path, we wait until after the structures
are set up. Likewise, in disable, we clear the bit before tearing down
the structures. I feel that this organization is less surprising for the
open_ctree path.

I don't believe this fixes any actual bug, but avoids potential
confusion when using btrfs_qgroup_mode in an intermediate state where we
are enabled but haven't yet setup the qgroup status flags. It also
avoids any risk of calling a qgroup function and attempting to use the
qgroup rbtrees before they exist/are setup.

This all occurs before we do rw setup, so I believe it should be mostly
a no-op.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Boris Burkov
2672a051e3 btrfs: track data relocation with simple quota
Relocation data allocations are quite tricky for simple quotas. The
basic data relocation sequence is (ignoring details that aren't relevant
to this fix):

- create a fake relocation data fs root
- create a fake relocation inode in that root
- for each data extent:
  - preallocate a data extent on behalf of the fake inode
  - copy over the data
- for each extent
  - swap the refs so that the original file extent now refers to the new
    extent item
- drop the fake root, dropping its refs on the old extents, which lets
  us delete them.

Done naively, this results in storing an extent item in the extent tree
whose owner_ref points at the relocation data root and a no-op squota
recording, since the reloc root is not a legit fstree. So far, that's
OK. The problem comes when you do the swap, and leave an extent item
owned by this bogus root as the real permanent extents of the file. If
the file then drops that ref, we free it and no-op account that against
the fake relocation root. Essentially, this means that relocation is
simple quota "extent laundering", since we re-own the extents into a
fake root.

Simple quotas very intentionally doesn't have a mechanism for
transferring ownership of extents, as that is exactly the complicated
thing we are trying to avoid with the new design. Further, it cannot be
correctly done in this case, since at the time you create the new
"real" refs, there is no way to know which was the original owner before
relocation unless we track it.

Therefore, it makes more sense to trick the preallocation to handle
relocation as a special case and note the proper owner ref from the
beginning. That way, we never write out an extent item without the
correct owner ref that it will eventually have.

This could be done by wiring a special root parameter all the way
through the allocation code path, but to avoid that special case
touching all the code, take advantage of the serial nature of relocation
to store the src root on the relocation root object. Then when we finish
the prealloc, if it happens to be this case, prepare the delayed ref
appropriately.

We must also add logic to handle relocating adjacent extents with
different owning roots. Those cannot be preallocated together in a
cluster as it would lose the separate ownership information.

This is obviously a smelly bit of code, but I think it is the best
solution to the problem, given the relocation implementation.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Boris Burkov
60ea105a0f btrfs: qgroup: track metadata relocation COW with simple quota
Relocation COWs metadata blocks in two cases for the reloc root:

- copying the subvolume root item when creating the reloc root
- copying a btree node when there is a COW during relocation

In both cases, the resulting btree node hits an abnormal code path with
respect to the owner field in its btrfs_header. It first creates the
root item for the new objectid, which populates the reloc root id, and
it at this point that delayed refs are created.

Later, it fully copies the old node into the new node (including the
original owner field) which overwrites it. This results in a simple
quotas mismatch where we run the delayed ref for the reloc root which
has no simple quota effect (reloc root is not an fstree) but when we
ultimately delete the node, the owner is the real original fstree and we
do free the space.

To work around this without tampering with the behavior of relocation,
add a parameter to btrfs_add_tree_block that lets the relocation code
path specify a different owning root than the "operating" root (in this
case, owning root is the real root and the operating root is the reloc
root). These can naturally be plumbed into delayed refs that have the
same concept.

Note that this is a double count in some sense, but a relatively natural
one, as there are really two extents, and the old one will be deleted
soon. This is consistent with how data relocation extents are accounted
by simple quotas.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Boris Burkov
bd7c1ea3a3 btrfs: qgroup: check generation when recording simple quota delta
Simple quotas count extents only from the moment the feature is enabled.
Therefore, if we do something like:

1. create subvol S
2. write F in S
3. enable quotas
4. remove F
5. write G in S

then after 3. and 4. we would expect the simple quota usage of S to be 0
(putting aside some metadata extents that might be written) and after
5., it should be the size of G plus metadata. Therefore, we need to be
able to determine whether a particular quota delta we are processing
predates simple quota enablement.

To do this, store the transaction id when quotas were enabled. In
fs_info for immediate use and in the quota status item to make it
recoverable on mount. When we see a delta, check if the generation of
the extent item is less than that of quota enablement. If so, we should
ignore the delta from this extent.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
5343cd9364 btrfs: qgroup: simple quota auto hierarchy for nested subvolumes
Consider the following sequence:

- enable quotas
- create subvol S id 256 at dir outer/
- create a qgroup 1/100
- add 0/256 (S's auto qgroup) to 1/100
- create subvol T id 257 at dir outer/inner/

With full qgroups, there is no relationship between 0/257 and either of
0/256 or 1/100. There is an inherit feature that the creator of inner/
can use to specify it ought to be in 1/100.

Simple quotas are targeted at container isolation, where such automatic
inheritance for not necessarily trusted/controlled nested subvol
creation would be quite helpful. Therefore, add a new default behavior
for simple quotas: when you create a nested subvol, automatically
inherit as parents any parents of the qgroup of the subvol the new inode
is going in.

In our example, 257/0 would also be under 1/100, allowing easy control
of a total quota over an arbitrary hierarchy of subvolumes.

I think this _might_ be a generally useful behavior, so it could be
interesting to put it behind a new inheritance flag that simple quotas
always use while traditional quotas let the user specify, but this is a
minimally intrusive change to start.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
cecbb533b5 btrfs: record simple quota deltas in delayed refs
At the moment that we run delayed refs, we make the final ref-count
based decision on creating/removing extent (and metadata) items.
Therefore, it is exactly the spot to hook up simple quotas.

There are a few important subtleties to the fields we must collect to
accurately track simple quotas, particularly when removing an extent.
When removing a data extent, the ref could be in any tree (due to
reflink, for example) and so we need to recover the owning root id from
the owner ref item. When removing a metadata extent, we know the owning
root from the owner field in the header when we create the delayed ref,
so we can recover it from there.

We must also be careful to handle reservations properly to not leaked
reserved space. The happy path is freeing the reservation when the
simple quota delta runs on a data extent. If that doesn't happen, due to
refs canceling out or some error, the ref head already has the
must_insert_reserved machinery to handle this, so we piggy back on that
and use it to clean up the reserved data.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
8d29909140 btrfs: add helper for inline owner ref lookup
Inline ref parsing is a bit tricky and relies on a decent amount of
implicit information, so I think it is beneficial to have a helper
function for reading the owner ref, if only to "document" the format,
along with the write path.

The main subtlety of note which I was missing by open-coding this was
that it is important to check whether or not inline refs are present
*at all*. i.e., if we are writing out a new extent under squotas, we
will always use a big enough item for the inline ref and have it.
However, it is possible that some random item predating squotas will not
have any inline refs. In that case, trying to read the "type" field of
the first inline ref will just be reading garbage in the form of
whatever is in the next item.

This will be used by the extent free-ing path, which looks up data
extent owners as well as a relocation path which needs to grab the owner
before relocating an extent.

Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
d9a620f77e btrfs: new inline ref storing owning subvol of data extents
In order to implement simple quota groups, we need to be able to
associate a data extent with the subvolume that created it. Once you
account for reflink, this information cannot be recovered without
explicitly storing it. Options for storing it are:

- a new key/item
- a new extent inline ref item

The former is backwards compatible, but wastes space, the latter is
incompat, but is efficient in space and reuses the existing inline ref
machinery, while only abusing it a tiny amount -- specifically, the new
item is not a ref, per-se.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
cf79ac4793 btrfs: track original extent owner in head_ref
Simple quotas requires tracking the original creating root of any given
extent. This gets complicated when multiple subvolumes create
overlapping/contradictory refs in the same transaction. For example,
due to modifying or deleting an extent while also snapshotting it.

