IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
It used to be called from only two places (truncate path and releasing a
transaction handle), but commits 28bad2125767c5 ("btrfs: fix truncate
throttling") and db2462a6ad3dc4 ("btrfs: don't run delayed refs in the end
transaction logic") removed their calls to this function, so it's not used
anymore. Just remove it and all its helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previous patch made sure that btrfs_setxattr_trans() is called only when
transaction NULL. Clean up btrfs_setxattr_trans() and drop the
parameter.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the caller has already created the transaction handle,
btrfs_setxattr() will use it. Also adds assert in btrfs_setxattr().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_setxattr_trans() is called by 5 functions as below and all of them
do updates. None of them would be roun on a read-only root.
So its ok to remove the readonly root check here as it's a high-level
conditon.
1.
__btrfs_set_acl()
btrfs_init_acl()
btrfs_init_inode_security()
2.
__btrfs_set_acl()
btrfs_set_acl()
3.
btrfs_set_prop()
btrfs_set_prop_trans()
/ \
btrfs_ioctl_setflags() btrfs_xattr_handler_set_prop()
4.
btrfs_xattr_handler_set()
5.
btrfs_initxattrs()
btrfs_xattr_security_init()
btrfs_init_inode_security()
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparatory patch, as we are going split the calls with and without
transaction to use the respective btrfs_setxattr() and
btrfs_setxattr_trans() functions. Export btrfs_setxattr() for calls
outside of xattr.c.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When trans is not NULL btrfs_setxattr() calls do_setxattr() directly
with a check for readonly root. Rename do_setxattr() btrfs_setxattr() in
preparation to call do_setxattr() directly instead. Preparatory patch,
no functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_setxattr() to btrfs_setxattr_trans(), so that do_setxattr()
can be renamed to btrfs_setxattr().
Preparatory patch, no functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike btrfs_tree_lock() and btrfs_tree_read_lock(), the remaining
functions in locking.c will not sleep, thus doesn't make much sense to
record their execution time.
Those events are introduced mainly for user space tool to audit and
detect lock leakage or dead lock.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two tree lock events which can sleep:
- btrfs_tree_read_lock()
- btrfs_tree_lock()
Sometimes we may need to look into the concurrency picture of the fs.
For that case, we need the execution time of above two functions and the
owner of @eb.
Here we introduce a trace events for user space tools like bcc, to get
the execution time of above two functions, and get detailed owner info
where eBPF code can't.
All the overhead is hidden behind the trace events, so if events are not
enabled, there is no overhead.
These trace events also output bytenr and generation, allow them to be
pared with unlock events to pin down deadlock.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member num_dirty_bgs of struct btrfs_transaction is not used anymore,
it is set and incremented but nothing reads its value anymore. Its last
read use was removed by commit 64403612b73a94 ("btrfs: rework
btrfs_check_space_for_delayed_refs"). So just remove that member.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Ordered csums are keyed off of a btrfs_ordered_extent, which already has
a reference to the inode. This implies that an explicit inode argument
is redundant. So remove it.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are at least 2 reports about a memory bit flip sneaking into
on-disk data.
Currently we only have a relaxed check triggered at
btrfs_mark_buffer_dirty() time, as it's not mandatory and only for
CONFIG_BTRFS_FS_CHECK_INTEGRITY enabled build, it doesn't help users to
detect such problem.
This patch will address the hole by triggering comprehensive check on
tree blocks before writing it back to disk.
The design points are:
- Timing of the check: Tree block write hook
This timing is chosen to reduce the overhead.
The comprehensive check should be as expensive as a checksum
calculation.
Doing full check at btrfs_mark_buffer_dirty() is too expensive for end
user.
- Loose empty leaf check
Originally for an empty leaf, tree-checker will report error if it's
not a tree root.
The problem for such check at write time is:
* False alert for tree root created in current transaction
In that case, the commit root still needs to be written to disk.
And since current root can differ from commit root, then it will
cause false alert.
This happens for log tree.
* False alert for relocated tree block
Relocated tree block can be written to disk due to memory pressure,
in that case an empty csum tree root can be written to disk and
cause false alert, since csum root node hasn't been updated.
Previous patch of removing comprehensive empty leaf owner check has
paved the way for this patch.
The example error output will be something like:
BTRFS critical (device dm-3): corrupt leaf: root=2 block=1350630375424 slot=68, bad key order, prev (10510212874240 169 0) current (1714119868416 169 0)
BTRFS error (device dm-3): block=1350630375424 write time tree block corruption detected
BTRFS: error (device dm-3) in btrfs_commit_transaction:2220: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-3): forced readonly
BTRFS warning (device dm-3): Skipping commit of aborted transaction.
BTRFS: error (device dm-3) in cleanup_transaction:1839: errno=-5 IO failure
BTRFS info (device dm-3): delayed_refs has NO entry
Reported-by: Leonard Lausen <leonard@lausen.nl>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 1ba98d086fe3 ("Btrfs: detect corruption when non-root leaf has
zero item") introduced comprehensive root owner checker.
