IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Name benchmarks with _ret at the end to avoid creating a new set of
benchmarks.
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrei Vagin <avagin@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Kees Kook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240406040911.1603801-2-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
perf tools maintainership:
- Add git information for perf-tools and perf-tools-next trees/branches to the
MAINTAINERS file. That is where development now takes place and myself and
Namhyung Kim have write access, more people to come as we emulate other
maintainer groups.
perf record:
- Record kernel data maps when 'perf record --data' is used, so that global variables can
be resolved and used in tools that do data profiling.
perf trace:
- Remove the old, experimental support for BPF events in which a .c file was passed as
an event: "perf trace -e hello.c" to then get compiled and loaded.
The only known usage for that, that shipped with the kernel as an example for such events,
augmented the raw_syscalls tracepoints and was converted to a libbpf skeleton, reusing all
the user space components and the BPF code connected to the syscalls.
In the end just the way to glue the BPF part and the user space type beautifiers changed,
now being performed by libbpf skeletons.
The next step is to use BTF to do pretty printing of all syscall types, as discussed with
Alan Maguire and others.
Now, on a perf built with BUILD_BPF_SKEL=1 we get most if not all path/filenames/strings,
some of the networking data structures, perf_event_attr, etc, i.e. systemwide tracing of
nanosleep calls and perf_event_open syscalls while 'perf stat' runs 'sleep' for 5 seconds:
# perf trace -a -e *nanosleep,perf* perf stat -e cycles,instructions sleep 5
0.000 ( 9.034 ms): perf/327641 perf_event_open(attr_uptr: { type: 0 (PERF_TYPE_HARDWARE), size: 136, config: 0 (PERF_COUNT_HW_CPU_CYCLES), sample_type: IDENTIFIER, read_format: TOTAL_TIME_ENABLED|TOTAL_TIME_RUNNING, disabled: 1, inherit: 1, enable_on_exec: 1, exclude_guest: 1 }, pid: 327642 (perf), cpu: -1, group_fd: -1, flags: FD_CLOEXEC) = 3
9.039 ( 0.006 ms): perf/327641 perf_event_open(attr_uptr: { type: 0 (PERF_TYPE_HARDWARE), size: 136, config: 0x1 (PERF_COUNT_HW_INSTRUCTIONS), sample_type: IDENTIFIER, read_format: TOTAL_TIME_ENABLED|TOTAL_TIME_RUNNING, disabled: 1, inherit: 1, enable_on_exec: 1, exclude_guest: 1 }, pid: 327642 (perf-exec), cpu: -1, group_fd: -1, flags: FD_CLOEXEC) = 4
? ( ): gpm/991 ... [continued]: clock_nanosleep()) = 0
10.133 ( ): sleep/327642 clock_nanosleep(rqtp: { .tv_sec: 5, .tv_nsec: 0 }, rmtp: 0x7ffd36f83ed0) ...
? ( ): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
30.276 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
223.215 (1000.430 ms): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) = 0
30.276 (2000.394 ms): gpm/991 ... [continued]: clock_nanosleep()) = 0
1230.814 ( ): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) ...
1230.814 (1000.404 ms): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
2030.886 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
2237.709 (1000.153 ms): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) = 0
? ( ): crond/1172 ... [continued]: clock_nanosleep()) = 0
3242.699 ( ): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) ...
2030.886 (2000.385 ms): gpm/991 ... [continued]: clock_nanosleep()) = 0
3728.078 ( ): crond/1172 clock_nanosleep(rqtp: { .tv_sec: 60, .tv_nsec: 0 }, rmtp: 0x7ffe0971dcf0) ...
3242.699 (1000.158 ms): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
4031.409 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
10.133 (5000.375 ms): sleep/327642 ... [continued]: clock_nanosleep()) = 0
Performance counter stats for 'sleep 5':
2,617,347 cycles
1,855,997 instructions # 0.71 insn per cycle
5.002282128 seconds time elapsed
0.000855000 seconds user
0.000852000 seconds sys
#
perf annotate:
- Building with binutils' libopcode now is opt-in (BUILD_NONDISTRO=1) for
licensing reasons, and we missed a build test on tools/perf/tests makefile.
Since we now default to NDEBUG=1, we ended up segfaulting when building with
BUILD_NONDISTRO=1 because a needed initialization routine was being "error
checked" via an assert.
Fix it by explicitly checking the result and aborting instead if it fails.
We better back propagate the error, but at least 'perf annotate' on samples
collected for a BPF program is back working when perf is built with
BUILD_NONDISTRO=1.
perf report/top:
- Add back TUI hierarchy mode header, that is seen when using 'perf report/top --hierarchy'.
- Fix the number of entries for 'e' key in the TUI that was preventing navigation of
lines when expanding an entry.
perf report/script:
- Support cross platform register handling, allowing a perf.data file collected
on one architecture to have registers sampled correctly displayed when
analysis tools such as 'perf report' and 'perf script' are used on a different
architecture.
- Fix handling of event attributes in pipe mode, i.e. when one uses:
perf record -o - | perf report -i -
When no perf.data files are used.
- Handle files generated via pipe mode with a version of perf and then read
also via pipe mode with a different version of perf, where the event attr
record may have changed, use the record size field to properly support this
version mismatch.
perf probe:
- Accessing global variables from uprobes isn't supported, make the error
message state that instead of stating that some minimal kernel version is
needed to have that feature. This seems just a tool limitation, the kernel
probably has all that is needed.
perf tests:
- Fix a reference count related leak in the dlfilter v0 API where the result
of a thread__find_symbol_fb() is not matched with an addr_location__exit()
to drop the reference counts of the resolved components (machine, thread, map,
symbol, etc). Add a dlfilter test to make sure that doesn't regresses.
- Lots of fixes for the 'perf test' written in shell script related to problems
found with the shellcheck utility.
- Fixes for 'perf test' shell scripts testing features enabled when perf is
built with BUILD_BPF_SKEL=1, such as 'perf stat' bpf counters.
- Add perf record sample filtering test, things like the following example, that gets
implemented as a BPF filter attached to the event:
# perf record -e task-clock -c 10000 --filter 'ip < 0xffffffff00000000'
- Improve the way the task_analyzer test checks if libtraceevent is linked,
using 'perf version --build-options' instead of the more expensinve
'perf record -e "sched:sched_switch"'.
