415 Commits

Author SHA1 Message Date
Eric B Munson
73ae31e598 hugetlb: fix handling of parse errors in sysfs
When parsing changes to the huge page pool sizes made from userspace via
the sysfs interface, bogus input values are being covered up by
nr_hugepages_store_common and nr_overcommit_hugepages_store returning 0
when strict_strtoul returns an error.  This can cause an infinite loop in
the nr_hugepages_store code.  This patch changes the return value for
these functions to -EINVAL when strict_strtoul returns an error.

Signed-off-by: Eric B Munson <emunson@mgebm.net>
Reported-by: CAI Qian <caiqian@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:49 -08:00
Eric B Munson
adbe8726dc hugetlb: do not allow pagesize >= MAX_ORDER pool adjustment
Huge pages with order >= MAX_ORDER must be allocated at boot via the
kernel command line, they cannot be allocated or freed once the kernel is
up and running.  Currently we allow values to be written to the sysfs and
sysctl files controling pool size for these huge page sizes.  This patch
makes the store functions for nr_hugepages and nr_overcommit_hugepages
return -EINVAL when the pool for a page size >= MAX_ORDER is changed.

[akpm@linux-foundation.org: avoid multiple return paths in nr_hugepages_store_common()]
[caiqian@redhat.com: add checking in hugetlb_overcommit_handler()]
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Reported-by: CAI Qian <caiqian@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:49 -08:00
Michal Hocko
08d4a24659 hugetlb: check the return value of string conversion in sysctl handler
proc_doulongvec_minmax may fail if the given buffer doesn't represent a
valid number.  If we provide something invalid we will initialize the
resulting value (nr_overcommit_huge_pages in this case) to a random value
from the stack.

The issue was introduced by a3d0c6aa when the default handler has been
replaced by the helper function where we do not check the return value.

Reproducer:
echo "" > /proc/sys/vm/nr_overcommit_hugepages

[akpm@linux-foundation.org: correctly propagate proc_doulongvec_minmax return code]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: CAI Qian <caiqian@redhat.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:49 -08:00
Jesper Juhl
32d6feadf4 mm/hugetlb.c: fix error-path memory leak in nr_hugepages_store_common()
The NODEMASK_ALLOC macro may dynamically allocate memory for its second
argument ('nodes_allowed' in this context).

In nr_hugepages_store_common() we may abort early if strict_strtoul()
fails, but in that case we do not free the memory already allocated to
'nodes_allowed', causing a memory leak.

This patch closes the leak by freeing the memory in the error path.

[akpm@linux-foundation.org: use NODEMASK_FREE, per Minchan Kim]
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:48 -08:00
Andrea Arcangeli
47ad8475c0 thp: clear_copy_huge_page
Move the copy/clear_huge_page functions to common code to share between
hugetlb.c and huge_memory.c.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:41 -08:00
Dean Nelson
1f64d69c7a mm/hugetlb.c: avoid double unlock_page() in hugetlb_fault()
Have hugetlb_fault() call unlock_page(page) only if it had previously
called lock_page(page).

Setting CONFIG_DEBUG_VM=y and then running the libhugetlbfs test suite,
resulted in the tripping of VM_BUG_ON(!PageLocked(page)) in
unlock_page() having been called by hugetlb_fault() when page ==
pagecache_page.  This patch remedied the problem.

Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-02 14:51:14 -08:00
Dean Nelson
44e2aa937e mm/hugetlb.c: add missing spin_lock() to hugetlb_cow()
Add missing spin_lock() of the page_table_lock before an error return in
hugetlb_cow(). Callers of hugtelb_cow() expect it to be held upon return.

Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:11 -07:00
Andi Kleen
aa50d3a7aa Encode huge page size for VM_FAULT_HWPOISON errors
This fixes a problem introduced with the hugetlb hwpoison handling

The user space SIGBUS signalling wants to know the size of the hugepage
that caused a HWPOISON fault.

Unfortunately the architecture page fault handlers do not have easy
access to the struct page.

Pass the information out in the fault error code instead.

I added a separate VM_FAULT_HWPOISON_LARGE bit for this case and encode
the hpage index in some free upper bits of the fault code. The small
page hwpoison keeps stays with the VM_FAULT_HWPOISON name to minimize
changes.

