IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
ocelot_vlan_member_del() will free the struct ocelot_bridge_vlan, so if
this is the same as the port's pvid_vlan which we access afterwards,
what we're accessing is freed memory.
Fix the bug by determining whether to clear ocelot_port->pvid_vlan prior
to calling ocelot_vlan_member_del().
Fixes: d4004422f6 ("net: mscc: ocelot: track the port pvid using a pointer")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
An ongoing workqueue populates the stats buffer. At the same time, a user
might query the statistics. While writing to the buffer is mutex-locked,
reading from the buffer wasn't. This could lead to buggy reads by ethtool.
This patch fixes the former blamed commit, but the bug was introduced in
the latter.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Fixes: 1e1caa9735 ("ocelot: Clean up stats update deferred work")
Fixes: a556c76adc ("net: mscc: Add initial Ocelot switch support")
Reported-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/all/20220210150451.416845-2-colin.foster@in-advantage.com/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The filters for the PTP trap keys are incorrectly configured, in the
sense that is2_entry_set() only looks at trap->key.ipv4.dport or
trap->key.ipv6.dport if trap->key.ipv4.proto or trap->key.ipv6.proto is
set to IPPROTO_TCP or IPPROTO_UDP.
But we don't do that, so is2_entry_set() goes through the "else" branch
of the IP protocol check, and ends up installing a rule for "Any IP
protocol match" (because msk is also 0). The UDP port is ignored.
This means that when we run "ptp4l -i swp0 -4", all IP traffic is
trapped to the CPU, which hinders bridging.
Fix this by specifying the IP protocol in the VCAP IS2 filters for PTP
over UDP.
Fixes: 96ca08c058 ("net: mscc: ocelot: set up traps for PTP packets")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Clang static analysis reports this issue
ocelot_flower.c:563:8: warning: 1st function call argument
is an uninitialized value
!is_zero_ether_addr(match.mask->dst)) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The variable match is used before it is set. So move the
block.
Fixes: 75944fda1d ("net: mscc: ocelot: offload ingress skbedit and vlan actions to VCAP IS1")
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the blamed commit, the call to the function
switchdev_bridge_port_offload was passing the wrong argument for
atomic_nb. It was ocelot_netdevice_nb instead of ocelot_swtchdev_nb.
This patch fixes this issue.
Fixes: 4e51bf44a0 ("net: bridge: move the switchdev object replay helpers to "push" mode")
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The following command sequence:
tc qdisc del dev swp0 clsact
tc qdisc add dev swp0 ingress_block 1 clsact
tc qdisc add dev swp1 ingress_block 1 clsact
tc filter add block 1 flower action drop
tc qdisc del dev swp0 clsact
produces the following NPD:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000014
pc : vcap_entry_set+0x14/0x70
lr : ocelot_vcap_filter_del+0x198/0x234
Call trace:
vcap_entry_set+0x14/0x70
ocelot_vcap_filter_del+0x198/0x234
ocelot_cls_flower_destroy+0x94/0xe4
felix_cls_flower_del+0x70/0x84
dsa_slave_setup_tc_block_cb+0x13c/0x60c
dsa_slave_setup_tc_block_cb_ig+0x20/0x30
tc_setup_cb_reoffload+0x44/0x120
fl_reoffload+0x280/0x320
tcf_block_playback_offloads+0x6c/0x184
tcf_block_unbind+0x80/0xe0
tcf_block_setup+0x174/0x214
tcf_block_offload_cmd.isra.0+0x100/0x13c
tcf_block_offload_unbind+0x5c/0xa0
__tcf_block_put+0x54/0x174
tcf_block_put_ext+0x5c/0x74
clsact_destroy+0x40/0x60
qdisc_destroy+0x4c/0x150
qdisc_put+0x70/0x90
qdisc_graft+0x3f0/0x4c0
tc_get_qdisc+0x1cc/0x364
rtnetlink_rcv_msg+0x124/0x340
The reason is that the driver isn't prepared to receive two tc filters
with the same cookie. It unconditionally creates a new struct
ocelot_vcap_filter for each tc filter, and it adds all filters with the
same identifier (cookie) to the ocelot_vcap_block.