- Add support for riscv in the mmap-basic test. (This went as well via the RiscV tree, same contents).
libperf:
- Implement riscv mmap support (This went as well via the RiscV tree, same contents).
perf script:
- New tool that converts perf.data files to the firefox profiler format so that one can use
the visualizer at https://profiler.firefox.com/. Done by Anup Sharma as part of this year's
Google Summer of Code.
One can generate the output and upload it to the web interface but Anup also automated
everything:
perf script gecko -F 99 -a sleep 60
- Support syscall name parsing on arm64.
- Print "cgroup" field on the same line as "comm".
perf bench:
- Add new 'uprobe' benchmark to measure the overhead of uprobes with/without
BPF programs attached to it.
- breakpoints are not available on power9, skip that test.
perf stat:
- Add #num_cpus_online literal to be used in 'perf stat' metrics, and add this extra
'perf test' check that exemplifies its purpose:
TEST_ASSERT_VAL("#num_cpus_online",
expr__parse(&num_cpus_online, ctx, "#num_cpus_online") == 0);
TEST_ASSERT_VAL("#num_cpus", expr__parse(&num_cpus, ctx, "#num_cpus") == 0);
TEST_ASSERT_VAL("#num_cpus >= #num_cpus_online", num_cpus >= num_cpus_online);
Miscellaneous:
- Improve tool startup time by lazily reading PMU, JSON, sysfs data.
- Improve error reporting in the parsing of events, passing YYLTYPE to error routines,
so that the output can show were the parsing error was found.
- Add 'perf test' entries to check the parsing of events improvements.
- Fix various leak for things detected by -fsanitize=address, mostly things that would
be freed at tool exit, including:
- Free evsel->filter on the destructor.
- Allow tools to register a thread->priv destructor and use it in 'perf trace'.
- Free evsel->priv in 'perf trace'.
- Free string returned by synthesize_perf_probe_point() when the caller fails
to do all it needs.
- Adjust various compiler options to not consider errors some warnings when
building with broken headers found in things like python, flex, bison, as we
otherwise build with -Werror. Some for gcc, some for clang, some for some
specific version of those, some for some specific version of flex or bison, or
some specific combination of these components, bah.
- Allow customization of clang options for BPF target, this helps building on
gentoo where there are other oddities where BPF targets gets passed some compiler
options intended for the native build, so building with WERROR=0 helps while
these oddities are fixed.
- Dont pass ERR_PTR() values to perf_session__delete() in 'perf top' and 'perf lock',
fixing some segfaults when handling some odd failures.
- Add LTO build option.
- Fix format of unordered lists in the perf docs (tools/perf/Documentation).
- Overhaul the bison files, using constructs such as YYNOMEM.
- Remove unused tokens from the bison .y files.
- Add more comments to various structs.
- A few LoongArch enablement patches.
Vendor events (JSON):
- Add JSON metrics for Yitian 710 DDR (aarch64). Things like:
EventName, BriefDescription
visible_window_limit_reached_rd, "At least one entry in read queue reaches the visible window limit.",
visible_window_limit_reached_wr, "At least one entry in write queue reaches the visible window limit.",
op_is_dqsosc_mpc , "A DQS Oscillator MPC command to DRAM.",
op_is_dqsosc_mrr , "A DQS Oscillator MRR command to DRAM.",
op_is_tcr_mrr , "A Temperature Compensated Refresh(TCR) MRR command to DRAM.",
- Add AmpereOne metrics (aarch64).
- Update N2 and V2 metrics (aarch64) and events using Arm telemetry repo.
- Update scale units and descriptions of common topdown metrics on aarch64. Things like:
- "MetricExpr": "stall_slot_frontend / (#slots * cpu_cycles)",
- "BriefDescription": "Frontend bound L1 topdown metric",
+ "MetricExpr": "100 * (stall_slot_frontend / (#slots * cpu_cycles))",
+ "BriefDescription": "This metric is the percentage of total slots that were stalled due to resource constraints in the frontend of the processor.",
- Update events for intel: meteorlake to 1.04, sapphirerapids to 1.15, Icelake+ metric constraints.
- Update files for the power10 platform.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCZPfJZgAKCRCyPKLppCJ+
J1/eAP9lgtavD0V75wy1p5zyotkceOmPTkk1DYFVx2Euhxa/lAD/YW/JvuVSo0Gr
HqJP52XaV0tF8gG+YxL+Lay/Ke0P5AQ=
=d12c
-----END PGP SIGNATURE-----
Merge tag 'perf-tools-for-v6.6-1-2023-09-05' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools
Pull perf tools updates from Arnaldo Carvalho de Melo:
"perf tools maintainership:
- Add git information for perf-tools and perf-tools-next trees and
branches to the MAINTAINERS file. That is where development now
takes place and myself and Namhyung Kim have write access, more
people to come as we emulate other maintainer groups.
perf record:
- Record kernel data maps when 'perf record --data' is used, so that
global variables can be resolved and used in tools that do data
profiling.
perf trace:
- Remove the old, experimental support for BPF events in which a .c
file was passed as an event: "perf trace -e hello.c" to then get
compiled and loaded.
The only known usage for that, that shipped with the kernel as an
example for such events, augmented the raw_syscalls tracepoints and
was converted to a libbpf skeleton, reusing all the user space
components and the BPF code connected to the syscalls.
In the end just the way to glue the BPF part and the user space
type beautifiers changed, now being performed by libbpf skeletons.
The next step is to use BTF to do pretty printing of all syscall
types, as discussed with Alan Maguire and others.