To resolve this in a general way, take advantage of the fact that we are
essentially already tracking this for handling releasing reservations.
The head ref coalesces the various refs and uses must_insert_reserved to
check if it needs to create an extent/free reservation. Store the ref
that set must_insert_reserved as the owning ref on the head ref.

Note that this can result in writing an extent for the very first time
with an owner different from its only ref, but it will look the same as
if you first created it with the original owning ref, then added the
other ref, then removed the owning ref.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
457cb1ddf5 btrfs: track owning root in btrfs_ref
While data extents require us to store additional inline refs to track
the original owner on free, this information is available implicitly for
metadata. It is found in the owner field of the header of the tree
block. Even if other trees refer to this block and the original ref goes
away, we will not rewrite that header field, so it will reliably give the
original owner.

In addition, there is a relocation case where a new data extent needs to
have an owning root separate from the referring root wired through
delayed refs.

To use it for recording simple quota deltas, we need to wire this root
id through from when we create the delayed ref until we fully process
it. Store it in the generic btrfs_ref struct of the delayed ref.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
610647d7ef btrfs: rename tree_ref and data_ref owning_root
commit 113479d5b8 ("btrfs: rename root fields in delayed refs structs")
changed these from ref_root to owning_root. However, there are many
circumstances where that name is not really accurate and the root on the
ref struct _is_ the referring root. In general, these are not the owning
root, though it does happen in some ref merging cases involving
overwrites during snapshots and similar.

Simple quotas cares quite a bit about tracking the original owner of an
extent through delayed refs, so rename these back to free up the name
for the real owning root (which will live on the generic btrfs_ref and
the head ref)

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
1e0e9d5771 btrfs: add helper for recording simple quota deltas
Rather than re-computing shared/exclusive ownership based on backrefs
and walking roots for implicit backrefs, simple quotas does an increment
when creating an extent and a decrement when deleting it. Add the API
for the extent item code to use to track those events.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Boris Burkov
6ed05643dd btrfs: create qgroup earlier in snapshot creation
Pull creating the qgroup earlier in the snapshot. This allows simple
quotas qgroups to see all the metadata writes related to the snapshot
being created and to be born with the root node accounted.

Note this has an impact on transaction commit where the qgroup creation
can do a lot of work, allocate memory and take locks. The change is done
for correctness, potential performance issues will be fixed in the
future.

Signed-off-by: Boris Burkov <boris@bur.io>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
af0e2aab3b btrfs: qgroup: flush reservations during quota disable
The following sequence:

  enable simple quotas
  do some writes
      reserve space
      create ordered_extent
	  release rsv (store rsv_bytes in OE, mark QGROUP_RESERVED bits)
  disable quotas
  enable simple quotas
      set qgroup rsv to 0 on all subvolumes
  ordered_extent finishes
      create delayed ref with rsv_bytes from before
  run delayed ref
      record_simple_quota_delta
	  free rsv_bytes (0 -> -rsv_delta)

results in us reliably underflowing the subvolume's qgroup rsv counter,
because disabling/re-enabling quotas toggles reservation counters down
to 0, but does not remove other file system state which represents
successful acquisition of qgroup rsv space. Specifically metadata rsv
counters on the root object and rsv_bytes on ordered_extent objects that
have released their reservation as well as the corresponding
QGROUP_RESERVED extent bits.

Normal qgroups gets away with this, I believe because it forces more
work to happen on transaction commit, but I am not certain it is totally
safe from the ordered_extent/leaked extent bit variant. Simple quotas
hits this reliably.

The intent of the fix is to make disable take the time to clear that
external to qgroups state as well: after flipping off the quota bit on
fs_info, flush delalloc and ordered extents, clearing the extent bits
along the way. This makes it so there are no ordered extents or meta
prealloc hanging around from the first enablement period during the second.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
a744986ac4 btrfs: sysfs: add simple_quota incompat feature entry
Add an entry in the features directory for the new incompat flag

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
0182764a21 btrfs: sysfs: expose quota mode via sysfs
Add a new sysfs file /sys/fs/btrfs/<uuid>/qgroups/mode
which prints out the mode qgroups is running in. The possible modes are
qgroup, and squota.

If quotas are not enabled, then the qgroups directory will not exist,
so don't handle that mode.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
182940f4f4 btrfs: qgroup: add new quota mode for simple quotas
Add a new quota mode called "simple quotas". It can be enabled by the
existing quota enable ioctl via a new command, and sets an incompat
bit, as the implementation of simple quotas will make backwards
incompatible changes to the disk format of the extent tree.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Boris Burkov
6b0cd63bc7 btrfs: qgroup: introduce quota mode
In preparation for introducing simple quotas, change from a binary
setting for quotas to an enum based mode. Initially, the possible modes
are disabled/full. Full quotas is normal btrfs qgroups.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
David Sterba
078b8b90b8 btrfs: merge ordered work callbacks in btrfs_work into one
There are two callbacks defined in btrfs_work but only two actually make
use of them, otherwise there are NULLs. We can get rid of the freeing
callback making it a special case of the normal work. This reduces the
size of btrfs_work by 8 bytes, final layout:

struct btrfs_work {
        btrfs_func_t               func;                 /*     0     8 */
        btrfs_ordered_func_t       ordered_func;         /*     8     8 */
        struct work_struct         normal_work;          /*    16    32 */
        struct list_head           ordered_list;         /*    48    16 */
        /* --- cacheline 1 boundary (64 bytes) --- */
        struct btrfs_workqueue *   wq;                   /*    64     8 */
        long unsigned int          flags;                /*    72     8 */

        /* size: 80, cachelines: 2, members: 6 */
        /* last cacheline: 16 bytes */
};

This in turn reduces size of other structures (on a release config):

- async_chunk			 160 ->  152
- async_submit_bio		 152 ->  144
- btrfs_async_delayed_work	 104 ->   96
- btrfs_caching_control		 176 ->  168
- btrfs_delalloc_work		 144 ->  136
- btrfs_fs_info			3608 -> 3600
- btrfs_ordered_extent		 440 ->  424
- btrfs_writepage_fixup		 104 ->   96

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
e9b9b911e0 btrfs: add raid stripe tree to features enabled with debug config
Until the raid stripe tree code is well enough tested and feature
complete, "hide" it behind CONFIG_BTRFS_DEBUG so only people who
want to use it are actually using it.

The scrub support may still fail some tests (btrfs/060 and up) and will
be fixed, RAID5/6 is not supported.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
e0b4077fcc btrfs: tree-checker: add support for raid stripe tree
Add a tree checker support for RAID stripe tree items, verify:

- alignment
- presence of the incompat bit
- supported encoding

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
b5e2c2ff67 btrfs: tracepoints: add events for raid stripe tree
Add trace events for raid-stripe-tree operations.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:10 +02:00
Johannes Thumshirn
9f9918a801 btrfs: sysfs: announce presence of raid-stripe-tree
If a filesystem with a raid-stripe-tree is mounted, show the RST feature
in sysfs, currently still under the CONFIG_BTRFS_DEBUG option.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
edde81f1ab btrfs: add raid stripe tree pretty printer
Decode raid-stripe-tree entries on btrfs_print_tree().

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
568220fa96 btrfs: zoned: support RAID0/1/10 on top of raid stripe tree
When we have a raid-stripe-tree, we can do RAID0/1/10 on zoned devices
for data block groups. For metadata block groups, we don't actually
need anything special, as all metadata I/O is protected by the
btrfs_zoned_meta_io_lock() already.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
9acaa64187 btrfs: scrub: implement raid stripe tree support
A filesystem that uses the raid stripe tree for logical to physical
address translation can't use the regular scrub path, that reads all
stripes and then checks if a sector is unused afterwards.

When using the raid stripe tree, this will result in lookup errors, as
the stripe tree doesn't know the requested logical addresses.

In case we're scrubbing a filesystem which uses the RAID stripe tree for
multi-device logical to physical address translation, perform an extra
block mapping step to get the real on-disk stripe length from the stripe
tree when scrubbing the sectors.