Also add code to hugetlb.h to convert that index into a page shift.

Will be used in a further patch.

Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: fengguang.wu@intel.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:46 +02:00
Andi Kleen
d5bd910696 hugepage: move is_hugepage_on_freelist inside ifdef to avoid warning
Fixes warning reported by Stephen Rothwell

mm/hugetlb.c:2950: warning: 'is_hugepage_on_freelist' defined but not used

for the !CONFIG_MEMORY_FAILURE case.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:46 +02:00
Naoya Horiguchi
8c6c2ecb44 HWPOSION, hugetlb: recover from free hugepage error when !MF_COUNT_INCREASED
Currently error recovery for free hugepage works only for MF_COUNT_INCREASED.
This patch enables !MF_COUNT_INCREASED case.

Free hugepages can be handled directly by alloc_huge_page() and
dequeue_hwpoisoned_huge_page(), and both of them are protected
by hugetlb_lock, so there is no race between them.

Note that this patch defines the refcount of HWPoisoned hugepage
dequeued from freelist is 1, deviated from present 0, thereby we
can avoid race between unpoison and memory failure on free hugepage.
This is reasonable because unlikely to free buddy pages, free hugepage
is governed by hugetlbfs even after error handling finishes.
And it also makes unpoison code added in the later patch cleaner.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:45 +02:00
Naoya Horiguchi
a9869b837c hugetlb: move refcounting in hugepage allocation inside hugetlb_lock
Currently alloc_huge_page() raises page refcount outside hugetlb_lock.
but it causes race when dequeue_hwpoison_huge_page() runs concurrently
with alloc_huge_page().
To avoid it, this patch moves set_page_refcounted() in hugetlb_lock.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:45 +02:00
Naoya Horiguchi
6de2b1aab9 HWPOISON, hugetlb: add free check to dequeue_hwpoison_huge_page()
This check is necessary to avoid race between dequeue and allocation,
which can cause a free hugepage to be dequeued twice and get kernel unstable.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:45 +02:00
Naoya Horiguchi
290408d4a2 hugetlb: hugepage migration core
This patch extends page migration code to support hugepage migration.
One of the potential users of this feature is soft offlining which
is triggered by memory corrected errors (added by the next patch.)

Todo:
- there are other users of page migration such as memory policy,
  memory hotplug and memocy compaction.
  They are not ready for hugepage support for now.

ChangeLog since v4:
- define migrate_huge_pages()
- remove changes on isolation/putback_lru_page()

ChangeLog since v2:
- refactor isolate/putback_lru_page() to handle hugepage
- add comment about race on unmap_and_move_huge_page()

ChangeLog since v1:
- divide migration code path for hugepage
- define routine checking migration swap entry for hugetlb
- replace "goto" with "if/else" in remove_migration_pte()

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:45 +02:00
Naoya Horiguchi
0ebabb416f hugetlb: redefine hugepage copy functions
This patch modifies hugepage copy functions to have only destination
and source hugepages as arguments for later use.
The old ones are renamed from copy_{gigantic,huge}_page() to
copy_user_{gigantic,huge}_page().
This naming convention is consistent with that between copy_highpage()
and copy_user_highpage().

ChangeLog since v4:
- add blank line between local declaration and code
- remove unnecessary might_sleep()

ChangeLog since v2:
- change copy_huge_page() from macro to inline dummy function
  to avoid compile warning when !CONFIG_HUGETLB_PAGE.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:44 +02:00
Naoya Horiguchi
bf50bab2b3 hugetlb: add allocate function for hugepage migration
We can't use existing hugepage allocation functions to allocate hugepage
for page migration, because page migration can happen asynchronously with
the running processes and page migration users should call the allocation
function with physical addresses (not virtual addresses) as arguments.

ChangeLog since v3:
- unify alloc_buddy_huge_page() and alloc_buddy_huge_page_node()

ChangeLog since v2:
- remove unnecessary get/put_mems_allowed() (thanks to David Rientjes)

ChangeLog since v1:
- add comment on top of alloc_huge_page_no_vma()

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:44 +02:00
Naoya Horiguchi
998b4382c1 hugetlb: fix metadata corruption in hugetlb_fault()
Since the PageHWPoison() check is for avoiding hwpoisoned page remained
in pagecache mapping to the process, it should be done in "found in pagecache"
branch, not in the common path.
Otherwise, metadata corruption occurs if memory failure happens between
alloc_huge_page() and lock_page() because page fault fails with metadata
changes remained (such as refcount, mapcount, etc.)