Now, on a perf built with BUILD_BPF_SKEL=1 we get most if not all
path/filenames/strings, some of the networking data structures,
perf_event_attr, etc, i.e. systemwide tracing of nanosleep calls
and perf_event_open syscalls while 'perf stat' runs 'sleep' for 5
seconds:
# perf trace -a -e *nanosleep,perf* perf stat -e cycles,instructions sleep 5
0.000 ( 9.034 ms): perf/327641 perf_event_open(attr_uptr: { type: 0 (PERF_TYPE_HARDWARE), size: 136, config: 0 (PERF_COUNT_HW_CPU_CYCLES), sample_type: IDENTIFIER, read_format: TOTAL_TIME_ENABLED|TOTAL_TIME_RUNNING, disabled: 1, inherit: 1, enable_on_exec: 1, exclude_guest: 1 }, pid: 327642 (perf), cpu: -1, group_fd: -1, flags: FD_CLOEXEC) = 3
9.039 ( 0.006 ms): perf/327641 perf_event_open(attr_uptr: { type: 0 (PERF_TYPE_HARDWARE), size: 136, config: 0x1 (PERF_COUNT_HW_INSTRUCTIONS), sample_type: IDENTIFIER, read_format: TOTAL_TIME_ENABLED|TOTAL_TIME_RUNNING, disabled: 1, inherit: 1, enable_on_exec: 1, exclude_guest: 1 }, pid: 327642 (perf-exec), cpu: -1, group_fd: -1, flags: FD_CLOEXEC) = 4
? ( ): gpm/991 ... [continued]: clock_nanosleep()) = 0
10.133 ( ): sleep/327642 clock_nanosleep(rqtp: { .tv_sec: 5, .tv_nsec: 0 }, rmtp: 0x7ffd36f83ed0) ...
? ( ): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
30.276 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
223.215 (1000.430 ms): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) = 0
30.276 (2000.394 ms): gpm/991 ... [continued]: clock_nanosleep()) = 0
1230.814 ( ): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) ...
1230.814 (1000.404 ms): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
2030.886 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
2237.709 (1000.153 ms): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) = 0
? ( ): crond/1172 ... [continued]: clock_nanosleep()) = 0
3242.699 ( ): pool-gsd-smart/3051 clock_nanosleep(rqtp: { .tv_sec: 1, .tv_nsec: 0 }, rmtp: 0x7f6e7fffec90) ...
2030.886 (2000.385 ms): gpm/991 ... [continued]: clock_nanosleep()) = 0
3728.078 ( ): crond/1172 clock_nanosleep(rqtp: { .tv_sec: 60, .tv_nsec: 0 }, rmtp: 0x7ffe0971dcf0) ...
3242.699 (1000.158 ms): pool-gsd-smart/3051 ... [continued]: clock_nanosleep()) = 0
4031.409 ( ): gpm/991 clock_nanosleep(rqtp: { .tv_sec: 2, .tv_nsec: 0 }, rmtp: 0x7ffcc6f73710) ...
10.133 (5000.375 ms): sleep/327642 ... [continued]: clock_nanosleep()) = 0
Performance counter stats for 'sleep 5':
2,617,347 cycles
1,855,997 instructions # 0.71 insn per cycle
5.002282128 seconds time elapsed
0.000855000 seconds user
0.000852000 seconds sys
perf annotate:
- Building with binutils' libopcode now is opt-in (BUILD_NONDISTRO=1)
for licensing reasons, and we missed a build test on
tools/perf/tests makefile.
Since we now default to NDEBUG=1, we ended up segfaulting when
building with BUILD_NONDISTRO=1 because a needed initialization
routine was being "error checked" via an assert.
Fix it by explicitly checking the result and aborting instead if it
fails.
We better back propagate the error, but at least 'perf annotate' on
samples collected for a BPF program is back working when perf is
built with BUILD_NONDISTRO=1.
perf report/top:
- Add back TUI hierarchy mode header, that is seen when using 'perf
report/top --hierarchy'.
- Fix the number of entries for 'e' key in the TUI that was
preventing navigation of lines when expanding an entry.
perf report/script:
- Support cross platform register handling, allowing a perf.data file
collected on one architecture to have registers sampled correctly
displayed when analysis tools such as 'perf report' and 'perf
script' are used on a different architecture.
- Fix handling of event attributes in pipe mode, i.e. when one uses:
perf record -o - | perf report -i -
When no perf.data files are used.
- Handle files generated via pipe mode with a version of perf and
then read also via pipe mode with a different version of perf,
where the event attr record may have changed, use the record size
field to properly support this version mismatch.
perf probe:
- Accessing global variables from uprobes isn't supported, make the
error message state that instead of stating that some minimal
kernel version is needed to have that feature. This seems just a
tool limitation, the kernel probably has all that is needed.
perf tests:
- Fix a reference count related leak in the dlfilter v0 API where the
result of a thread__find_symbol_fb() is not matched with an
addr_location__exit() to drop the reference counts of the resolved
components (machine, thread, map, symbol, etc). Add a dlfilter test
to make sure that doesn't regresses.
- Lots of fixes for the 'perf test' written in shell script related
to problems found with the shellcheck utility.
- Fixes for 'perf test' shell scripts testing features enabled when
perf is built with BUILD_BPF_SKEL=1, such as 'perf stat' bpf
counters.
- Add perf record sample filtering test, things like the following
example, that gets implemented as a BPF filter attached to the
event:
# perf record -e task-clock -c 10000 --filter 'ip < 0xffffffff00000000'
- Improve the way the task_analyzer test checks if libtraceevent is
linked, using 'perf version --build-options' instead of the more
expensinve 'perf record -e "sched:sched_switch"'.
- Add support for riscv in the mmap-basic test. (This went as well
via the RiscV tree, same contents).
libperf:
- Implement riscv mmap support (This went as well via the RiscV tree,
same contents).
perf script:
- New tool that converts perf.data files to the firefox profiler
format so that one can use the visualizer at
https://profiler.firefox.com/. Done by Anup Sharma as part of this
year's Google Summer of Code.
One can generate the output and upload it to the web interface but
Anup also automated everything:
perf script gecko -F 99 -a sleep 60
- Support syscall name parsing on arm64.
- Print "cgroup" field on the same line as "comm".
perf bench:
- Add new 'uprobe' benchmark to measure the overhead of uprobes
with/without BPF programs attached to it.
- breakpoints are not available on power9, skip that test.
perf stat:
- Add #num_cpus_online literal to be used in 'perf stat' metrics, and
add this extra 'perf test' check that exemplifies its purpose:
TEST_ASSERT_VAL("#num_cpus_online",
expr__parse(&num_cpus_online, ctx, "#num_cpus_online") == 0);
TEST_ASSERT_VAL("#num_cpus", expr__parse(&num_cpus, ctx, "#num_cpus") == 0);
TEST_ASSERT_VAL("#num_cpus >= #num_cpus_online", num_cpus >= num_cpus_online);
Miscellaneous:
- Improve tool startup time by lazily reading PMU, JSON, sysfs data.