However it's pretty expensive tree search to locate the owner root,
especially when it get reused by mandatory read and write time
tree-checker.
This patch will remove that check, and completely rely on owner based
empty leaf check, which is much faster and still works fine for most
case.
And since we skip the old root owner check, now write time tree check
can be merged with btrfs_check_leaf_full().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing fallocate, we first add the range to the reserve_list and
then reserve the quota. If quota reservation fails, we'll release all
reserved parts of reserve_list.
However, cur_offset is not updated to indicate that this range is
already been inserted into the list. Therefore, the same range is freed
twice. Once at list_for_each_entry loop, and once at the end of the
function. This will result in WARN_ON on bytes_may_use when we free the
remaining space.
At the end, under the 'out' label we have a call to:
btrfs_free_reserved_data_space(inode, data_reserved, alloc_start, alloc_end - cur_offset);
The start offset, third argument, should be cur_offset.
Everything from alloc_start to cur_offset was freed by the
list_for_each_entry_safe_loop.
Fixes: 18513091af94 ("btrfs: update btrfs_space_info's bytes_may_use timely")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of always calling the allocator to search for a free extent,
that satisfies the input criteria, switch btrfs_trim_free_extents to
using find_first_clear_extent_bit. With this change it's no longer
necessary to read the device tree in order to figure out holes in
the devices.
Now the code always searches in-memory data structure to figure out the
space range which contains the requested which should result in speed
improvements.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is very similar to find_first_extent_bit except that it
locates the first contiguous span of space which does not have bits set.
It's intended use is in the freespace trimming code.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently unallocated chunks are always trimmed. For example
2 consecutive trims on large storage would trim freespace twice
irrespective of whether the space was actually allocated or not between
those trims.
Optimise this behavior by exploiting the newly introduced alloc_state
tree of btrfs_device. A new CHUNK_TRIMMED bit is used to mark
those unallocated chunks which have been trimmed and have not been
allocated afterwards. On chunk allocation the respective underlying devices'
physical space will have its CHUNK_TRIMMED flag cleared. This avoids
submitting discards for space which hasn't been changed since the last
time discard was issued.
This applies to the single mount period of the filesystem as the
information is not stored permanently.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is used in more than one places so let's factor it out in ctree.h.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that these functions no longer require a handle to transaction to
inspect pending/pinned chunks the argument can be removed. At the same
time also remove any surrounding code which acquired the handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pending chunks list contains chunks that are allocated in the
current transaction but haven't been created yet. The pinned chunks
list contains chunks that are being released in the current transaction.
Both describe chunks that are not reflected on disk as in use but are
unavailable just the same.
The pending chunks list is anchored by the transaction handle, which
means that we need to hold a reference to a transaction when working
with the list.
The way we use them is by iterating over both lists to perform
comparisons on the stripes they describe for each device. This is
backwards and requires that we keep a transaction handle open while
we're trimming.
This patchset adds an extent_io_tree to btrfs_device that maintains
the allocation state of the device. Extents are set dirty when
chunks are first allocated -- when the extent maps are added to the
mapping tree. They're cleared when last removed -- when the extent
maps are removed from the mapping tree. This matches the lifespan
of the pending and pinned chunks list and allows us to do trims
on unallocated space safely without pinning the transaction for what
may be a lengthy operation. We can also use this io tree to mark
which chunks have already been trimmed so we don't repeat the operation.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the introduction of the alloc_state tree, some of the callees
of btrfs_mapping_tree_free will have to interact with the btrfs_device
of the constituent devices. Enable this by moving the code responsible
for freeing devices after the last user (btrfs_mapping_tree_free).
Otherwise the kernel could crash due to use-after-free.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_device structs are freed from RCU context since device iteration
is protected by RCU. Currently this is achieved by using call_rcu since
no blocking functions are called within btrfs_free_device. Future
refactoring of pending/pinned chunks will require calling sleeping
functions.
This patch is in preparation for these changes by simply switching from
RCU callbacks to explicit calls of synchronize_rcu and calling
btrfs_free_device directly. This is functionally equivalent, making sure
that there are no readers at that time.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It will be used in a future patch that will require modifying an
extent_io_tree struct under a spinlock.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rather than hijacking the existing defines let's just define new bits,
with more descriptive names. Instead of using yet more (currently at 18)
bits for the new flags, use the fact those flags will be specific to
the device allocation tree so define them using existing EXTENT_* flags.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Chunks read from disk currently don't get their ->orig_block_len member
set, in contrast when a new chunk is allocated, the respective
extent_map's ->orig_block_len is assigned the size of the stripe of this
chunk.
Let's apply the same strategy for chunks which are read from
disk, not only does this codify the invariant that ->orig_block_len
always contains the size of the stripe for a chunk (when the em belongs
to the mapping tree). But it's also a preparatory patch for further work
around tracking chunk allocation in an extent tree rather than
pinned/pending lists.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is going to be used to clear out the device extent
allocation information. Give it a more generic name and export it. This
is in preparation to replacing the pending/pinned chunk lists with an
extent tree. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>