This patch moves the check to "found in pagecache" branch and fix the problem.

ChangeLog since v2:
- remove retry check in "new allocation" path.
- make description more detailed
- change patch name from "HWPOISON, hugetlb: move PG_HWPoison bit check"

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-08 09:32:44 +02:00
Naoya Horiguchi
56c9cfb13c hugetlb, rmap: fix confusing page locking in hugetlb_cow()
The "if (!trylock_page)" block in the avoidcopy path of hugetlb_cow()
looks confusing and is buggy.  Originally this trylock_page() was
intended to make sure that old_page is locked even when old_page !=
pagecache_page, because then only pagecache_page is locked.

This patch fixes it by moving page locking into hugetlb_fault().

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23 17:29:18 -07:00
Naoya Horiguchi
cd67f0d2a9 hugetlb, rmap: use hugepage_add_new_anon_rmap() in hugetlb_cow()
Obviously, setting anon_vma for COWed hugepage should be done
by hugepage_add_new_anon_rmap() to scan vmas faster.
This patch fixes it.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23 17:29:18 -07:00
Linus Torvalds
1021a64534 Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6:
  hugetlb: add missing unlock in avoidcopy path in hugetlb_cow()
  hwpoison: rename CONFIG
  HWPOISON, hugetlb: support hwpoison injection for hugepage
  HWPOISON, hugetlb: detect hwpoison in hugetlb code
  HWPOISON, hugetlb: isolate corrupted hugepage
  HWPOISON, hugetlb: maintain mce_bad_pages in handling hugepage error
  HWPOISON, hugetlb: set/clear PG_hwpoison bits on hugepage
  HWPOISON, hugetlb: enable error handling path for hugepage
  hugetlb, rmap: add reverse mapping for hugepage
  hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h

Fix up trivial conflicts in mm/memory-failure.c
2010-08-12 10:15:10 -07:00
Naoya Horiguchi
28957a5467 hugetlb: add missing unlock in avoidcopy path in hugetlb_cow()
This patch fixes possible deadlock in hugepage lock_page()
by adding missing unlock_page().

libhugetlbfs test will hit this bug when the next patch in this
patchset ("hugetlb, HWPOISON: move PG_HWPoison bit check") is applied.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-08-11 09:23:48 +02:00
Naoya Horiguchi
43131e141a HWPOISON, hugetlb: support hwpoison injection for hugepage
This patch enables hwpoison injection through debug/hwpoison interfaces,
with which we can test memory error handling for free or reserved
hugepages (which cannot be tested by madvise() injector).

[AK: Export PageHuge too for the injection module]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-08-11 09:23:11 +02:00
Naoya Horiguchi
fd6a03edd2 HWPOISON, hugetlb: detect hwpoison in hugetlb code
This patch enables to block access to hwpoisoned hugepage and
also enables to block unmapping for it.

Dependency:
  "HWPOISON, hugetlb: enable error handling path for hugepage"

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-08-11 09:23:01 +02:00
Naoya Horiguchi
93f70f900d HWPOISON, hugetlb: isolate corrupted hugepage
If error hugepage is not in-use, we can fully recovery from error
by dequeuing it from freelist, so return RECOVERY.
Otherwise whether or not we can recovery depends on user processes,
so return DELAYED.

Dependency:
  "HWPOISON, hugetlb: enable error handling path for hugepage"

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-08-11 09:22:46 +02:00
Naoya Horiguchi
0fe6e20b9c hugetlb, rmap: add reverse mapping for hugepage
This patch adds reverse mapping feature for hugepage by introducing
mapcount for shared/private-mapped hugepage and anon_vma for
private-mapped hugepage.

While hugepage is not currently swappable, reverse mapping can be useful
for memory error handler.

Without this patch, memory error handler cannot identify processes
using the bad hugepage nor unmap it from them. That is:
- for shared hugepage:
  we can collect processes using a hugepage through pagecache,
  but can not unmap the hugepage because of the lack of mapcount.
- for privately mapped hugepage:
  we can neither collect processes nor unmap the hugepage.
This patch solves these problems.