This prevents a double completion of the btrfs_bio caused by splitting the
underlying bio and ultimately a use-after-free.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
10e27980f2 btrfs: lookup physical address from stripe extent
Lookup the physical address from the raid stripe tree when a read on an
RAID volume formatted with the raid stripe tree was attempted.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
ca41504efd btrfs: delete stripe extent on extent deletion
As each stripe extent is tied to an extent item, delete the stripe extent
once the corresponding extent item is deleted.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
02c372e1f0 btrfs: add support for inserting raid stripe extents
Add support for inserting stripe extents into the raid stripe tree on
completion of every write that needs an extra logical-to-physical
translation when using RAID.

Inserting the stripe extents happens after the data I/O has completed,
this is done to

  a) support zone-append and
  b) rule out the possibility of a RAID-write-hole.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
515020900d btrfs: read raid stripe tree from disk
If we find the raid-stripe-tree on mount, read it from disk. This is
a backward incompatible feature. The rescue=ignorebadroots mount option
will skip this tree.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Johannes Thumshirn
ee1293308e btrfs: add raid stripe tree definitions
Add definitions for the raid stripe tree. This tree will hold information
about the on-disk layout of the stripes in a RAID set.

Each stripe extent has a 1:1 relationship with an on-disk extent item and
is doing the logical to per-drive physical address translation for the
extent item in question.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Qu Wenruo
6d3a61945b btrfs: warn on tree blocks which are not nodesize aligned
A long time ago, we had some metadata chunks which started at sector
boundary but not aligned to nodesize boundary.

This led to some older filesystems which can have tree blocks only
aligned to sectorsize, but not nodesize.

Later 'btrfs check' gained the ability to detect and warn about such tree
blocks, and kernel fixed the chunk allocation behavior, nowadays those
tree blocks should be pretty rare.

But in the future, if we want to migrate metadata to folio, we cannot
have such tree blocks, as filemap_add_folio() requires the page index to
be aligned with the folio number of pages.  Such unaligned tree blocks
can lead to VM_BUG_ON().

So this patch adds extra warning for those unaligned tree blocks, as a
preparation for the future folio migration.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:09 +02:00
Josef Bacik
11aeb97b45 btrfs: don't arbitrarily slow down delalloc if we're committing
We have a random schedule_timeout() if the current transaction is
committing, which seems to be a holdover from the original delalloc
reservation code.

Remove this, we have the proper flushing stuff, we shouldn't be hoping
for random timing things to make everything work.  This just induces
latency for no reason.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
c967c19ea6 btrfs: remove useless comment from btrfs_pin_extent_for_log_replay()
The comment on top of btrfs_pin_extent_for_log_replay() mentioning that
the function must be called within a transaction is pointless as of
commit 9fce570454 ("btrfs: Make btrfs_pin_extent_for_log_replay take
transaction handle"), since the function now takes a transaction handle
as its first argument. So remove the comment because it's completely
useless now.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
df423ee23b btrfs: remove stale comment from btrfs_free_extent()
A comment at btrfs_free_extent() mentions the call to btrfs_pin_extent()
unlocks the pinned mutex, however that mutex is long gone, it was removed
in 2009 by commit 04018de5d4 ("Btrfs: kill the pinned_mutex"). So just
delete the comment.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
87463f7e02 btrfs: zoned: factor out DUP bg handling from btrfs_load_block_group_zone_info
Split the code handling a type DUP block group from
btrfs_load_block_group_zone_info to make the code more readable.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
9e0e3e74dc btrfs: zoned: factor out single bg handling from btrfs_load_block_group_zone_info
Split the code handling a type single block group from
btrfs_load_block_group_zone_info to make the code more readable.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
09a46725cc btrfs: zoned: factor out per-zone logic from btrfs_load_block_group_zone_info
Split out a helper for the body of the per-zone loop in
btrfs_load_block_group_zone_info to make the function easier to read and
modify.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Christoph Hellwig
15c12fcc50 btrfs: zoned: introduce a zone_info struct in btrfs_load_block_group_zone_info
Add a new zone_info structure to hold per-zone information in
btrfs_load_block_group_zone_info and prepare for breaking out helpers
from it.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:08 +02:00
Filipe Manana
4d20c1def9 btrfs: remove pointless loop from btrfs_update_block_group()
When an extent is allocated or freed, we call btrfs_update_block_group()
to update its block group and space info. An extent always belongs to a
single block group, it can never span multiple block groups, so the loop
we have at btrfs_update_block_group() is pointless, as it always has a
single iteration. The loop was added in the very early days, 2007, when
the block group code was added in commit 9078a3e1e4 ("Btrfs: start of
block group code"), but even back then it seemed pointless.

So remove the loop and assert the block group containing the start offset
of the extent also contains the whole extent.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
4ebe8d4788 btrfs: mark transaction id check as unlikely at btrfs_mark_buffer_dirty()
At btrfs_mark_buffer_dirty(), having a transaction id mismatch is never
expected to happen and it usually means there's a bug or some memory
corruption due to a bitflip for example. So mark the condition as unlikely
to optimize code generation as well as to make it obvious for human
readers that it is a very unexpected condition.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
20cbe46035 btrfs: use btrfs_crit at btrfs_mark_buffer_dirty()
There's no need to use WARN() at btrfs_mark_buffer_dirty() to print an
error message, as we have the fs_info pointer we can use btrfs_crit()
which prints device information and makes the message have a more uniform
format. As we are already aborting the transaction we already have a stack
trace printed as well. So replace the use of WARN() with btrfs_crit().

Also slightly reword the message to use 'logical' instead of 'block' as
it's what is used in other error/warning messages.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
50564b651d btrfs: abort transaction on generation mismatch when marking eb as dirty
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.

So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Anand Jain
bc27d6f0aa btrfs: scan but don't register device on single device filesystem
After the commit 5f58d783fd ("btrfs: free device in btrfs_close_devices
for a single device filesystem") we unregister the device from the kernel
memory upon unmounting for a single device.

So, device registration that was performed before mounting if any is no
longer in the kernel memory.

However, in fact, note that device registration is unnecessary for a
single-device btrfs filesystem unless it's a seed device.

So for commands like 'btrfs device scan' or 'btrfs device ready' with a
non-seed single-device btrfs filesystem, they can return success just
after superblock verification and without the actual device scan.  When
'device scan --forget' is called on such device no error is returned.

The seed device must remain in the kernel memory to allow the sprout
device to mount without the need to specify the seed device explicitly.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
David Sterba
ed164802e8 btrfs: rename errno identifiers to error
We sync the kernel files to userspace and the 'errno' symbol is defined
by standard library, which does not matter in kernel but the parameters
or local variables could clash. Rename them all.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
Filipe Manana
28270e25c6 btrfs: always reserve space for delayed refs when starting transaction
When starting a transaction (or joining an existing one with
btrfs_start_transaction()), we reserve space for the number of items we
want to insert in a btree, but we don't do it for the delayed refs we
will generate while using the transaction to modify (COW) extent buffers
in a btree or allocate new extent buffers. Basically how it works:

1) When we start a transaction we reserve space for the number of items
   the caller wants to be inserted/modified/deleted in a btree. This space
   goes to the transaction block reserve;

2) If the delayed refs block reserve is not full, its size is greater
   than the amount of its reserved space, and the flush method is
   BTRFS_RESERVE_FLUSH_ALL, then we attempt to reserve more space for
   it corresponding to the number of items the caller wants to
   insert/modify/delete in a btree;

3) The size of the delayed refs block reserve is increased when a task
   creates delayed refs after COWing an extent buffer, allocating a new
   one or deleting (freeing) an extent buffer. This happens after the
   the task started or joined a transaction, whenever it calls
   btrfs_update_delayed_refs_rsv();

4) The delayed refs block reserve is then refilled by anyone calling
   btrfs_delayed_refs_rsv_refill(), either during unlink/truncate
   operations or when someone else calls btrfs_start_transaction() with
   a 0 number of items and flush method BTRFS_RESERVE_FLUSH_ALL;

5) As a task COWs or allocates extent buffers, it consumes space from the
   transaction block reserve. When the task releases its transaction
   handle (btrfs_end_transaction()) or it attempts to commit the
   transaction, it releases any remaining space in the transaction block
   reserve that it did not use, as not all space may have been used (due
   to pessimistic space calculation) by calling btrfs_block_rsv_release()
   which will try to add that unused space to the delayed refs block
   reserve (if its current size is greater than its reserved space).
   That transferred space may not be enough to completely fulfill the
   delayed refs block reserve.