- Improve error reporting in the parsing of events, passing YYLTYPE
to error routines, so that the output can show were the parsing
error was found.
- Add 'perf test' entries to check the parsing of events
improvements.
- Fix various leak for things detected by -fsanitize=address, mostly
things that would be freed at tool exit, including:
- Free evsel->filter on the destructor.
- Allow tools to register a thread->priv destructor and use it in
'perf trace'.
- Free evsel->priv in 'perf trace'.
- Free string returned by synthesize_perf_probe_point() when the
caller fails to do all it needs.
- Adjust various compiler options to not consider errors some
warnings when building with broken headers found in things like
python, flex, bison, as we otherwise build with -Werror. Some for
gcc, some for clang, some for some specific version of those, some
for some specific version of flex or bison, or some specific
combination of these components, bah.
- Allow customization of clang options for BPF target, this helps
building on gentoo where there are other oddities where BPF targets
gets passed some compiler options intended for the native build, so
building with WERROR=0 helps while these oddities are fixed.
- Dont pass ERR_PTR() values to perf_session__delete() in 'perf top'
and 'perf lock', fixing some segfaults when handling some odd
failures.
- Add LTO build option.
- Fix format of unordered lists in the perf docs
(tools/perf/Documentation)
- Overhaul the bison files, using constructs such as YYNOMEM.
- Remove unused tokens from the bison .y files.
- Add more comments to various structs.
- A few LoongArch enablement patches.
Vendor events (JSON):
- Add JSON metrics for Yitian 710 DDR (aarch64). Things like:
EventName, BriefDescription
visible_window_limit_reached_rd, "At least one entry in read queue reaches the visible window limit.",
visible_window_limit_reached_wr, "At least one entry in write queue reaches the visible window limit.",
op_is_dqsosc_mpc , "A DQS Oscillator MPC command to DRAM.",
op_is_dqsosc_mrr , "A DQS Oscillator MRR command to DRAM.",
op_is_tcr_mrr , "A Temperature Compensated Refresh(TCR) MRR command to DRAM.",
- Add AmpereOne metrics (aarch64).
- Update N2 and V2 metrics (aarch64) and events using Arm telemetry
repo.
- Update scale units and descriptions of common topdown metrics on
aarch64. Things like:
- "MetricExpr": "stall_slot_frontend / (#slots * cpu_cycles)",
- "BriefDescription": "Frontend bound L1 topdown metric",
+ "MetricExpr": "100 * (stall_slot_frontend / (#slots * cpu_cycles))",
+ "BriefDescription": "This metric is the percentage of total slots that were stalled due to resource constraints in the frontend of the processor.",
- Update events for intel: meteorlake to 1.04, sapphirerapids to
1.15, Icelake+ metric constraints.
- Update files for the power10 platform"
* tag 'perf-tools-for-v6.6-1-2023-09-05' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools: (217 commits)
perf parse-events: Fix driver config term
perf parse-events: Fixes relating to no_value terms
perf parse-events: Fix propagation of term's no_value when cloning
perf parse-events: Name the two term enums
perf list: Don't print Unit for "default_core"
perf vendor events intel: Fix modifier in tma_info_system_mem_parallel_reads for skylake
perf dlfilter: Avoid leak in v0 API test use of resolve_address()
perf metric: Add #num_cpus_online literal
perf pmu: Remove str from perf_pmu_alias
perf parse-events: Make common term list to strbuf helper
perf parse-events: Minor help message improvements
perf pmu: Avoid uninitialized use of alias->str
perf jevents: Use "default_core" for events with no Unit
perf test stat_bpf_counters_cgrp: Enhance perf stat cgroup BPF counter test
perf test shell stat_bpf_counters: Fix test on Intel
perf test shell record_bpf_filter: Skip 6.2 kernel
libperf: Get rid of attr.id field
perf tools: Convert to perf_record_header_attr_id()
libperf: Add perf_record_header_attr_id()
perf tools: Handle old data in PERF_RECORD_ATTR
...
This just adds the initial "workload", a call to libc's usleep(1000us)
function:
$ perf stat --null perf bench uprobe all
# Running uprobe/baseline benchmark...
# Executed 1000 usleep(1000) calls
Total time: 1053533 usecs
1053.533 usecs/op
Performance counter stats for 'perf bench uprobe all':
1.061042896 seconds time elapsed
0.001079000 seconds user
0.006499000 seconds sys
$
More entries will be added using a BPF skel to add various uprobes to
the usleep() function.
Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andre Fredette <anfredet@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Dave Tucker <datucker@redhat.com>
Cc: Derek Barbosa <debarbos@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/20230719204910.539044-2-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The benchmark is similar to the pipe benchmark. It creates two processes,
one is calling syscalls, and another process is handling them via seccomp
user notifications. It measures the time required to run a specified number
of interations.
$ ./perf bench sched seccomp-notify --sync-mode --loop 1000000
# Running 'sched/seccomp-notify' benchmark:
# Executed 1000000 system calls
Total time: 2.769 [sec]
2.769629 usecs/op
361059 ops/sec
$ ./perf bench sched seccomp-notify
# Running 'sched/seccomp-notify' benchmark:
# Executed 1000000 system calls
Total time: 8.571 [sec]
8.571119 usecs/op
116670 ops/sec
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-7-avagin@google.com
Link: https://lore.kernel.org/r/20230630051953.454638-1-avagin@gmail.com
[kees: Added PRIu64 format string]
Signed-off-by: Kees Cook <keescook@chromium.org>
Without this we were not getting the thousands separator for big
numbers.
Noticed while developing 'perf bench uprobe', but the use of %' predates
that, for instance 'perf bench syscall' uses it.
Before:
# perf bench uprobe all
# Running uprobe/baseline benchmark...
# Executed 1000 usleep(1000) calls
Total time: 1054082243ns
1054082.243000 nsecs/op
#
After:
# perf bench uprobe all
# Running uprobe/baseline benchmark...
# Executed 1,000 usleep(1000) calls
Total time: 1,053,715,144ns
1,053,715.144000 nsecs/op
#
Fixes: c2a08203052f8975 ("perf bench: Add basic syscall benchmark")
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andre Fredette <anfredet@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Dave Tucker <datucker@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Derek Barbosa <debarbos@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Link: https://lore.kernel.org/lkml/ZH3lcepZ4tBYr1jv@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The pmu-scan benchmark will repeatedly scan the sysfs to get the
available PMU information.