The problem is here, in ocelot_vcap_filter_del():
/* Gets index of the filter */
index = ocelot_vcap_block_get_filter_index(block, filter);
if (index < 0)
return index;
/* Delete filter */
ocelot_vcap_block_remove_filter(ocelot, block, filter);
/* Move up all the blocks over the deleted filter */
for (i = index; i < block->count; i++) {
struct ocelot_vcap_filter *tmp;
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
vcap_entry_set(ocelot, i, tmp);
}
what will happen is ocelot_vcap_block_get_filter_index() will return the
index (@index) of the first filter found with that cookie. This is _not_
the index of _this_ filter, but the other one with the same cookie,
because ocelot_vcap_filter_equal() gets fooled.
Then later, ocelot_vcap_block_remove_filter() is coded to remove all
filters that are ocelot_vcap_filter_equal() with the passed @filter.
So unexpectedly, both filters get deleted from the list.
Then ocelot_vcap_filter_del() will attempt to move all the other filters
up, again finding them by index (@i). The block count is 2, @index was 0,
so it will attempt to move up filter @i=0 and @i=1. It assigns tmp =
ocelot_vcap_block_find_filter_by_index(block, i), which is now a NULL
pointer because ocelot_vcap_block_remove_filter() has removed more than
one filter.
As far as I can see, this problem has been there since the introduction
of tc offload support, however I cannot test beyond the blamed commit
due to hardware availability. In any case, any fix cannot be backported
that far, due to lots of changes to the code base.
Therefore, let's go for the correct solution, which is to not call
ocelot_vcap_filter_add() and ocelot_vcap_filter_del(), unless the filter
is actually unique and not shared. For the shared filters, we should
just modify the ingress port mask and call ocelot_vcap_filter_replace(),
a function introduced by commit 95706be13b ("net: mscc: ocelot: create
a function that replaces an existing VCAP filter"). This way,
block->rules will only contain filters with unique cookies, by design.
Fixes: 07d985eef0 ("net: dsa: felix: Wire up the ocelot cls_flower methods")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for flushing the MAC table on a given port in the ocelot
switch library, and use this functionality in the felix DSA driver.
This operation is needed when a port leaves a bridge to become
standalone, and when the learning is disabled, and when the STP state
changes to a state where no FDB entry should be present.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220107144229.244584-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Assuming the test setup described here:
https://patchwork.kernel.org/project/netdevbpf/cover/20210205130240.4072854-1-vladimir.oltean@nxp.com/
(swp1 and swp2 are in bond0, and bond0 is in a bridge with swp0)
it can be seen that when swp1 goes down (on either board A or B), then
traffic that should go through that port isn't forwarded anywhere.