This patch include the bug fix given by commit 23be7468e8, so reverts it.

Dependency:
  "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h"

ChangeLog since May 24.
- create hugetlb_inline.h and move is_vm_hugetlb_index() in it.
- move functions setting up anon_vma for hugepage into mm/rmap.c.

ChangeLog since May 13.
- rebased to 2.6.34
- fix logic error (in case that private mapping and shared mapping coexist)
- move is_vm_hugetlb_page() into include/linux/mm.h to use this function
  from linear_page_index()
- define and use linear_hugepage_index() instead of compound_order()
- use page_move_anon_rmap() in hugetlb_cow()
- copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart.
- revert commit 24be7468 completely

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-08-11 09:21:15 +02:00
Doug Doan
3edd4fc953 hugetlb: call mmu notifiers on hugepage cow
When a copy-on-write occurs, we take one of two paths in handle_mm_fault:
through handle_pte_fault for normal pages, or through hugetlb_fault for
huge pages.

In the normal page case, we eventually get to do_wp_page and call mmu
notifiers via ptep_clear_flush_notify.  There is no callout to the mmmu
notifiers in the huge page case.  This patch fixes that.

Signed-off-by: Doug Doan <dougd@cray.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:54 -07:00
Miao Xie
c0ff7453bb cpuset,mm: fix no node to alloc memory when changing cpuset's mems
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later.  But in the way, the allocator may find that
there is no node to alloc memory.

The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:

(mpol: mempolicy)
	task1			task1's mpol	task2
	alloc page		1
	  alloc on node0? NO	1
				1		change mems from 1 to 0
				1		rebind task1's mpol
				0-1		  set new bits
				0	  	  clear disallowed bits
	  alloc on node1? NO	0
	  ...
	can't alloc page
	  goto oom

This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits).  So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.

[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:57 -07:00
Mel Gorman
4a6018f7f4 hugetlbfs: kill applications that use MAP_NORESERVE with SIGBUS instead of OOM-killer
Ordinarily, application using hugetlbfs will create mappings with
reserves.  For shared mappings, these pages are reserved before mmap()
returns success and for private mappings, the caller process is guaranteed
and a child process that cannot get the pages gets killed with sigbus.

An application that uses MAP_NORESERVE gets no reservations and mmap()
will always succeed at the risk the page will not be available at fault
time.  This might be used for example on very large sparse mappings where
the developer is confident the necessary huge pages exist to satisfy all
faults even though the whole mapping cannot be backed by huge pages.
Unfortunately, if an allocation does fail, VM_FAULT_OOM is returned to the
fault handler which proceeds to trigger the OOM-killer.  This is
unhelpful.

Even without hugetlbfs mounted, a user using mmap() can trivially trigger
the OOM-killer because VM_FAULT_OOM is returned (will provide example
program if desired - it's a whopping 24 lines long).  It could be
considered a DOS available to an unprivileged user.

This patch alters hugetlbfs to kill a process that uses MAP_NORESERVE
where huge pages were not available with SIGBUS instead of triggering the
OOM killer.

This change affects hugetlb_cow() as well.  I feel there is a failure case
in there, but I didn't create one.  It would need a fairly specific target
in terms of the faulting application and the hugepage pool size.  The
hugetlb_no_page() path is much easier to hit but both might as well be
closed.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-11 17:33:42 -07:00
Mel Gorman
23be7468e8 hugetlb: fix infinite loop in get_futex_key() when backed by huge pages
If a futex key happens to be located within a huge page mapped
MAP_PRIVATE, get_futex_key() can go into an infinite loop waiting for a
page->mapping that will never exist.

See https://bugzilla.redhat.com/show_bug.cgi?id=552257 for more details
about the problem.

This patch makes page->mapping a poisoned value that includes
PAGE_MAPPING_ANON mapped MAP_PRIVATE.  This is enough for futex to
continue but because of PAGE_MAPPING_ANON, the poisoned value is not
dereferenced or used by futex.  No other part of the VM should be
dereferencing the page->mapping of a hugetlbfs page as its page cache is
not on the LRU.

This patch fixes the problem with the test case described in the bugzilla.