$ ./perf bench internals pmu-scan
# Running 'internals/pmu-scan' benchmark:
Computing performance of sysfs PMU event scan for 100 times
Average PMU scanning took: 6850.990 usec (+- 48.445 usec)
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230331202949.810326-2-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This is a follow up patch for the execve bench which is actually
fork + execve, it makes sense to add the fork syscall benchmark
to compare the execve part precisely.
Some archs have no __NR_fork definition which is used only as a
check condition to call test_fork(), let us just define it as -1
to avoid build error.
Suggested-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: loongson-kernel@lists.loongnix.cn
Link: https://lore.kernel.org/r/1679381821-22736-1-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit adds the execve syscall benchmark, more syscall benchmarks
can be added in the future.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/1668052208-14047-5-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit adds a simple getpgid syscall benchmark, more syscall
benchmarks can be added in the future.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/1668052208-14047-4-git-send-email-yangtiezhu@loongson.cn
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Fix various spelling errors as reported by Debian's lintian tool.
"amount of times" -> "number of times"
ocurrence -> occurrence
upto -> up to
Signed-off-by: Diederik de Haas <didi.debian@cknow.org>
Acked-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230122122034.48020-1-didi.debian@cknow.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The output of 'perf bench' gets buffered when I pipe it to a file or to
tee, in such a way that I can see it only at the end.
E.g.
$ perf bench internals synthesize -t
< output comes out fine after each test run >
$ perf bench internals synthesize -t | tee file.txt
< output comes out only at the end of all tests >
This patch resolves this issue for 'bench' and 'test' subcommands.
See, also:
$ perf bench mem all | tee file.txt
$ perf bench sched all | tee file.txt
$ perf bench internals all -t | tee file.txt
$ perf bench internals all | tee file.txt
Committer testing:
It really gets staggered, i.e. outputs in bursts, when the buffer fills
up and has to be drained to make up space for more output.
Suggested-by: Riccardo Mancini <rickyman7@gmail.com>
Signed-off-by: Sohaib Mohamed <sohaib.amhmd@gmail.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Fabian Hemmer <copy@copy.sh>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20211119061409.78004-1-sohaib.amhmd@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This new benchmark finds the total time that is taken to open, mmap,
enable, disable, munmap, close an evlist (time taken for new,
create_maps, config, delete is not counted in).
The evlist can be configured as in perf-record using the
-a,-C,-e,-u,--per-thread,-t,-p options.
The events can be duplicated in the evlist to quickly test performance
with many events using the -n options.
Furthermore, also the number of iterations used to calculate the
statistics is customizable.
Examples:
- Open one dummy event system-wide:
$ sudo ./perf bench internals evlist-open-close
Number of cpus: 4
Number of threads: 1
Number of events: 1 (4 fds)
Number of iterations: 100
Average open-close took: 613.870 usec (+- 32.852 usec)
- Open the group '{cs,cycles}' on CPU 0
$ sudo ./perf bench internals evlist-open-close -e '{cs,cycles}' -C 0
Number of cpus: 1
Number of threads: 1
Number of events: 2 (2 fds)
Number of iterations: 100
Average open-close took: 8503.220 usec (+- 252.652 usec)
- Open 10 'cycles' events for user 0, calculate average over 100 runs
$ sudo ./perf bench internals evlist-open-close -e cycles -n 10 -u 0 -i 100
Number of cpus: 4
Number of threads: 328
Number of events: 10 (13120 fds)
Number of iterations: 100
Average open-close took: 180043.140 usec (+- 2295.889 usec)
Committer notes:
Replaced a deprecated bzero() call with designated initialized zeroing.
Added some missing evlist allocation checks, one noted by Riccardo on
the mailing list.
Minor cosmetic changes (sent in private).
Signed-off-by: Riccardo Mancini <rickyman7@gmail.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210809201101.277594-1-rickyman7@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The usefulness of having a standard way of testing syscall performance
has come up from time to time[0]. Furthermore, some of our testing
machinery (such as 'mmtests') already makes use of a simplified version
of the microbenchmark. This patch mainly takes the same idea to measure
syscall throughput compatible with 'perf-bench' via getppid(2), yet
without any of the additional template stuff from Ingo's version (based
on numa.c). The code is identical to what mmtests uses.
[0] https://lore.kernel.org/lkml/20160201074156.GA27156@gmail.com/
Committer notes:
Add mising stdlib.h and unistd.h to get the prototypes for exit() and
getppid().
Committer testing:
$ perf bench
Usage:
perf bench [<common options>] <collection> <benchmark> [<options>]
# List of all available benchmark collections:
sched: Scheduler and IPC benchmarks
syscall: System call benchmarks
mem: Memory access benchmarks
numa: NUMA scheduling and MM benchmarks
futex: Futex stressing benchmarks
epoll: Epoll stressing benchmarks
internals: Perf-internals benchmarks
all: All benchmarks
$
$ perf bench syscall
# List of available benchmarks for collection 'syscall':
basic: Benchmark for basic getppid(2) calls
all: Run all syscall benchmarks
$ perf bench syscall basic
# Running 'syscall/basic' benchmark:
# Executed 10000000 getppid() calls
Total time: 3.679 [sec]
0.367957 usecs/op
2717708 ops/sec
$ perf bench syscall all
# Running syscall/basic benchmark...
# Executed 10000000 getppid() calls
Total time: 3.644 [sec]
0.364456 usecs/op
2743815 ops/sec
$
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: http://lore.kernel.org/lkml/20190308181747.l36zqz2avtivrr3c@linux-r8p5
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
To be consistent with other such auto-detected features.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Anand K Mistry <amistry@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Event synthesis may occur at the start or end (tail) of a perf command.
In system-wide mode it can scan every process in /proc, which may add
seconds of latency before event recording. Add a new benchmark that
times how long event synthesis takes with and without data synthesis.