A dump of the PGID table shows the following:
PGID_DST[0] = ports 0
PGID_DST[1] = ports 1
PGID_DST[2] = ports 2
PGID_DST[3] = ports 3
PGID_DST[4] = ports 4
PGID_DST[5] = ports 5
PGID_DST[6] = no ports
PGID_AGGR[0] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[1] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[2] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[3] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[4] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[5] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[6] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[7] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[8] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[9] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[10] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[11] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[12] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[13] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[14] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[15] = ports 0, 1, 2, 3, 4, 5
PGID_SRC[0] = ports 1, 2
PGID_SRC[1] = ports 0
PGID_SRC[2] = ports 0
PGID_SRC[3] = no ports
PGID_SRC[4] = no ports
PGID_SRC[5] = no ports
PGID_SRC[6] = ports 0, 1, 2, 3, 4, 5
Whereas a "good" PGID configuration for that setup should have looked
like this:
PGID_DST[0] = ports 0
PGID_DST[1] = ports 1, 2
PGID_DST[2] = ports 1, 2
PGID_DST[3] = ports 3
PGID_DST[4] = ports 4
PGID_DST[5] = ports 5
PGID_DST[6] = no ports
PGID_AGGR[0] = ports 0, 2, 3, 4, 5
PGID_AGGR[1] = ports 0, 2, 3, 4, 5
PGID_AGGR[2] = ports 0, 2, 3, 4, 5
PGID_AGGR[3] = ports 0, 2, 3, 4, 5
PGID_AGGR[4] = ports 0, 2, 3, 4, 5
PGID_AGGR[5] = ports 0, 2, 3, 4, 5
PGID_AGGR[6] = ports 0, 2, 3, 4, 5
PGID_AGGR[7] = ports 0, 2, 3, 4, 5
PGID_AGGR[8] = ports 0, 2, 3, 4, 5
PGID_AGGR[9] = ports 0, 2, 3, 4, 5
PGID_AGGR[10] = ports 0, 2, 3, 4, 5
PGID_AGGR[11] = ports 0, 2, 3, 4, 5
PGID_AGGR[12] = ports 0, 2, 3, 4, 5
PGID_AGGR[13] = ports 0, 2, 3, 4, 5
PGID_AGGR[14] = ports 0, 2, 3, 4, 5
PGID_AGGR[15] = ports 0, 2, 3, 4, 5
PGID_SRC[0] = ports 1, 2
PGID_SRC[1] = ports 0
PGID_SRC[2] = ports 0
PGID_SRC[3] = no ports
PGID_SRC[4] = no ports
PGID_SRC[5] = no ports
PGID_SRC[6] = ports 0, 1, 2, 3, 4, 5
In other words, in the "bad" configuration, the attempt is to remove the
inactive swp1 from the destination ports via PGID_DST. But when a MAC
table entry is learned, it is learned towards PGID_DST 1, because that
is the logical port id of the LAG itself (it is equal to the lowest
numbered member port). So when swp1 becomes inactive, if we set
PGID_DST[1] to contain just swp1 and not swp2, the packet will not have
any chance to reach the destination via swp2.
The "correct" way to remove swp1 as a destination is via PGID_AGGR
(remove swp1 from the aggregation port groups for all aggregation
codes). This means that PGID_DST[1] and PGID_DST[2] must still contain
both swp1 and swp2. This makes the MAC table still treat packets
destined towards the single-port LAG as "multicast", and the inactive
ports are removed via the aggregation code tables.
The change presented here is a design one: the ocelot_get_bond_mask()
function used to take an "only_active_ports" argument. We don't need
that. The only call site that specifies only_active_ports=true,
ocelot_set_aggr_pgids(), must retrieve the entire bonding mask, because
it must program that into PGID_DST. Additionally, it must also clear the
inactive ports from the bond mask here, which it can't do if bond_mask
just contains the active ports:
ac = ocelot_read_rix(ocelot, ANA_PGID_PGID, i);
ac &= ~bond_mask; <---- here
/* Don't do division by zero if there was no active
* port. Just make all aggregation codes zero.
*/
if (num_active_ports)
ac |= BIT(aggr_idx[i % num_active_ports]);
ocelot_write_rix(ocelot, ac, ANA_PGID_PGID, i);
So it becomes the responsibility of ocelot_set_aggr_pgids() to take
ocelot_port->lag_tx_active into consideration when populating the
aggr_idx array.
Fixes: 23ca3b727e ("net: mscc: ocelot: rebalance LAGs on link up/down events")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220107164332.402133-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add index to flow_action_entry structure and delete index from police and
gate child structure.
We make this change to offload tc action for driver to identify a tc
action.
Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com>
Signed-off-by: Simon Horman <simon.horman@corigine.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support to get mac from device-tree using of_get_ethdev_address.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 94dd016ae5 ("bond: pass get_ts_info and SIOC[SG]HWTSTAMP
ioctl to active device") the user could get bond active interface's
PHC index directly. But when there is a failover, the bond active
interface will change, thus the PHC index is also changed. This may
break the user's program if they did not update the PHC timely.
This patch adds a new hwtstamp_config flag HWTSTAMP_FLAG_BONDED_PHC_INDEX.
When the user wants to get the bond active interface's PHC, they need to
add this flag and be aware the PHC index may be changed.
With the new flag. All flag checks in current drivers are removed. Only
the checking in net_hwtstamp_validate() is kept.
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
dma_addr was declared using DEFINE_DMA_UNMAP_ADDR() which requires to
use dma_unmap_addr() to access it.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 753a026cfe ("net: ocelot: add FDMA support")
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ethernet frames can be extracted or injected autonomously to or from
the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list
data structures in memory are used for injecting or extracting Ethernet
frames. The FDMA generates interrupts when frame extraction or
injection is done and when the linked lists need updating.
The FDMA is shared between all the ethernet ports of the switch and
uses a linked list of descriptors (DCB) to inject and extract packets.
Before adding descriptors, the FDMA channels must be stopped. It would
be inefficient to do that each time a descriptor would be added so the
channels are restarted only once they stopped.
Both channels uses ring-like structure to feed the DCBs to the FDMA.
head and tail are never touched by hardware and are completely handled
by the driver. On top of that, page recycling has been added and is
mostly taken from gianfar driver.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Co-developed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit adds support for changing MTU for the ocelot register based
interface. For ocelot, JUMBO frame size can be set up to 25000 bytes
but has been set to 9000 which is a saner value and allows for maximum
gain of performance with FDMA.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In order to support PTP in FDMA, PTP handling code is needed. Since
this is the same as for register-based extraction, export it with
a new ocelot_ptp_rx_timestamp() function.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
FDMA will need this code to prepare the injection frame header when
sending SKBs. Move this code into ocelot_ifh_port_set() and add
conditional IFH setting for vlan and rew op if they are not set.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Move these to a separate file will allow them to be shared to other
drivers.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If err is true, the function will be returned, but mutex_lock isn't
released.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver doesn't support RX timestamping for non-PTP packets, but it
declares that it does. Restrict the reported RX filters to PTP v2 over
L2 and over L4.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
IEEE 1588 support was declared too soon for the Ocelot switch. Out of
reset, this switch does not apply any special treatment for PTP packets,
i.e. when an event message is received, the natural tendency is to
forward it by MAC DA/VLAN ID. This poses a problem when the ingress port
is under a bridge, since user space application stacks (written
primarily for endpoint ports, not switches) like ptp4l expect that PTP
messages are always received on AF_PACKET / AF_INET sockets (depending
on the PTP transport being used), and never being autonomously
forwarded. Any forwarding, if necessary (for example in Transparent
Clock mode) is handled in software by ptp4l. Having the hardware forward
these packets too will cause duplicates which will confuse endpoints
connected to these switches.
So PTP over L2 barely works, in the sense that PTP packets reach the CPU
port, but they reach it via flooding, and therefore reach lots of other
unwanted destinations too. But PTP over IPv4/IPv6 does not work at all.
This is because the Ocelot switch have a separate destination port mask
for unknown IP multicast (which PTP over IP is) flooding compared to
unknown non-IP multicast (which PTP over L2 is) flooding. Specifically,
the driver allows the CPU port to be in the PGID_MC port group, but not
in PGID_MCIPV4 and PGID_MCIPV6. There are several presentations from
Allan Nielsen which explain that the embedded MIPS CPU on Ocelot
switches is not very powerful at all, so every penny they could save by
not allowing flooding to the CPU port module matters. Unknown IP
multicast did not make it.