[akpm@linux-foundation.org: mel cant spel]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Darren Hart <darren@dvhart.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-24 11:31:25 -07:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Linus Torvalds
ac0f6f927d Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
* 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm: (100 commits)
  ARM: Eliminate decompressor -Dstatic= PIC hack
  ARM: 5958/1: ARM: U300: fix inverted clk round rate
  ARM: 5956/1: misplaced parentheses
  ARM: 5955/1: ep93xx: move timer defines into core.c and document
  ARM: 5954/1: ep93xx: move gpio interrupt support to gpio.c
  ARM: 5953/1: ep93xx: fix broken build of clock.c
  ARM: 5952/1: ARM: MM: Add ARM_L1_CACHE_SHIFT_6 for handle inside each ARCH Kconfig
  ARM: 5949/1: NUC900 add gpio virtual memory map
  ARM: 5948/1: Enable timer0 to time4 clock support for nuc910
  ARM: 5940/2: ARM: MMCI: remove custom DBG macro and printk
  ARM: make_coherent(): fix problems with highpte, part 2
  MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
  ARM: 5945/1: ep93xx: include correct irq.h in core.c
  ARM: 5933/1: amba-pl011: support hardware flow control
  ARM: 5930/1: Add PKMAP area description to memory.txt.
  ARM: 5929/1: Add checks to detect overlap of memory regions.
  ARM: 5928/1: Change type of VMALLOC_END to unsigned long.
  ARM: 5927/1: Make delimiters of DMA area globally visibly.
  ARM: 5926/1: Add "Virtual kernel memory..." printout.
  ARM: 5920/1: OMAP4: Enable L2 Cache
  ...

Fix up trivial conflict in arch/arm/mach-mx25/clock.c
2010-03-01 09:15:15 -08:00
Russell King
4b3073e1c5 MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies.  We do this via make_coherent() by making the pages
uncacheable.

This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().

Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():

  On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
  to construct a pointer to the pte again.  Passing a pte_t * is much
  more elegant.  Maybe we might even replace the pte argument with the
  pte_t?

Ben Herrenschmidt would also like the pte pointer for PowerPC:

  Passing the ptep in there is exactly what I want.  I want that
  -instead- of the PTE value, because I have issue on some ppc cases,
  for I$/D$ coherency, where set_pte_at() may decide to mask out the
  _PAGE_EXEC.

So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.

Includes a fix from Stephen Rothwell:

  sparc: fix fallout from update_mmu_cache API change

  Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>

Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-02-20 16:41:46 +00:00
Jeff Mahoney
094e9539bd hugetlb: fix section mismatches
hugetlb_sysfs_add_hstate is called by hugetlb_register_node directly
during init and also indirectly via sysfs after init.

This patch removes the __init tag from hugetlb_sysfs_add_hstate.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-02-02 18:11:22 -08:00
Andrea Arcangeli
74dbdd239b mm: hugetlb: fix clear_huge_page()
sz is in bytes, MAX_ORDER_NR_PAGES is in pages.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Gibson <dwg@au1.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-11 09:34:06 -08:00
Mel Gorman
536240f2bd hugetlb: abort a hugepage pool resize if a signal is pending
If a user asks for a hugepage pool resize but specified a large number,
the machine can begin trashing.  In response, they might hit ctrl-c but
signals are ignored and the pool resize continues until it fails an
allocation.  This can take a considerable amount of time so this patch
aborts a pool resize if a signal is pending.

Suggested by Dave Hansen.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:24 -08:00
Mel Gorman
4eb2b1dcd5 hugetlb: acquire the i_mmap_lock before walking the prio_tree to unmap a page
When the owner of a mapping fails COW because a child process is holding a
reference, the children VMAs are walked and the page is unmapped.  The
i_mmap_lock is taken for the unmapping of the page but not the walking of
the prio_tree.  In theory, that tree could be changing if the lock is not
held.  This patch takes the i_mmap_lock properly for the duration of the
prio_tree walk.

[hugh.dickins@tiscali.co.uk: Spotted the problem in the first place]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:23 -08:00
Larry Woodman
b76c8cfbff hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() fails
hugetlb_fault() takes the mm->page_table_lock spinlock then calls
hugetlb_cow().  If the alloc_huge_page() in hugetlb_cow() fails due to an
insufficient huge page pool it calls unmap_ref_private() with the
mm->page_table_lock held.  unmap_ref_private() then calls
unmap_hugepage_range() which tries to acquire the mm->page_table_lock.