   Plus we have some tasks that will attempt do modify as many leaves
   as they can before getting -ENOSPC (and then reserving more space and
   retrying), such as hole punching and extent cloning which call
   btrfs_replace_file_extents(). Such tasks can generate therefore a
   high number of delayed refs, for both metadata and data (we can't
   know in advance how many file extent items we will find in a range
   and therefore how many delayed refs for dropping references on data
   extents we will generate);

6) If a transaction starts its commit before the delayed refs block
   reserve is refilled, for example by the transaction kthread or by
   someone who called btrfs_join_transaction() before starting the
   commit, then when running delayed references if we don't have enough
   reserved space in the delayed refs block reserve, we will consume
   space from the global block reserve.

Now this doesn't make a lot of sense because:

1) We should reserve space for delayed references when starting the
   transaction, since we have no guarantees the delayed refs block
   reserve will be refilled;

2) If no refill happens then we will consume from the global block reserve
   when running delayed refs during the transaction commit;

3) If we have a bunch of tasks calling btrfs_start_transaction() with a
   number of items greater than zero and at the time the delayed refs
   reserve is full, then we don't reserve any space at
   btrfs_start_transaction() for the delayed refs that will be generated
   by a task, and we can therefore end up using a lot of space from the
   global reserve when running the delayed refs during a transaction
   commit;

4) There are also other operations that result in bumping the size of the
   delayed refs reserve, such as creating and deleting block groups, as
   well as the need to update a block group item because we allocated or
   freed an extent from the respective block group;

5) If we have a significant gap between the delayed refs reserve's size
   and its reserved space, two very bad things may happen:

   1) The reserved space of the global reserve may not be enough and we
      fail the transaction commit with -ENOSPC when running delayed refs;

   2) If the available space in the global reserve is enough it may result
      in nearly exhausting it. If the fs has no more unallocated device
      space for allocating a new block group and all the available space
      in existing metadata block groups is not far from the global
      reserve's size before we started the transaction commit, we may end
      up in a situation where after the transaction commit we have too
      little available metadata space, and any future transaction commit
      will fail with -ENOSPC, because although we were able to reserve
      space to start the transaction, we were not able to commit it, as
      running delayed refs generates some more delayed refs (to update the
      extent tree for example) - this includes not even being able to
      commit a transaction that was started with the goal of unlinking a
      file, removing an empty data block group or doing reclaim/balance,
      so there's no way to release metadata space.

      In the worst case the next time we mount the filesystem we may
      also fail with -ENOSPC due to failure to commit a transaction to
      cleanup orphan inodes. This later case was reported and hit by
      someone running a SLE (SUSE Linux Enterprise) distribution for
      example - where the fs had no more unallocated space that could be
      used to allocate a new metadata block group, and the available
      metadata space was about 1.5M, not enough to commit a transaction
      to cleanup an orphan inode (or do relocation of data block groups
      that were far from being full).

So improve on this situation by always reserving space for delayed refs
when calling start_transaction(), and if the flush method is
BTRFS_RESERVE_FLUSH_ALL, also try to refill the delayed refs block
reserve if it's not full. The space reserved for the delayed refs is added
to a local block reserve that is part of the transaction handle, and when
a task updates the delayed refs block reserve size, after creating a
delayed ref, the space is transferred from that local reserve to the
global delayed refs reserve (fs_info->delayed_refs_rsv). In case the
local reserve does not have enough space, which may happen for tasks
that generate a variable and potentially large number of delayed refs
(such as the hole punching and extent cloning cases mentioned before),
we transfer any available space and then rely on the current behaviour
of hoping some other task refills the delayed refs reserve or fallback
to the global block reserve.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
adb86dbe42 btrfs: stop doing excessive space reservation for csum deletion
Currently when reserving space for deleting the csum items for a data
extent, when adding or updating a delayed ref head, we determine how
many leaves of csum items we can have and then pass that number to the
helper btrfs_calc_delayed_ref_bytes(). This helper is used for calculating
space for all tree modifications we need when running delayed references,
however the amount of space it computes is excessive for deleting csum
items because:

1) It uses btrfs_calc_insert_metadata_size() which is excessive because
   we only need to delete csum items from the csum tree, we don't need
   to insert any items, so btrfs_calc_metadata_size() is all we need (as
   it computes space needed to delete an item);

2) If the free space tree is enabled, it doubles the amount of space,
   which is pointless for csum deletion since we don't need to touch the
   free space tree or any other tree other than the csum tree.

So improve on this by tracking how many csum deletions we have and using
a new helper to calculate space for csum deletions (just a wrapper around
btrfs_calc_metadata_size() with a comment). This reduces the amount of
space we need to reserve for csum deletions by a factor of 4, and it helps
reduce the number of times we have to block space reservations and have
the reclaim task enter the space flushing algorithm (flush delayed items,
flush delayed refs, etc) in order to satisfy tickets.

For example this results in a total time decrease when unlinking (or
truncating) files with many extents, as we end up having to block on space
metadata reservations less often. Example test:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/test

  umount $DEV &> /dev/null
  mkfs.btrfs -f $DEV
  # Use compression to quickly create files with a lot of extents
  # (each with a size of 128K).
  mount -o compress=lzo $DEV $MNT

  # 100G gives at least 983040 extents with a size of 128K.
  xfs_io -f -c "pwrite -S 0xab -b 1M 0 120G" $MNT/foobar

  # Flush all delalloc and clear all metadata from memory.
  umount $MNT
  mount -o compress=lzo $DEV $MNT

  start=$(date +%s%N)
  rm -f $MNT/foobar
  end=$(date +%s%N)
  dur=$(( (end - start) / 1000000 ))
  echo "rm took $dur milliseconds"

  umount $MNT

Before this change rm took: 7504 milliseconds
After this change rm took:  6574 milliseconds  (-12.4%)

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
b6ea3e6ab5 btrfs: remove pointless initialization at btrfs_delayed_refs_rsv_release()
There's no point in initializing to 0 the local variable 'released' as
we don't use it before the next assignment to it. So remove the
initialization. This may help avoid some warnings with clang tools such
as the one reported/fixed by commit 966de47ff0 ("btrfs: remove redundant
initialization of variables in log_new_ancestors").

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
3ee56a58ad btrfs: reserve space for delayed refs on a per ref basis
Currently when reserving space for delayed refs we do it on a per ref head
basis. This is generally enough because most back refs for an extent end
up being inlined in the extent item - with the default leaf size of 16K we
can have at most 33 inline back refs (this is calculated by the macro
BTRFS_MAX_EXTENT_ITEM_SIZE()). The amount of bytes reserved for each ref
head is given by btrfs_calc_delayed_ref_bytes(), which basically
corresponds to a single path for insertion into the extent tree plus
another path for insertion into the free space tree if it's enabled.

However if we have reached the limit of inline refs or we have a mix of
inline and non-inline refs, then we will need to insert a non-inline ref
and update the existing extent item to update the total number of
references for the extent. This implies we need reserved space for two
insertion paths in the extent tree, but we only reserved for one path.
The extent item and the non-inline ref item may be located in different
leaves, or even if they are located in the same leaf, after updating the
extent item and before inserting the non-inline ref item, the extent
buffers in the btree path may have been written (due to memory pressure
for e.g.), in which case we need to COW the entire path again. In this
case since we have not reserved enough space for the delayed refs block
reserve, we will use the global block reserve.