The de facto consensus is that when a switch is PTP-aware and an
application stack for PTP is running, switches should have some sort of
trapping mechanism for PTP packets, to extract them from the hardware
data path. This avoids both problems:
(a) PTP packets are no longer flooded to unwanted destinations
(b) PTP over IP packets are no longer denied from reaching the CPU since
they arrive there via a trap and not via flooding
It is not the first time when this change is attempted. Last time, the
feedback from Allan Nielsen and Andrew Lunn was that the traps should
not be installed by default, and that PTP-unaware switching may be
desired for some use cases:
https://patchwork.ozlabs.org/project/netdev/patch/20190813025214.18601-5-yangbo.lu@nxp.com/
To address that feedback, the present patch adds the necessary packet
traps according to the RX filter configuration transmitted by user space
through the SIOCSHWTSTAMP ioctl. Trapping is done via VCAP IS2, where we
keep 5 filters, which are amended each time RX timestamping is enabled
or disabled on a port:
- 1 for PTP over L2
- 2 for PTP over IPv4 (UDP ports 319 and 320)
- 2 for PTP over IPv6 (UDP ports 319 and 320)
The cookie by which these filters (invisible to tc) are identified is
strategically chosen such that it does not collide with the filters used
for the ocelot-8021q tagging protocol by the Felix driver, or with the
MRP traps set up by the Ocelot library.
Other alternatives were considered, like patching user space to do
something, but there are so many ways in which PTP packets could be made
to reach the CPU, generically speaking, that "do what?" is a very valid
question. The ptp4l program from the linuxptp stack already attempts to
do something: it calls setsockopt(IP_ADD_MEMBERSHIP) (and
PACKET_ADD_MEMBERSHIP, respectively) which translates in both cases into
a dev_mc_add() on the interface, in the kernel:
https://github.com/richardcochran/linuxptp/blob/v3.1.1/udp.c#L73https://github.com/richardcochran/linuxptp/blob/v3.1.1/raw.c
Reality shows that this is not sufficient in case the interface belongs
to a switchdev driver, as dev_mc_add() does not show the intention to
trap a packet to the CPU, but rather the intention to not drop it (it is
strictly for RX filtering, same as promiscuous does not mean to send all
traffic to the CPU, but to not drop traffic with unknown MAC DA). This
topic is a can of worms in itself, and it would be great if user space
could just stay out of it.
On the other hand, setting up PTP traps privately within the driver is
not new by any stretch of the imagination:
https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/ethernet/mellanox/mlxsw/spectrum_ptp.c#L833https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/dsa/hirschmann/hellcreek.c#L1050https://elixir.bootlin.com/linux/v5.16-rc2/source/include/linux/dsa/sja1105.h#L21
So this is the approach taken here as well. The difference here being
that we prepare and destroy the traps per port, dynamically at runtime,
as opposed to driver init time, because apparently, PTP-unaware
forwarding is a use case.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Reported-by: Po Liu <po.liu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
VCAP (Versatile Content Aware Processor) is the TCAM-based engine behind
tc flower offload on ocelot, among other things. The ingress port mask
on which VCAP rules match is present as a bit field in the actual key of
the rule. This means that it is possible for a rule to be shared among
multiple source ports. When the rule is added one by one on each desired
port, that the ingress port mask of the key must be edited and rewritten
to hardware.
But the API in ocelot_vcap.c does not allow for this. For one thing,
ocelot_vcap_filter_add() and ocelot_vcap_filter_del() are not symmetric,
because ocelot_vcap_filter_add() works with a preallocated and
prepopulated filter and programs it to hardware, and
ocelot_vcap_filter_del() does both the job of removing the specified
filter from hardware, as well as kfreeing it. That is to say, the only
option of editing a filter in place, which is to delete it, modify the
structure and add it back, does not work because it results in
use-after-free.
This patch introduces ocelot_vcap_filter_replace, which trivially
reprograms a VCAP entry to hardware, at the exact same index at which it
existed before, without modifying any list or allocating any memory.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot driver, when asked to timestamp all receiving packets, 1588
v1 or NTP, says "nah, here's 1588 v2 for you".