An example execution looks like:
$ perf bench internals synthesize
# Running 'internals/synthesize' benchmark:
Average synthesis took: 168.253800 usec
Average data synthesis took: 208.104700 usec
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrey Zhizhikin <andrey.z@gmail.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lore.kernel.org/lkml/20200402154357.107873-2-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
With the movement of lots of stuff out of perf.h to other headers we
ended up not needing it in lots of places, remove it from those places.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-c718m0sxxwp73lp9d8vpihb4@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Eroding a bit more the tools/perf/util/util.h hodpodge header.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-natazosyn9rwjka25tvcnyi0@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This program benchmarks concurrent epoll_wait(2) for file descriptors
that are monitored with with EPOLLIN along various semantics, by a
single epoll instance. Such conditions can be found when using
single/combined or multiple queuing when load balancing.
Each thread has a number of private, nonblocking file descriptors,
referred to as fdmap. A writer thread will constantly be writing to the
fdmaps of all threads, minimizing each threads's chances of epoll_wait
not finding any ready read events and blocking as this is not what we
want to stress. Full details in the start of the C file.
Committer testing:
# perf bench
Usage:
perf bench [<common options>] <collection> <benchmark> [<options>]
# List of all available benchmark collections:
sched: Scheduler and IPC benchmarks
mem: Memory access benchmarks
numa: NUMA scheduling and MM benchmarks
futex: Futex stressing benchmarks
epoll: Epoll stressing benchmarks
all: All benchmarks
# perf bench epoll
# List of available benchmarks for collection 'epoll':
wait: Benchmark epoll concurrent epoll_waits
all: Run all futex benchmarks
# perf bench epoll wait
# Running 'epoll/wait' benchmark:
Run summary [PID 19295]: 3 threads monitoring on 64 file-descriptors for 8 secs.
[thread 0] fdmap: 0xdaa650 ... 0xdaa74c [ 328241 ops/sec ]
[thread 1] fdmap: 0xdaa900 ... 0xdaa9fc [ 351695 ops/sec ]
[thread 2] fdmap: 0xdaabb0 ... 0xdaacac [ 381423 ops/sec ]
Averaged 353786 operations/sec (+- 4.35%), total secs = 8
#
Committer notes:
Fix the build on debian:experimental-x-mips, debian:experimental-x-mipsel
and others:
CC /tmp/build/perf/bench/epoll-wait.o
bench/epoll-wait.c: In function 'writerfn':
bench/epoll-wait.c:399:12: error: format '%ld' expects argument of type 'long int', but argument 2 has type 'size_t' {aka 'unsigned int'} [-Werror=format=]
printinfo("exiting writer-thread (total full-loops: %ld)\n", iter);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
bench/epoll-wait.c:86:31: note: in definition of macro 'printinfo'
do { if (__verbose) { printf(fmt, ## arg); fflush(stdout); } } while (0)
^~~
cc1: all warnings being treated as errors
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Jason Baron <jbaron@akamai.com> <jbaron@akamai.com>
Link: http://lkml.kernel.org/r/20181106152226.20883-2-dave@stgolabs.net
Link: http://lkml.kernel.org/r/20181106182349.thdkpvshkna5vd7o@linux-r8p5>
[ Applied above fixup as per Davidlohr's request ]
[ Use inttypes.h to print rlim_t fields, fixing the build on Alpine Linux / musl libc ]
[ Check if eventfd() is available, i.e. if HAVE_EVENTFD is defined ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We got it from the git sources but never used it for anything, with the
place where this would be somehow used remaining:
static int run_builtin(struct cmd_struct *p, int argc, const char **argv)
{
prefix = NULL;
if (p->option & RUN_SETUP)
prefix = NULL; /* setup_perf_directory(); */
Ditch it.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-uw5swz05vol0qpr32c5lpvus@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Move the subcommand-related files from perf to a new library named
libsubcmd.a.
Since we're moving files anyway, go ahead and rename 'exec_cmd.*' to
'exec-cmd.*' to be consistent with the naming of all the other files.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/c0a838d4c878ab17fee50998811612b2281355c1.1450193761.git.jpoimboe@redhat.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
So right now we output this text:
memcpy: Benchmark for memcpy() functions
memset: Benchmark for memset() functions
all: Test all memory access benchmarks
But the right verb to use with benchmarks is to 'run' them, not 'test'
them.
So change this (and all similar texts) to:
memcpy: Benchmark for memcpy() functions
memset: Benchmark for memset() functions
all: Run all memory access benchmarks
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445241870-24854-15-git-send-email-mingo@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
- fix various typos in user visible output strings
- make the output consistent (wrt. capitalization and spelling)
- offer the list of routines to benchmark on '-r help'.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445241870-24854-11-git-send-email-mingo@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
So 'perf bench -h' is not very helpful when printing the help line
about the output formatting options:
-f, --format <default>
Specify format style
There are two output format styles, 'default' and 'simple', so improve
the help text to:
-f, --format <default|simple>
Specify the output formatting style
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445241870-24854-7-git-send-email-mingo@kernel.org
[ Removed leftovers from the mem-functions.c rename ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Allows a way of measuring low level kernel implementation of FUTEX_LOCK_PI and
FUTEX_UNLOCK_PI.
The program comes in two flavors:
(i) single futex (default), all threads contend on the same uaddr. For the
sake of the benchmark, we call into kernel space even when the lock is
uncontended. The kernel will set it to TID, any waters that come in and
contend for the pi futex will be handled respectively by the kernel.
(ii) -M option for multiple futexes, each thread deals with its own futex. This
is a trivial scenario and only measures kernel handling of 0->TID transition.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1436259353.12255.78.camel@stgolabs.net
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The futex-wake benchmark only measures wakeups done within a single
process. While this has value in its own, it does not really generate
any hb->lock contention.
A new benchmark 'wake-parallel' is added, by extending the futex-wake
code such that we can measure parallel waker threads. The program output
shows the avg per-thread latency in order to complete its share of
wakeups:
Run summary [PID 13474]: blocking on 512 threads (at [private] futex 0xa88668), 8 threads waking up 64 at a time.