[<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f
 [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8
 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e
 [<ffffffff81093986>] lock_acquire+0xee/0x12e
 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
 [<ffffffff814c348d>] _spin_lock+0x40/0x89
 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318
 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84
 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4
 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6
 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6
 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9
 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c
 [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427
 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54
 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5
 [<ffffffff81160352>] dio_get_page+0x64/0x14a
 [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31
 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e
 [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8
 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528
 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c
 [<ffffffff81132842>] do_sync_read+0xf5/0x146
 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a
 [<ffffffff81211857>] ? security_file_permission+0x24/0x3a
 [<ffffffff81132fd8>] vfs_read+0xb5/0x126
 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8
 [<ffffffff81133131>] sys_read+0x54/0x8c
 [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b

This can be fixed by dropping the mm->page_table_lock around the call to
unmap_ref_private() if alloc_huge_page() fails, its dropped right below in
the normal path anyway.  However, earlier in the that function, it's also
possible to call into the page allocator with the same spinlock held.

What this patch does is drop the spinlock before the page allocator is
potentially entered.  The check for page allocation failure can be made
without the page_table_lock as well as the copy of the huge page.  Even if
the PTE changed while the spinlock was held, the consequence is that a
huge page is copied unnecessarily.  This resolves both the double taking
of the lock and sleeping with the spinlock held.

[mel@csn.ul.ie: Cover also the case where process can sleep with spinlock]
Signed-off-by: Larry Woodman <lwooman@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:20 -08:00
David Rientjes
bad44b5be8 mm: add gfp flags for NODEMASK_ALLOC slab allocations
Objects passed to NODEMASK_ALLOC() are relatively small in size and are
backed by slab caches that are not of large order, traditionally never
greater than PAGE_ALLOC_COSTLY_ORDER.

Thus, using GFP_KERNEL for these allocations on large machines when
CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in
the allocation attempt, each time invoking both direct reclaim or the oom
killer.

This is of particular interest when using NODEMASK_ALLOC() from a
mempolicy context (either directly in mm/mempolicy.c or the mempolicy
constrained hugetlb allocations) since the oom killer always kills current
when allocations are constrained by mempolicies.  So for all present use
cases in the kernel, current would end up being oom killed when direct
reclaim fails.  That would allow the NODEMASK_ALLOC() to succeed but
current would have sacrificed itself upon returning.

This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on
CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations.
All current use cases either directly from hugetlb code or indirectly via
NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom
killer when the slab allocator needs to allocate additional pages.

The side-effect of this change is that all current use cases of either
NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling
when the allocation fails (never for CONFIG_NODES_SHIFT <= 8).  All
current use cases were audited and do have appropriate error handling at
this time.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:13 -08:00
Lee Schermerhorn
9b5e5d0fdc hugetlb: use only nodes with memory for huge pages
Register per node hstate sysfs attributes only for nodes with memory.
Global replacement of 'all online nodes" with "all nodes with memory" in
mm/hugetlb.c.  Suggested by David Rientjes.

A subsequent patch will handle adding/removing of per node hstate sysfs
attributes when nodes transition to/from memoryless state via memory
hotplug.

NOTE: this patch has not been tested with memoryless nodes.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:13 -08:00
Lee Schermerhorn
9a30523066 hugetlb: add per node hstate attributes
Add the per huge page size control/query attributes to the per node
sysdevs:

/sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/
	nr_hugepages       - r/w
	free_huge_pages    - r/o
	surplus_huge_pages - r/o

The patch attempts to re-use/share as much of the existing global hstate
attribute initialization and handling, and the "nodes_allowed" constraint
processing as possible.

Calling set_max_huge_pages() with no node indicates a change to global
hstate parameters.  In this case, any non-default task mempolicy will be
used to generate the nodes_allowed mask.  A valid node id indicates an
update to that node's hstate parameters, and the count argument specifies
the target count for the specified node.  From this info, we compute the
target global count for the hstate and construct a nodes_allowed node mask
contain only the specified node.

Setting the node specific nr_hugepages via the per node attribute
effectively ignores any task mempolicy or cpuset constraints.