If we are in a situation where the fs has no more unallocated space enough
to allocate a new metadata block group and available space in the existing
metadata block groups is close to the maximum size of the global block
reserve (512M), we may end up consuming too much of the free metadata
space to the point where we can't commit any future transaction because it
will fail, with -ENOSPC, during its commit when trying to allocate an
extent for some COW operation (running delayed refs generated by running
delayed refs or COWing the root tree's root node at commit_cowonly_roots()
for example). Such dramatic scenario can happen if we have many delayed
refs that require the insertion of non-inline ref items, due to too many
reflinks or snapshots. We also have situations where we use the global
block reserve because we could not in advance know that we will need
space to update some trees (block group creation for example), so this
all adds up to increase the chances of exhausting the global block reserve
and making any future transaction commit to fail with -ENOSPC and turn
the fs into RO mode, or fail the mount operation in case the mount needs
to start and commit a transaction, such as when we have orphans to cleanup
for example - such case was reported and hit by someone running a SLE
(SUSE Linux Enterprise) distribution for example - where the fs had no
more unallocated space that could be used to allocate a new metadata block
group, and the available metadata space was about 1.5M, not enough to
commit a transaction to cleanup an orphan inode (or do relocation of data
block groups that were far from being full).

So reserve space for delayed refs by individual refs and not by ref heads,
as we may need to COW multiple extent tree paths due to non-inline ref
items.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
8a526c44da btrfs: allow to run delayed refs by bytes to be released instead of count
When running delayed references, through btrfs_run_delayed_refs(), we can
specify how many to run, run all existing delayed references and keep
running delayed references while we can find any. This is controlled with
the value of the 'count' argument, where a value of 0 means to run all
delayed references that exist by the time btrfs_run_delayed_refs() is
called, (unsigned long)-1 means to keep running delayed references while
we are able find any, and any other value to run that exact number of
delayed references.

Typically a specific value other than 0 or -1 is used when flushing space
to try to release a certain amount of bytes for a ticket. In this case
we just simply calculate how many delayed reference heads correspond to a
specific amount of bytes, with calc_delayed_refs_nr(). However that only
takes into account the space reserved for the reference heads themselves,
and does not account for the space reserved for deleting checksums from
the csum tree (see add_delayed_ref_head() and update_existing_head_ref())
in case we are going to delete a data extent. This means we may end up
running more delayed references than necessary in case we process delayed
references for deleting a data extent.

So change the logic of btrfs_run_delayed_refs() to take a bytes argument
to specify how many bytes of delayed references to run/release, using the
special values of 0 to mean all existing delayed references and U64_MAX
(or (u64)-1) to keep running delayed references while we can find any.

This prevents running more delayed references than necessary, when we have
delayed references for deleting data extents, but also makes the upcoming
changes/patches simpler and it's preparatory work for them.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
da8848ac6a btrfs: simplify check for extent item overrun at lookup_inline_extent_backref()
At lookup_inline_extent_backref() we can simplify the check for an overrun
of the extent item by making the while loop's condition to be "ptr < end"
and then check after the loop if an overrun happened ("ptr > end"). This
reduces indentation and makes the loop condition more clear. So move the
check out of the loop and change the loop condition accordingly, while
also adding the 'unlikely' tag to the check since it's not supposed to be
triggered.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
eba444f1c0 btrfs: return -EUCLEAN if extent item is missing when searching inline backref
At lookup_inline_extent_backref() when trying to insert an inline backref,
if we don't find the extent item we log an error and then return -EIO.
This error code is confusing because there was actually no IO error, and
this means we have some corruption, either caused by a bug or something
like a memory bitflip for example. So change the error code from -EIO to
-EUCLEAN.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
cc925b9646 btrfs: use a single variable for return value at lookup_inline_extent_backref()
At lookup_inline_extent_backref(), instead of using a 'ret' and an 'err'
variable for tracking the return value, use a single one ('ret'). This
simplifies the code, makes it comply with most of the existing code and
it's less prone for logic errors as time has proven over and over in the
btrfs code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
20fb05a6d1 btrfs: use a single variable for return value at run_delayed_extent_op()
Instead of using a 'ret' and an 'err' variable at run_delayed_extent_op()
for tracking the return value, use a single one ('ret'). This simplifies
the code, makes it comply with most of the existing code and it's less
prone for logic errors as time has proven over and over in the btrfs code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
e721043a98 btrfs: remove pointless 'ref_root' variable from run_delayed_data_ref()
The 'ref_root' variable, at run_delayed_data_ref(), is not really needed
as we can always use ref->root directly, plus its initialization to 0 is
completely pointless as we assign it ref->root before its first use.
So just drop that variable and use ref->root directly.

This may help avoid some warnings with clang tools such as the one
reported/fixed by commit 966de47ff0 ("btrfs: remove redundant
initialization of variables in log_new_ancestors").

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
7cce0d690d btrfs: initialize key where it's used when running delayed data ref
At run_delayed_data_ref() we are always initializing a key but the key
is only needed and used if we are inserting a new extent. So move the
declaration and initialization of the key to 'if' branch where it's used.
Also rename the key from 'ins' to 'key', as it's a more clear name.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:06 +02:00
Filipe Manana
1df6b3c060 btrfs: remove refs_to_drop argument from __btrfs_free_extent()
Currently the 'refs_to_drop' argument of __btrfs_free_extent() always
matches the value of node->ref_mod, so remove the argument and use
node->ref_mod at __btrfs_free_extent().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
88b2d08879 btrfs: remove refs_to_add argument from __btrfs_inc_extent_ref()
Currently the 'refs_to_add' argument of __btrfs_inc_extent_ref() always
matches the value of node->ref_mod, so remove the argument and use
node->ref_mod at __btrfs_inc_extent_ref().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
abff279eb3 btrfs: remove the refcount warning/check at btrfs_put_delayed_ref()
At btrfs_put_delayed_ref(), it's pointless to have a WARN_ON() to check if
the refcount of the delayed ref is zero. Such check is already done by the
refcount_t module and refcount_dec_and_test(), which loudly complains if
we try to decrement a reference count that is currently 0.

The WARN_ON() dates back to the time when used a regular atomic_t type
for the reference counter, before we switched to the refcount_t type.
The main goal of the refcount_t type/module is precisely to catch such
types of bugs and loudly complain if they happen.

This also reduces a bit the module's text size.
Before this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1612483	 167145	  16864	1796492	 1b698c	fs/btrfs/btrfs.ko

After this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1612371	 167073	  16864	1796308	 1b68d4	fs/btrfs/btrfs.ko

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
3cbb9f5160 btrfs: remove unnecessary logic when running new delayed references
When running delayed references, at btrfs_run_delayed_refs(), we have this
logic to run any new delayed references that might have been added just
after we ran all delayed references. This logic grabs the first delayed
reference, then locks it to wait for any contention on it before running
all new delayed references. This however is pointless and not necessary
because at __btrfs_run_delayed_refs() when we start running delayed
references, we pick the first reference with btrfs_obtain_ref_head() and
then we will lock it (with btrfs_delayed_ref_lock()).

So remove the duplicate and unnecessary logic at btrfs_run_delayed_refs().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Filipe Manana
03551d651e btrfs: pass a space_info argument to btrfs_reserve_metadata_bytes()
We are passing a block reserve argument to btrfs_reserve_metadata_bytes()
which is not really used, all we need is to pass the space_info associated
to the block reserve, we don't change the block reserve at all.

Not only it's pointless to pass the block reserve, it's also confusing as
one might think that the reserved bytes will end up being added to the
passed block reserve, when that's not the case. The pattern for reserving
space and adding it to a block reserve is to first reserve space with
btrfs_reserve_metadata_bytes() and if that succeeds, then add the space to
a block reserve by calling btrfs_block_rsv_add_bytes().

Also the reverse of btrfs_reserve_metadata_bytes(), which is
btrfs_space_info_free_bytes_may_use(), takes a space_info argument and
not a block reserve, so one more reason to pass a space_info and not a
block reserve to btrfs_reserve_metadata_bytes().