According to this discussion:
https://patchwork.kernel.org/project/netdevbpf/patch/20211104133204.19757-8-martin.kaistra@linutronix.de/#24577647
drivers that downgrade from a wider request to a narrower response (or
even a response where the intersection with the request is empty) are
buggy, and should return -ERANGE instead. This patch fixes that.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Suggested-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The only called takes ocelot_port->bridge and passes it as the "bridge"
argument to this function, which then compares it with
ocelot_port->bridge. This is not useful.
Instead, we would like this function to return 0 if ocelot_port->bridge
is not present, which is what this patch does.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
PSFP rules take effect on the streams from any port of VSC9959 switch.
This patch use ingress port to limit the rule only active on this port.
Each stream can only match two ingress source ports in VSC9959. Streams
from lowest port gets the configuration of SFID pointed by MAC Table
lookup and streams from highest port gets the configuration of (SFID+1)
pointed by MAC Table lookup. This patch defines the PSFP rule on highest
port as dummy rule, which means that it does not modify the MAC table.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Policer was previously automatically assigned from the highest index to
the lowest index from policer pool. But police action of tc flower now
uses index to set an police entry. This patch uses the police index to
set vcap policers, so that one policer can be shared by multiple rules.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
PSFP support gate and police action. This patch add the gate and police
action to flower parse action, check chain ID to determine which block
to offload. Adding psfp callback functions to add, delete and update gate
and police in PSFP table if hardware supports it.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some chips in the ocelot series such as VSC9959 support Per-Stream
Filtering and Policing(PSFP), which is processing after VCAP blocks.
We set this block on chain 30000 and set vcap IS2 chain to goto PSFP
chain if hardware support.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_mact_learn_streamdata() can be used in VSC9959 to overwrite an
FDB entry with stream data. The stream data includes SFID and SSID which
can be used for PSFP and FRER set.
ocelot_mact_lookup() can be used to check if the given {DMAC, VID} FDB
entry is exist, and also can retrieve the DEST_IDX and entry type for
the FDB entry.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_net has no special behaviour in its validation implementation, so
can be switched to phylink_generic_validate().
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
As phylink checks the interface mode against the supported_interfaces
bitmap, we no longer need to validate the interface mode in the
validation function. Remove this to simplify it.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Populate the phy interface mode bitmap for the MSCC Ocelot driver with
the interface modes supported by the MAC.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.
This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA would like to remove the rtnl_lock from its
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE handlers, and the felix driver uses
the same MAC table functions as ocelot.
This means that the MAC table functions will no longer be implicitly
serialized with respect to each other by the rtnl_mutex, we need to add
a dedicated lock in ocelot for the non-atomic operations of selecting a
MAC table row, reading/writing what we want and polling for completion.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we have a list of struct ocelot_bridge_vlan entries, we can
rewrite the pvid logic to simply point to one of those structures,
instead of having a separate structure with a "bool valid".
The NULL pointer will represent the lack of a bridge pvid (not to be
confused with the lack of a hardware pvid on the port, that is present
at all times).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot switchdev driver does not include the CPU port in the list of
flooding destinations for unknown traffic, instead that traffic is
supposed to match FDB entries to reach the CPU.
The addresses it installs are:
(a) the station MAC address, in ocelot_probe_port() and later during
runtime in ocelot_port_set_mac_address(). These are the VLAN-unaware
addresses. The VLAN-aware addresses are in ocelot_vlan_vid_add().
(b) multicast addresses added with dev_mc_add() (not bridge host MDB
entries) in ocelot_mc_sync()
(c) multicast destination MAC addresses for MRP in ocelot_mrp_save_mac(),
to make sure those are dropped (not forwarded) by the bridging
service, just trapped to the CPU
So we can see that the logic is slightly buggy ever since the initial
commit a556c76adc ("net: mscc: Add initial Ocelot switch support").