With this patch:

(me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB
./  ../  free_hugepages  nr_hugepages  surplus_hugepages

Starting from:
Node 0 HugePages_Total:     0
Node 0 HugePages_Free:      0
Node 0 HugePages_Surp:      0
Node 1 HugePages_Total:     0
Node 1 HugePages_Free:      0
Node 1 HugePages_Surp:      0
Node 2 HugePages_Total:     0
Node 2 HugePages_Free:      0
Node 2 HugePages_Surp:      0
Node 3 HugePages_Total:     0
Node 3 HugePages_Free:      0
Node 3 HugePages_Surp:      0
vm.nr_hugepages = 0

Allocate 16 persistent huge pages on node 2:
(me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages

[Note that this is equivalent to:
	numactl -m 2 hugeadmin --pool-pages-min 2M:+16
]

Yields:
Node 0 HugePages_Total:     0
Node 0 HugePages_Free:      0
Node 0 HugePages_Surp:      0
Node 1 HugePages_Total:     0
Node 1 HugePages_Free:      0
Node 1 HugePages_Surp:      0
Node 2 HugePages_Total:    16
Node 2 HugePages_Free:     16
Node 2 HugePages_Surp:      0
Node 3 HugePages_Total:     0
Node 3 HugePages_Free:      0
Node 3 HugePages_Surp:      0
vm.nr_hugepages = 16

Global controls work as expected--reduce pool to 8 persistent huge pages:
(me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Node 0 HugePages_Total:     0
Node 0 HugePages_Free:      0
Node 0 HugePages_Surp:      0
Node 1 HugePages_Total:     0
Node 1 HugePages_Free:      0
Node 1 HugePages_Surp:      0
Node 2 HugePages_Total:     8
Node 2 HugePages_Free:      8
Node 2 HugePages_Surp:      0
Node 3 HugePages_Total:     0
Node 3 HugePages_Free:      0
Node 3 HugePages_Surp:      0

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
Lee Schermerhorn
06808b0827 hugetlb: derive huge pages nodes allowed from task mempolicy
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy".  The nodes_allowed mask is derived as follows:

* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
  is produced.  This will cause the hugetlb subsystem to use
  node_online_map as the "nodes_allowed".  This preserves the
  behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
  a nodemask with the single preferred node will be produced.
  "local" policy will NOT track any internode migrations of the
  task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
  will be used.
* Other than to inform the construction of the nodes_allowed node
  mask, the actual mempolicy mode is ignored.  That is, all modes
  behave like interleave over the resulting nodes_allowed mask
  with no "fallback".

See the updated documentation [next patch] for more information
about the implications of this patch.

Examples:

Starting with:

	Node 0 HugePages_Total:     0
	Node 1 HugePages_Total:     0
	Node 2 HugePages_Total:     0
	Node 3 HugePages_Total:     0

Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:

	sysctl vm.nr_hugepages[_mempolicy]=32

yields:

	Node 0 HugePages_Total:     8
	Node 1 HugePages_Total:     8
	Node 2 HugePages_Total:     8
	Node 3 HugePages_Total:     8

Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.

Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes.  So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:

	numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40

This yields:

	Node 0 HugePages_Total:     8
	Node 1 HugePages_Total:     8
	Node 2 HugePages_Total:    16
	Node 3 HugePages_Total:     8

The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.

Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:

	numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32

yields:

	Node 0 HugePages_Total:     4
	Node 1 HugePages_Total:     4
	Node 2 HugePages_Total:    16
	Node 3 HugePages_Total:     8

The 8 huge pages freed were balanced over nodes 0 and 1.

[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
Lee Schermerhorn
6ae11b278b hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions
In preparation for constraining huge page allocation and freeing by the
controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer
to the allocate, free and surplus adjustment functions.  For now, pass
NULL to indicate default behavior--i.e., use node_online_map.  A
subsqeuent patch will derive a non-default mask from the controlling
task's numa mempolicy.

Note that this method of updating the global hstate nr_hugepages under the
constraint of a nodemask simplifies keeping the global state
consistent--especially the number of persistent and surplus pages relative
to reservations and overcommit limits.  There are undoubtedly other ways
to do this, but this works for both interfaces: mempolicy and per node
attributes.