So change btrfs_reserve_metadata_bytes() and its callers to pass a
space_info argument instead of a block reserve argument.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
9fb2acc2fe btrfs: remove the need_raid_map parameter from btrfs_map_block()
The parameter @need_raid_map is mostly a legacy from the old days where
we don't yet have a solid definition on the @mirror_num, and only
check-integrity was using that parameter, while all other call sites
just pass 1 for that parameter.

Now since we have removed check-integrity functionality, we can also
remove the @need_raid_map parameter.

This change will also remove the ability to read P/Q stripe directly
when passing 0 as @need_raid_map.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
732fab95ab btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option
Since all check-integrity entry points have been removed, let's also
remove the config and all related code relying on that.

And since we have removed the mount option for check-integrity, we also
need to re-number all the BTRFS_MOUNT_* enums.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
fb2a836da4 btrfs: check-integrity: remove btrfsic_unmount() function
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
af32d3632e btrfs: check-integrity: remove btrfsic_mount() function
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
Qu Wenruo
51cf580c23 btrfs: check-integrity: remove btrfsic_check_bio() function
The function btrfsic_check_bio() is part of the deprecated
check-integrity functionality.

Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
David Sterba
150cce2d9f btrfs: move extent_buffer::lock_owner to debug section
The lock_owner is used for a rare corruption case and we haven't seen
any reports in years. Move it to the debugging section of eb.  To close
the holes also move log_index so the final layout looks like:

struct extent_buffer {
        u64                        start;                /*     0     8 */
        long unsigned int          len;                  /*     8     8 */
        long unsigned int          bflags;               /*    16     8 */
        struct btrfs_fs_info *     fs_info;              /*    24     8 */
        spinlock_t                 refs_lock;            /*    32     4 */
        atomic_t                   refs;                 /*    36     4 */
        int                        read_mirror;          /*    40     4 */
        s8                         log_index;            /*    44     1 */

        /* XXX 3 bytes hole, try to pack */

        struct callback_head       callback_head __attribute__((__aligned__(8))); /*    48    16 */
        /* --- cacheline 1 boundary (64 bytes) --- */
        struct rw_semaphore        lock;                 /*    64    40 */
        struct page *              pages[16];            /*   104   128 */

        /* size: 232, cachelines: 4, members: 11 */
        /* sum members: 229, holes: 1, sum holes: 3 */
        /* forced alignments: 1, forced holes: 1, sum forced holes: 3 */
        /* last cacheline: 40 bytes */
} __attribute__((__aligned__(8)));

This saves 8 bytes in total and still keeps the lock on a separate cacheline.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:05 +02:00
David Sterba
321f4992c1 btrfs: reduce size of struct btrfs_ref
We can reduce two members' size that in turn reduce size of struct
btrfs_ref from 64 to 56 bytes. As the structure is often used as a local
variable several functions reduce their stack usage.

- make enum btrfs_ref_type packed, there are only 4 values

- switch action and its values to a packed enum

Final structure layout:

struct btrfs_ref {
        enum btrfs_ref_type        type;                 /*     0     1 */
        enum btrfs_delayed_ref_action action;            /*     1     1 */
        bool                       skip_qgroup;          /*     2     1 */

        /* XXX 5 bytes hole, try to pack */

        u64                        bytenr;               /*     8     8 */
        u64                        len;                  /*    16     8 */
        u64                        parent;               /*    24     8 */
        union {
                struct btrfs_data_ref data_ref;          /*    32    24 */
                struct btrfs_tree_ref tree_ref;          /*    32    16 */
        };                                               /*    32    24 */

        /* size: 56, cachelines: 1, members: 7 */
        /* sum members: 51, holes: 1, sum holes: 5 */
        /* last cacheline: 56 bytes */
};

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
e41570d379 btrfs: reduce size and reorder compression members in struct btrfs_inode
Currently the compression type values are bounded and fit to an u8, we
can pack the btrfs_inode a bit by reordering them to the space created
by the location key. This reduces size from 1112 to 1104.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
105c8c4214 btrfs: reduce size of prelim_ref::level
The values of level are bounded and fit into a byte so let's use it for
the structure to reduce size from 88 to 80 bytes on a release build,
which increases number of objects in the default 8K slab from 93 to 102.

struct prelim_ref {
        struct rb_node             rbnode __attribute__((__aligned__(8))); /*     0    24 */
        u64                        root_id;              /*    24     8 */
        struct btrfs_key           key_for_search;       /*    32    17 */
        u8                         level;                /*    49     1 */

        /* XXX 2 bytes hole, try to pack */

        int                        count;                /*    52     4 */
        struct extent_inode_elem * inode_list;           /*    56     8 */
        /* --- cacheline 1 boundary (64 bytes) --- */
        u64                        parent;               /*    64     8 */
        u64                        wanted_disk_byte;     /*    72     8 */

        /* size: 80, cachelines: 2, members: 8 */
        /* sum members: 78, holes: 1, sum holes: 2 */
        /* forced alignments: 1 */
        /* last cacheline: 16 bytes */
} __attribute__((__aligned__(8)));

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
02cd00fa78 btrfs: reduce arguments of helpers space accounting root item
There are two helpers to increase used bytes of root items that add or
subtract one node size, we don't need to pass the argument for that.
Rename the function so it matches the root item member that gets
changed.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
007dec8c7e btrfs: reduce parameters of btrfs_pin_extent_for_log_replay
Both callers of btrfs_pin_extent_for_log_replay expand the parameters to
extent buffer members. We can simply pass the extent buffer instead.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
f863c50277 btrfs: reduce parameters of btrfs_pin_reserved_extent
There is only one caller of btrfs_pin_reserved_extent that expands the
parameters to extent buffer members. We can simply pass the extent
buffer instead.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
203f6a8772 btrfs: drop __must_check annotations
Drop all __must_check annotations because they're used in random
functions and not consistently. All errors should be handled.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
9580503bcb btrfs: reformat remaining kdoc style comments
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
33b6b25191 btrfs: move functions comments from qgroup.h to qgroup.c
We keep the comments next to the implementation, there were some left
to move.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
Anand Jain
cb6eb4757e btrfs: comment about fsid and metadata_uuid relationship
Add a comment explaining the relationship between fsid and metadata_uuid
in the on-disk superblock and the in-memory struct btrfs_fs_devices.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
Jiapeng Chong
1246873114 btrfs: qgroup: remove unused helpers for ulist aux data
These functions are defined in the qgroup.c file, but not called
anymore since commit "btrfs: qgroup: use qgroup_iterator_nested to in
qgroup_update_refcnt()" so we can delete them.

fs/btrfs/qgroup.c:149:19: warning: unused function 'qgroup_to_aux'.
fs/btrfs/qgroup.c:154:36: warning: unused function 'unode_aux_to_qgroup'.

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=6566
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
79ace7b807 btrfs: qgroup: prealloc btrfs_qgroup_list for __add_relation_rb()
Currently we go GFP_ATOMIC allocation for qgroup relation add, this
includes the following 3 call sites:

- btrfs_read_qgroup_config()
  This is not really needed, as at that time we're still in single
  thread mode, and no spin lock is held.

- btrfs_add_qgroup_relation()
  This one is holding a spinlock, but we're ensured to add at most one
  relation, thus we can easily do a preallocation and use the
  preallocated memory to avoid GFP_ATOMIC.

- btrfs_qgroup_inherit()
  This is a little more tricky, as we may have as many relationships as
  inherit::num_qgroups.
  Thus we have to properly allocate an array then preallocate all the
  memory.

This patch would remove the GFP_ATOMIC allocation for above involved
call sites, by doing preallocation before holding the spinlock, and let
__add_relation_rb() to handle the freeing of the structure.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
8d54518b5e btrfs: qgroup: pre-allocate btrfs_qgroup to reduce GFP_ATOMIC usage
Qgroup is the heaviest user of GFP_ATOMIC, but one call site does not
really need GFP_ATOMIC, that is add_qgroup_rb().