This is because, when ocelot_probe_port() runs, the port pvid is 0.
Then we join a VLAN-aware bridge, the pvid becomes 1, we call
ocelot_port_set_mac_address(), this learns the new MAC address in VID 1
(also fails to forget the old one, since it thinks it's in VID 1, but
that's not so important). Then when we leave the VLAN-aware bridge,
outside world is unable to ping our new MAC address because it isn't
learned in VID 0, the VLAN-unaware pvid.
[ note: this is strictly based on static analysis, I don't have hardware
to test. But there are also many more corner cases ]
The basic idea is that we should have a separation of concerns, and the
FDB entries used for standalone operation should be managed by the
driver, and the FDB entries used by the bridging service should be
managed by the bridge. So the standalone and VLAN-unaware bridge FDB
entries should not follow the bridge PVID, because that will only be
active when the bridge is VLAN-aware. So since the port pvid is
coincidentally zero during probe time, just make those entries
statically go to VID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present, the ocelot driver accepts a single egress-untagged bridge
VLAN, meaning that this sequence of operations:
ip link add br0 type bridge vlan_filtering 1
ip link set swp0 master br0
bridge vlan add dev swp0 vid 2 pvid untagged
fails because the bridge automatically installs VID 1 as a pvid & untagged
VLAN, and vid 2 would be the second untagged VLAN on this port. It is
necessary to delete VID 1 before proceeding to add VID 2.
This limitation comes from the fact that we operate the port tag, when
it has an egress-untagged VID, in the OCELOT_PORT_TAG_NATIVE mode.
The ocelot switches do not have full flexibility and can either have one
single VID as egress-untagged, or all of them.
There are use cases for having all VLANs as egress-untagged as well, and
this patch adds support for that.
The change rewrites ocelot_port_set_native_vlan() into a more generic
ocelot_port_manage_port_tag() function. Because the software bridge's
state, transmitted to us via switchdev, can become very complex, we
don't attempt to track all possible state transitions, but instead take
a more declarative approach and just make ocelot_port_manage_port_tag()
figure out which more to operate in:
- port is VLAN-unaware: the classified VLAN (internal, unrelated to the
802.1Q header) is not inserted into packets on egress
- port is VLAN-aware:
- port has tagged VLANs:
-> port has no untagged VLAN: set up as pure trunk
-> port has one untagged VLAN: set up as trunk port + native VLAN
-> port has more than one untagged VLAN: this is an invalid config
which is rejected by ocelot_vlan_prepare
- port has no tagged VLANs
-> set up as pure egress-untagged port
We don't keep the number of tagged and untagged VLANs, we just count the
structures we keep.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
First and foremost, the driver currently allocates a constant sized
4K * u32 (16KB memory) array for the VLAN masks. However, a typical
application might not need so many VLANs, so if we dynamically allocate
the memory as needed, we might actually save some space.
Secondly, we'll need to keep more advanced bookkeeping of the VLANs we
have, notably we'll have to check how many untagged and how many tagged
VLANs we have. This will have to stay in a structure, and allocating
another 16 KB array for that is again a bit too much.
So refactor the bridge VLANs in a linked list of structures.
The hook points inside the driver are ocelot_vlan_member_add() and
ocelot_vlan_member_del(), which previously used to operate on the
ocelot->vlan_mask[vid] array element.
ocelot_vlan_member_add() and ocelot_vlan_member_del() used to call
ocelot_vlan_member_set() to commit to the ocelot->vlan_mask.
Additionally, we had two calls to ocelot_vlan_member_set() from outside
those callers, and those were directly from ocelot_vlan_init().
Those calls do not set up bridging service VLANs, instead they:
- clear the VLAN table on reset
- set the port pvid to the value used by this driver for VLAN-unaware
standalone port operation (VID 0)
So now, when we have a structure which represents actual bridge VLANs,
VID 0 doesn't belong in that structure, since it is not part of the
bridging layer.