[Run 1]: Avg per-thread latency (waking 64/512 threads) in 0.6230 ms (+-15.31%)
[Run 2]: Avg per-thread latency (waking 64/512 threads) in 0.5175 ms (+-29.95%)
[Run 3]: Avg per-thread latency (waking 64/512 threads) in 0.7578 ms (+-18.03%)
[Run 4]: Avg per-thread latency (waking 64/512 threads) in 0.8944 ms (+-12.54%)
[Run 5]: Avg per-thread latency (waking 64/512 threads) in 1.1204 ms (+-23.85%)
Avg per-thread latency (waking 64/512 threads) in 0.7826 ms (+-9.91%)
Naturally, different combinations of numbers of blocking and waker
threads will exhibit different information.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Link: http://lkml.kernel.org/r/1431110280-20231-1-git-send-email-dave@stgolabs.net
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
There are a number of benchmarks that do single runs and as a result
does not really help users gain a general idea of how the workload
performs. So the user must either manually do multiple runs or just use
single bogus results.
This option will enable users to specify the amount of runs (arbitrarily
defaulted to 10, to use the existing benchmarks default) through the
'--repeat' option. Add it to perf-bench instead of implementing it
always in each specific benchmark.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Jiri Olsa <jolsa@kernel.org>
Link: http://lkml.kernel.org/r/1402942467-10671-2-git-send-email-davidlohr@hp.com
[ Kept the existing default of 10, changing it to something else should
be done on separate patch ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull perf changes from Ingo Molnar:
"Main changes:
Kernel side changes:
- Add SNB/IVB/HSW client uncore memory controller support (Stephane
Eranian)
- Fix various x86/P4 PMU driver bugs (Don Zickus)
Tooling, user visible changes:
- Add several futex 'perf bench' microbenchmarks (Davidlohr Bueso)
- Speed up thread map generation (Don Zickus)
- Introduce 'perf kvm --list-cmds' command line option for use by
scripts (Ramkumar Ramachandra)
- Print the evsel name in the annotate stdio output, prep to fix
support outputting annotation for multiple events, not just for the
first one (Arnaldo Carvalho de Melo)
- Allow setting preferred callchain method in .perfconfig (Jiri Olsa)
- Show in what binaries/modules 'perf probe's are set (Masami
Hiramatsu)
- Support distro-style debuginfo for uprobe in 'perf probe' (Masami
Hiramatsu)
Tooling, internal changes and fixes:
- Use tid in mmap/mmap2 events to find maps (Don Zickus)
- Record the reason for filtering an address_location (Namhyung Kim)
- Apply all filters to an addr_location (Namhyung Kim)
- Merge al->filtered with hist_entry->filtered in report/hists
(Namhyung Kim)
- Fix memory leak when synthesizing thread records (Namhyung Kim)
- Use ui__has_annotation() in 'report' (Namhyung Kim)
- hists browser refactorings to reuse code accross UIs (Namhyung Kim)
- Add support for the new DWARF unwinder library in elfutils (Jiri
Olsa)
- Fix build race in the generation of bison files (Jiri Olsa)
- Further streamline the feature detection display, trimming it a bit
to show just the libraries detected, using VF=1 gets a more verbose
output, showing the less interesting feature checks as well (Jiri
Olsa).
- Check compatible symtab type before loading dso (Namhyung Kim)
- Check return value of filename__read_debuglink() (Stephane Eranian)
- Move some hashing and fs related code from tools/perf/util/ to
tools/lib/ so that it can be used by more tools/ living utilities
(Borislav Petkov)
- Prepare DWARF unwinding code for using an elfutils alternative
unwinding library (Jiri Olsa)
- Fix DWARF unwind max_stack processing (Jiri Olsa)
- Add dwarf unwind 'perf test' entry (Jiri Olsa)
- 'perf probe' improvements including memory leak fixes, sharing the
intlist class with other tools, uprobes/kprobes code sharing and
use of ref_reloc_sym (Masami Hiramatsu)
- Shorten sample symbol resolving by adding cpumode to struct
addr_location (Arnaldo Carvalho de Melo)
- Fix synthesizing mmaps for threads (Don Zickus)
- Fix invalid output on event group stdio report (Namhyung Kim)
- Fixup header alignment in 'perf sched latency' output (Ramkumar
Ramachandra)
- Fix off-by-one error in 'perf timechart record' argv handling
(Ramkumar Ramachandra)
Tooling, cleanups:
- Remove unused thread__find_map function (Jiri Olsa)
- Remove unused simple_strtoul() function (Ramkumar Ramachandra)
Tooling, documentation updates:
- Update function names in debug messages (Ramkumar Ramachandra)
- Update some code references in design.txt (Ramkumar Ramachandra)
- Clarify load-latency information in the 'perf mem' docs (Andi
Kleen)
- Clarify x86 register naming in 'perf probe' docs (Andi Kleen)"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (96 commits)
perf tools: Remove unused simple_strtoul() function
perf tools: Update some code references in design.txt
perf evsel: Update function names in debug messages
perf tools: Remove thread__find_map function
perf annotate: Print the evsel name in the stdio output
perf report: Use ui__has_annotation()
perf tools: Fix memory leak when synthesizing thread records
perf tools: Use tid in mmap/mmap2 events to find maps
perf report: Merge al->filtered with hist_entry->filtered
perf symbols: Apply all filters to an addr_location
perf symbols: Record the reason for filtering an address_location
perf sched: Fixup header alignment in 'latency' output
perf timechart: Fix off-by-one error in 'record' argv handling
perf machine: Factor machine__find_thread to take tid argument
perf tools: Speed up thread map generation
perf kvm: introduce --list-cmds for use by scripts
perf ui hists: Pass evsel to hpp->header/width functions explicitly
perf symbols: Introduce thread__find_cpumode_addr_location
perf session: Change header.misc dump from decimal to hex
perf ui/tui: Reuse generic __hpp__fmt() code
...
The for_each_bench() macro must check that the "benchmarks" field of a
collection is not NULL before dereferencing it because the "all"
collection in particular has a NULL "benchmarks" field (signifying that
it has no benchmarks to iterate over).
This fixes this NULL pointer dereference when running "perf bench all":
[root@ssdandy ~]# perf bench all
<SNIP>
# Running mem/memset benchmark...
# Copying 1MB Bytes ...
2.453675 GB/Sec
12.056327 GB/Sec (with prefault)
Segmentation fault (core dumped)
[root@ssdandy ~]#
Signed-off-by: Patrick Palka <patrick@parcs.ath.cx>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1394664051-6037-1-git-send-email-patrick@parcs.ath.cx
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Block a bunch of threads on a futex and requeue them on another, N at a
time.
This program is particularly useful to measure the latency of nthread
requeues without waking up any tasks -- thus mimicking a regular
futex_wait.