[rientjes@google.com: fix HIGHMEM compile error]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
Lee Schermerhorn
9a76db0997 hugetlb: rework hstate_next_node_* functions
Modify the hstate_next_node* functions to allow them to be called to
obtain the "start_nid".  Then, whereas prior to this patch we
unconditionally called hstate_next_node_to_{alloc|free}(), whether or not
we successfully allocated/freed a huge page on the node, now we only call
these functions on failure to alloc/free to advance to next allowed node.

Factor out the next_node_allowed() function to handle wrap at end of
node_online_map.  In this version, the allowed nodes include all of the
online nodes.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:12 -08:00
Alexey Dobriyan
f0f37e2f77 const: mark struct vm_struct_operations
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code

But leave TTM code alone, something is fishy there with global vm_ops
being used.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-27 11:39:25 -07:00
Alexey Dobriyan
8d65af789f sysctl: remove "struct file *" argument of ->proc_handler
It's unused.

It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.

It _was_ used in two places at arch/frv for some reason.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-24 07:21:04 -07:00
Hugh Dickins
3ae77f43b1 mm: hugetlbfs_pagecache_present
Rename hugetlbfs_backed() to hugetlbfs_pagecache_present()
and add more comments, as suggested by Mel Gorman.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:41 -07:00
Hugh Dickins
2a15efc953 mm: follow_hugetlb_page flags
follow_hugetlb_page() shouldn't be guessing about the coredump case
either: pass the foll_flags down to it, instead of just the write bit.

Remove that obscure huge_zeropage_ok() test.  The decision is easy,
though unlike the non-huge case - here vm_ops->fault is always set.
But we know that a fault would serve up zeroes, unless there's
already a hugetlbfs pagecache page to back the range.

(Alternatively, since hugetlb pages aren't swapped out under pressure,
you could save more dump space by arguing that a page not yet faulted
into this process cannot be relevant to the dump; but that would be
more surprising.)

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:40 -07:00
Lee Schermerhorn
57dd28fb05 hugetlb: restore interleaving of bootmem huge pages
I noticed that alloc_bootmem_huge_page() will only advance to the next
node on failure to allocate a huge page, potentially filling nodes with
huge-pages.  I asked about this on linux-mm and linux-numa, cc'ing the
usual huge page suspects.

Mel Gorman responded:

	I strongly suspect that the same node being used until allocation
	failure instead of round-robin is an oversight and not deliberate
	at all. It appears to be a side-effect of a fix made way back in
	commit 63b4613c3f0d4b724ba259dc6c201bb68b884e1a ["hugetlb: fix
	hugepage allocation with memoryless nodes"]. Prior to that patch
	it looked like allocations would always round-robin even when
	allocation was successful.

This patch--factored out of my "hugetlb mempolicy" series--moves the
advance of the hstate next node from which to allocate up before the test
for success of the attempted allocation.

Note that alloc_bootmem_huge_page() is only used for order > MAX_ORDER
huge pages.

I'll post a separate patch for mainline/stable, as the above mentioned
"balance freeing" series renamed the next node to alloc function.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@canonical.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:26 -07:00
Lee Schermerhorn
685f345708 hugetlb: use free_pool_huge_page() to return unused surplus pages
Use the [modified] free_pool_huge_page() function to return unused
surplus pages.  This will help keep huge pages balanced across nodes
between freeing of unused surplus pages and freeing of persistent huge
pages [from set_max_huge_pages] by using the same node id "cursor". It
also eliminates some code duplication.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:26 -07:00
Lee Schermerhorn
e8c5c82498 hugetlb: balance freeing of huge pages across nodes
Free huges pages from nodes in round robin fashion in an attempt to keep
[persistent a.k.a static] hugepages balanced across nodes

New function free_pool_huge_page() is modeled on and performs roughly the
inverse of alloc_fresh_huge_page().  Replaces dequeue_huge_page() which
now has no callers, so this patch removes it.

Helper function hstate_next_node_to_free() uses new hstate member
next_to_free_nid to distribute "frees" across all nodes with huge pages.

Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:26 -07:00
Joerg Roedel
f340ca0f06 hugetlbfs: export vma_kernel_pagsize to modules
This function is required by KVM.

Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-09-10 08:33:01 +03:00