So delete the middle man, ocelot_vlan_member_set(), and let
ocelot_vlan_init() call directly ocelot_vlant_set_mask() which forgoes
any data structure and writes directly to hardware, which is all that we
need.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a cosmetic patch which clarifies what are the port tagging
options for Ocelot switches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 406f42fa0d ("net-next: When a bond have a massive amount
of VLANs...") introduced a rbtree for faster Ethernet address look
up. To maintain netdev->dev_addr in this tree we need to make all
the writes to it got through appropriate helpers.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix following coccicheck warning:
./drivers/net/ethernet/mscc/ocelot_vsc7514.c:946:1-33: WARNING: Function
for_each_available_child_of_node should have of_node_put() before goto.
Early exits from for_each_available_child_of_node should decrement the
node reference counter.
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tools/testing/selftests/net/ioam6.sh
7b1700e009 ("selftests: net: modify IOAM tests for undef bits")
bf77b1400a ("selftests: net: Test for the IOAM encapsulation with IPv6")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As explained here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
DSA tagging protocol drivers cannot depend on symbols exported by switch
drivers, because this creates a circular dependency that breaks module
autoloading.
The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function
exported by the common ocelot switch lib. This function looks at
OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the
DSA tag, for PTP timestamping (the command: one-step/two-step, and the
TX timestamp identifier).
None of that requires deep insight into the driver, it is quite
stateless, as it only depends upon the skb->cb. So let's make it a
static inline function and put it in include/linux/dsa/ocelot.h, a
file that despite its name is used by the ocelot switch driver for
populating the injection header too - since commit 40d3f295b5 ("net:
mscc: ocelot: use common tag parsing code with DSA").
With that function declared as static inline, its body is expanded
inside each call site, so the dependency is broken and the DSA tagger
can be built without the switch library, upon which the felix driver
depends.
Fixes: 39e5308b32 ("net: mscc: ocelot: support PTP Sync one-step timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The sad reality is that when a PTP frame with a TX timestamping request
is transmitted, it isn't guaranteed that it will make it all the way to
the wire (due to congestion inside the switch), and that a timestamp
will be taken by the hardware and placed in the timestamp FIFO where an
IRQ will be raised for it.
The implication is that if enough PTP frames are silently dropped by the
hardware such that the timestamp ID has rolled over, it is possible to
match a timestamp to an old skb.
Furthermore, nobody will match on the real skb corresponding to this
timestamp, since we stupidly matched on a previous one that was stale in
the queue, and stopped there.
So PTP timestamping will be broken and there will be no way to recover.
It looks like the hardware parses the sequenceID from the PTP header,
and also provides that metadata for each timestamp. The driver currently
ignores this, but it shouldn't.
As an extra resiliency measure, do the following:
- check whether the PTP sequenceID also matches between the skb and the
timestamp, treat the skb as stale otherwise and free it
- if we see a stale skb, don't stop there and try to match an skb one
more time, chances are there's one more skb in the queue with the same
timestamp ID, otherwise we wouldn't have ever found the stale one (it
is by timestamp ID that we matched it).
While this does not prevent PTP packet drops, it at least prevents
the catastrophic consequences of incorrect timestamp matching.
Since we already call ptp_classify_raw in the TX path, save the result
in the skb->cb of the clone, and just use that result in the interrupt
code path.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It appears that Ocelot switches cannot timestamp non-PTP frames,
I tested this using the isochron program at:
https://github.com/vladimiroltean/tsn-scripts
with the result that the driver increments the ocelot_port->ts_id
counter as expected, puts it in the REW_OP, but the hardware seems to
not timestamp these packets at all, since no IRQ is emitted.
Therefore check whether we are sending PTP frames, and refuse to
populate REW_OP otherwise.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>