That function only searches the rbtree to find if we already have such
entry.  If not, then it would try to allocate memory for it.

This means we can afford to pre-allocate such structure unconditionally,
then free the memory if it's not needed.

Considering this function is not a hot path, only utilized by the
following functions:

- btrfs_qgroup_inherit()
  For "btrfs subvolume snapshot -i" option.

- btrfs_read_qgroup_config()
  At mount time, and we're ensured there would be no existing rb tree
  entry for each qgroup.

- btrfs_create_qgroup()

Thus we're completely safe to pre-allocate the extra memory for btrfs_qgroup
structure, and reduce unnecessary GFP_ATOMIC usage.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
dce28769a3 btrfs: qgroup: use qgroup_iterator_nested to in qgroup_update_refcnt()
The ulist @qgroups is utilized to record all involved qgroups from both
old and new roots inside btrfs_qgroup_account_extent().

Due to the fact that qgroup_update_refcnt() itself is already utilizing
qgroup_iterator, here we have to introduce another list_head,
btrfs_qgroup::nested_iterator, allowing nested iteration.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
a4a81383fb btrfs: qgroup: use qgroup_iterator to replace tmp ulist in qgroup_update_refcnt()
For function qgroup_update_refcnt(), we use @tmp list to iterate all the
involved qgroups of a subvolume.

It's a perfect match for qgroup_iterator facility, as that @tmp ulist
has a very limited lifespan (just inside the while() loop).

By migrating to qgroup_iterator, we can get rid of the GFP_ATOMIC memory
allocation and no error handling is needed.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
a0bdc04b07 btrfs: qgroup: use qgroup_iterator in __qgroup_excl_accounting()
With the new qgroup_iterator_add() and qgroup_iterator_clean(), we can
get rid of the ulist and its GFP_ATOMIC memory allocation.

Furthermore we can merge the code handling the initial and parent
qgroups into one loop, and drop the @tmp ulist parameter for involved
call sites.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
0913445082 btrfs: qgroup: use qgroup_iterator in qgroup_convert_meta()
With the new qgroup_iterator_add() and qgroup_iterator_clean(), we can
get rid of the ulist and its GFP_ATOMIC memory allocation.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
25152cb7a8 btrfs: qgroup: use qgroup_iterator in btrfs_qgroup_free_refroot()
With the new qgroup_iterator_add() and qgroup_iterator_clean(), we can
get rid of the ulist and its GFP_ATOMIC memory allocation.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Qu Wenruo
686c4a5a42 btrfs: qgroup: iterate qgroups without memory allocation for qgroup_reserve()
Qgroup heavily relies on ulist to go through all the involved
qgroups, but since we're using ulist inside fs_info->qgroup_lock
spinlock, this means we're doing a lot of GFP_ATOMIC allocations.

This patch reduces the GFP_ATOMIC usage for qgroup_reserve() by
eliminating the memory allocation completely.

This is done by moving the needed memory to btrfs_qgroup::iterator
list_head, so that we can put all the involved qgroup into a on-stack
list, thus eliminating the need to allocate memory while holding
spinlock.

The only cost is the slightly higher memory usage, but considering the
reduce GFP_ATOMIC during a hot path, it should still be acceptable.

Function qgroup_reserve() is the perfect start point for this
conversion.

Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Josef Bacik
2a3a1dd99e btrfs: remove extraneous includes from ctree.h
We don't need any of these includes in the ctree.h header file for the
header file itself, remove them to clean up ctree.h a little bit.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Josef Bacik
c60a28806c btrfs: include linux/security.h in super.c
We use some of the security related code in here, include it in super.c
so we can remove the include from ctree.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Josef Bacik
5335f4376c btrfs: include trace header in where necessary
If we no longer include the tracepoints from ctree.h we fail to compile
because we have the dependency in some of the header files and source
files.  Add the include where we have these dependencies to allow us to
remove the include from ctree.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:03 +02:00
Josef Bacik
82cc2ade2a btrfs: add btrfs_delayed_ref_head declaration to extent-tree.h
extent-tree.h uses btrfs_delayed_ref_head in a function argument but
doesn't pull it's declaration from anywhere, add it to the top of the
header.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
04cc63d12c btrfs: add fscrypt related dependencies to respective headers
These headers have struct fscrypt_str as function arguments, so add
struct fscrypt_str to the theader, and include linux/fscrypt.h in
btrfs_inode.h as it also needs the definition of struct fscrypt_name for
the new inode args.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
3ecb43cb64 btrfs: include linux/iomap.h in file.c
We use the iomap code in file.c, include it so we have our dependencies.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
f005d997c4 btrfs: include asm/unaligned.h in accessors.h
We use the unaligned helpers directly in accessors.h, add the include
here.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
1b9e6a15bc btrfs: move btrfs_name_hash to dir-item.h
This is related to the name hashing for dir items, move it into
dir-item.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
98e4f060c4 btrfs: move btrfs_extref_hash into inode-item.h
Ideally this would be un-inlined, but that is a cleanup for later.  For
now move this into inode-item.h, which is where the extref code lives.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
03e8634896 btrfs: remove btrfs_crc32c wrapper
This simply sends the same arguments into crc32c(), and is just used in
a few places.  Remove this wrapper and directly call crc32c() in these
instances.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Josef Bacik
102f2640a3 btrfs: move btrfs_crc32c_final into free-space-cache.c
This is the only place this helper is used, take it out of ctree.h and
move it into free-space-cache.c.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Qu Wenruo
1c94674b25 btrfs: do not require EXTENT_NOWAIT for btrfs_redirty_list_add()
The flag EXTENT_NOWAIT is a special flag to notify extent-io-tree code
that this operation should not sleep for the extent state preallocation.

However for btrfs_redirty_list_add(), all callers are able to sleep:

- clean_log_buffer()
  Just 2 lines before, we call btrfs_pin_reserved_extent(), which calls
  pin_down_extent(), and that function does not require EXTENT_NOWAIT.
  Thus we're safe to call it without EXTENT_NOWAIT.

- btrfs_free_tree_block()
  This function have several call sites which trigger tree read, e.g.
  walk_up_proc(), thus we're safe to call it without EXTENT_NOWAIT.

Thus there is no need to require EXTENT_NOWAIT flag.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Anand Jain
f7361d8c3f btrfs: sipmlify uuid parameters of alloc_fs_devices()
Among all the callers, only the device_list_add() function uses the
second argument of alloc_fs_devices(). It passes metadata_uuid when
available, otherwise, it passes NULL. And in turn, alloc_fs_devices()
is designed to copy either metadata_uuid or fsid into
fs_devices::metadata_uuid.

So remove the second argument in alloc_fs_devices(), and always copy the
fsid.  In the caller device_list_add() function, we will overwrite it
with metadata_uuid when it is available.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Filipe Manana
01fc062bd0 btrfs: update comment for reservation of metadata space for delayed items
The second comment at btrfs_delayed_item_reserve_metadata() refers to a
field named "index_items_size" of a delayed inode, however that field
does not exists - it existed in a previous patch version, but then it
split into the fields "curr_index_batch_size" and "index_item_leaves"
in the final patch version that was picked. So update the comment.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:02 +02:00
Linus Torvalds
759d1b653f for-6.6-rc5-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmUmbQMACgkQxWXV+ddt
 WDtBshAAqOwMrqRwOKOze/LQ4Kl9A8p0l+XxYdt7nRSY7n15xpN6uLVsc0gTwO5n
 HOquDe2ivrpdOXI6ArcujTTFHaBGX+mmubU/yi54MH0iwuCR32dYhj3j7mDUIf6F
 GpTEjgxIdE4AMUw7e7Rzqbdcmq//+H+bBdm+2YkNNEBmPP06483GYthjKJ7zWdrn
 pPksR9f611aHU4jZnKZJeHgZh4iVrIszIxkjeMD5NJ6KUb8LJmISLOOJzowkmugt
 JH8bd1F/+/53MmpntWGnHnURI9J6UxBL0cNnYW26FjY21N3RGR2BumotW73hYaD7
 6fwuxs4ZWlLqHUtIOaAVUUSfEVse7k/i7m4+sDB1JLh26alqUHunqCFV+3ROTnOY
 jHwWW+qyQhxJnfgtHyDrwcybfW0V41hhmDIhoeezkSDtbnacNTMfwzXS2ELcp0KJ
 /13TCruweFN0g4lBR8HfbKJCCzPayxCirtubx1nIMRysHfo10aDWz1MSvr3mkOyo
 gwif/j9BMKN0+fg6l9eZNHWHfQ8qfL3dvSRBlvJcP5mnG5ZuVkxJUFH0m/UfdFbZ
 sbeJHSP9wex5tJKmG3kJPAuZWwGLHCiMMCnsWoq+02KV8IXrw3Ji5z/8Hhsb51Ps
 r7BGRO2A2rD9XLJtc9BCiwiV177/WknmTUtRpOyxHFfb37bKmHg=
 =Wz/9
 -----END PGP SIGNATURE-----

Merge tag 'for-6.6-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A revert of recent mount option parsing fix, this breaks mounts with
  security options.

  The second patch is a flexible array annotation"

* tag 'for-6.6-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: add __counted_by for struct btrfs_delayed_item and use struct_size()
  Revert "btrfs: reject unknown mount options early"
2023-10-11 13:58:32 -07:00
Gustavo A. R. Silva
75f5f60bf7 btrfs: add __counted_by for struct btrfs_delayed_item and use struct_size()
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time via CONFIG_UBSAN_BOUNDS (for
array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family
functions).

While there, use struct_size() helper, instead of the open-coded
version, to calculate the size for the allocation of the whole
flexible structure, including of course, the flexible-array member.

This code was found with the help of Coccinelle, and audited and
fixed manually.

Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-11 11:37:19 +02:00
David Sterba
54f67decdd Revert "btrfs: reject unknown mount options early"
This reverts commit 5f521494cc.

The patch breaks mounts with security mount options like

  $ mount -o context=system_u:object_r:root_t:s0 /dev/sdX /mn
  mount: /mnt: wrong fs type, bad option, bad superblock on /dev/sdX, missing codepage or helper program, ...

We cannot reject all unknown options in btrfs_parse_subvol_options() as
intended, the security options can be present at this point and it's not
possible to enumerate them in a future proof way. This means unknown
mount options are silently accepted like before when the filesystem is
mounted with either -o subvol=/path or as followup mounts of the same
device.

Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-10 15:27:56 +02:00
Wedson Almeida Filho
8a25b41898
btrfs: move btrfs_xattr_handlers to .rodata
This makes it harder for accidental or malicious changes to
btrfs_xattr_handlers at runtime.

Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: David Sterba <dsterba@suse.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com>
Link: https://lore.kernel.org/r/20230930050033.41174-6-wedsonaf@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-09 16:24:17 +02:00
Linus Torvalds
7de25c855b for-6.6-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmUe+t0ACgkQxWXV+ddt
 WDv6MA/7B31L45dH+qHM3XFUygJuTBk44OynDSRD/JrPS6ruycu3QpWCZ82+ozUz
 v8ULN3xJV4j2EWWa7w20CNfMITqEdOAvHHX6GAuXwTfLwy3ov+/L8tOt2OAQ44go
 kr6jiQULdBwfMxEp+6a5kMw0enVuEz3H+P8gWWUfQHuse+Cgk1TIdvLL8YuaoL0x
 mEphDtNLFh7UcsKxxVwgNXWowPxIO62xW/11hJKrF9ZpyFfER1TzfaO9kZStH2oe
 ylHYkWsVf6GdHtXlsVnvDSNdj+GW/KLRLWKouQNjbInSjmZzEBliBbVbXLCI1fvO
 /LpN1uu8T1XezBvxoEFw2JenkmFqMDg+ocl81owoG/IdJLOqPWCerUGb7VPtooT3
 dLx3buXXVBhx70qRdCgg5SwsjNTSElV5Ub9AnYGP5oux5of8oLOb9dSpQsxcE7iE
 yJEltu6+A1X+uVFHiDI8IIGghyZRq2UXc6zVdE3cHFfjwwB22aOtcRKZDw4O3Qzn
 DMuACRWZk8WL9gpQZEPa07JmSS3VPN6iY1gq3CYeZpoHOW6BMMDYb2p5/f+yNbWW
 a2JkDW+BnorEqqssMUyB2tf5k3fbOn1M15LSAH5oVXKA/F7dlxnSQksa7AI/pfFK
 InAmPLWQhzcIuNhpUs/+FwZ2csc0mbAWroX+fIRF3S99GR2e9ag=
 =/WDi
 -----END PGP SIGNATURE-----

Merge tag 'for-6.6-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - reject unknown mount options

 - adjust transaction abort error message level

 - fix one more build warning with -Wmaybe-uninitialized

 - proper error handling in several COW-related cases

* tag 'for-6.6-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: error out when reallocating block for defrag using a stale transaction
  btrfs: error when COWing block from a root that is being deleted
  btrfs: error out when COWing block using a stale transaction
  btrfs: always print transaction aborted messages with an error level
  btrfs: reject unknown mount options early
  btrfs: fix some -Wmaybe-uninitialized warnings in ioctl.c
2023-10-06 08:07:47 -07:00
Qi Zheng
1720f5dd8d fs: super: dynamically allocate the s_shrink
In preparation for implementing lockless slab shrink, use new APIs to
dynamically allocate the s_shrink, so that it can be freed asynchronously
via RCU. Then it doesn't need to wait for RCU read-side critical section
when releasing the struct super_block.

Link: https://lkml.kernel.org/r/20230911094444.68966-39-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Abhinav Kumar <quic_abhinavk@quicinc.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Carlos Llamas <cmllamas@google.com>
Cc: Chandan Babu R <chandan.babu@oracle.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Chuck Lever <cel@kernel.org>
Cc: Coly Li <colyli@suse.de>
Cc: Dai Ngo <Dai.Ngo@oracle.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Airlie <airlied@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
Cc: Gao Xiang <hsiangkao@linux.alibaba.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jeffle Xu <jefflexu@linux.alibaba.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Marijn Suijten <marijn.suijten@somainline.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Olga Kornievskaia <kolga@netapp.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rob Clark <robdclark@gmail.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sean Paul <sean@poorly.run>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Song Liu <song@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com>
Cc: Tom Talpey <tom@talpey.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com>
Cc: Yue Hu <huyue2@coolpad.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04 10:32:26 -07:00
Filipe Manana
e36f949140 btrfs: error out when reallocating block for defrag using a stale transaction
At btrfs_realloc_node() we have these checks to verify we are not using a
stale transaction (a past transaction with an unblocked state or higher),
and the only thing we do is to trigger two WARN_ON(). This however is a
critical problem, highly unexpected and if it happens it's most likely due
to a bug, so we should error out and turn the fs into error state so that
such issue is much more easily noticed if it's triggered.

The problem is critical because in btrfs_realloc_node() we COW tree blocks,
and using such stale transaction will lead to not persisting the extent
buffers used for the COW operations, as allocating tree block adds the
range of the respective extent buffers to the ->dirty_pages iotree of the
transaction, and a stale transaction, in the unlocked state or higher,
will not flush dirty extent buffers anymore, therefore resulting in not
persisting the tree block and resource leaks (not cleaning the dirty_pages
iotree for example).

So do the following changes:

1) Return -EUCLEAN if we find a stale transaction;

2) Turn the fs into error state, with error -EUCLEAN, so that no
   transaction can be committed, and generate a stack trace;

3) Combine both conditions into a single if statement, as both are related
   and have the same error message;

4) Mark the check as unlikely, since this is not expected to ever happen.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-04 01:04:33 +02:00