An example run:
$ perf bench futex requeue -r 100 -t 64
Run summary [PID 151011]: Requeuing 64 threads (from 0x7d15c4 to 0x7d15c8), 1 at a time.
[Run 1]: Requeued 64 of 64 threads in 0.0400 ms
[Run 2]: Requeued 64 of 64 threads in 0.0390 ms
[Run 3]: Requeued 64 of 64 threads in 0.0400 ms
...
[Run 100]: Requeued 64 of 64 threads in 0.0390 ms
Requeued 64 of 64 threads in 0.0399 ms (+-0.37%)
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1387081917-9102-4-git-send-email-davidlohr@hp.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Block a bunch of threads on a futex and wake them up, N at a time.
This program is particularly useful to measure the latency of nthread
wakeups in non-error situations: all waiters are queued and all wake
calls wakeup one or more tasks.
An example run:
$ perf bench futex wake -t 512 -r 100
Run summary [PID 27823]: blocking on 512 threads (at futex 0x7e10d4), waking up 1 at a time.
[Run 1]: Wokeup 512 of 512 threads in 6.0080 ms
[Run 2]: Wokeup 512 of 512 threads in 5.2280 ms
[Run 3]: Wokeup 512 of 512 threads in 4.8300 ms
...
[Run 100]: Wokeup 512 of 512 threads in 5.0100 ms
Wokeup 512 of 512 threads in 5.0109 ms (+-2.25%)
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1387081917-9102-3-git-send-email-davidlohr@hp.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Introduce futexes to perf-bench and add a program that stresses and
measures the kernel's implementation of the hash table.
This is a multi-threaded program that simply measures the amount of
failed futex wait calls - we only want to deal with the hashing
overhead, so a negative return of futex_wait_setup() is enough to do the
trick.
An example run:
$ perf bench futex hash -t 32
Run summary [PID 10989]: 32 threads, each operating on 1024 [private] futexes for 10 secs.
[thread 0] futexes: 0x19d9b10 ... 0x19dab0c [ 418713 ops/sec ]
[thread 1] futexes: 0x19daca0 ... 0x19dbc9c [ 469913 ops/sec ]
[thread 2] futexes: 0x19dbe30 ... 0x19dce2c [ 479744 ops/sec ]
...
[thread 31] futexes: 0x19fbb80 ... 0x19fcb7c [ 464179 ops/sec ]
Averaged 454310 operations/sec (+- 0.84%), total secs = 10
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1387081917-9102-2-git-send-email-davidlohr@hp.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Before this patch, looking at 'perf bench sched pipe' behavior over
'top' only told us that something related to perf is running:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
19934 mingo 20 0 54836 1296 952 R 18.6 0.0 0:00.56 perf
19935 mingo 20 0 54836 384 36 S 18.6 0.0 0:00.56 perf
After the patch it's clearly visible what's going on:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
19744 mingo 20 0 125m 3536 2644 R 68.2 0.0 0:01.12 sched-pipe
19745 mingo 20 0 125m 1172 276 R 68.2 0.0 0:01.12 sched-pipe
The benchmark-subsystem name is concatenated with the individual
testcase name.
Unfortunately 'perf top' does not show the reconfigured name, possibly
because it caches ->comm[] values and does not recognize changes to
them?
Also clean up a few bits in builtin-bench.c while at it and reorganize
the code and the output strings to be consistent.
Use iterators to access the various arrays. Rename 'suites' concept to
'benchmark collection' and the 'bench_suite' to 'benchmark/bench'. The
many repetitions of 'suite' made the code harder to read and understand.
The new output is:
comet:~/tip/tools/perf> ./perf bench
Usage:
perf bench [<common options>] <collection> <benchmark> [<options>]
# List of all available benchmark collections:
sched: Scheduler and IPC benchmarks
mem: Memory access benchmarks
numa: NUMA scheduling and MM benchmarks
all: All benchmarks
comet:~/tip/tools/perf> ./perf bench sched
# List of available benchmarks for collection 'sched':
messaging: Benchmark for scheduling and IPC
pipe: Benchmark for pipe() between two processes
all: Test all scheduler benchmarks
comet:~/tip/tools/perf> ./perf bench mem
# List of available benchmarks for collection 'mem':
memcpy: Benchmark for memcpy()
memset: Benchmark for memset() tests
all: Test all memory benchmarks
comet:~/tip/tools/perf> ./perf bench numa
# List of available benchmarks for collection 'numa':
mem: Benchmark for NUMA workloads
all: Test all NUMA benchmarks
Individual benchmark modules were not touched.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20131023123756.GA17871@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Commit "perf: Add 'perf bench numa mem'..." added a NUMA performance
benchmark to perf. Make this optional and test for required
dependencies.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1359337882-21821-1-git-send-email-peter@hurleysoftware.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Add a suite of NUMA performance benchmarks.
The goal was simulate the behavior and access patterns of real NUMA
workloads, via a wide range of parameters, so this tool goes well
beyond simple bzero() measurements that most NUMA micro-benchmarks use:
- It processes the data and creates a chain of data dependencies,
like a real workload would. Neither the compiler, nor the
kernel (via KSM and other optimizations) nor the CPU can
eliminate parts of the workload.
- It randomizes the initial state and also randomizes the target
addresses of the processing - it's not a simple forward scan
of addresses.
- It provides flexible options to set process, thread and memory
relationship information: -G sets "global" memory shared between
all test processes, -P sets "process" memory shared by all
threads of a process and -T sets "thread" private memory.
- There's a NUMA convergence monitoring and convergence latency
measurement option via -c and -m.
- Micro-sleeps and synchronization can be injected to provoke lock
contention and scheduling, via the -u and -S options. This simulates
IO and contention.
- The -x option instructs the workload to 'perturb' itself artificially
every N seconds, by moving to the first and last CPU of the system
periodically. This way the stability of convergence equilibrium and
the number of steps taken for the scheduler to reach equilibrium again
can be measured.
- The amount of work can be specified via the -l loop count, and/or
via a -s seconds-timeout value.
- CPU and node memory binding options, to test hard binding scenarios.
THP can be turned on and off via madvise() calls.
- Live reporting of convergence progress in an 'at glance' output format.
Printing of convergence and deconvergence events.
The 'perf bench numa mem -a' option will start an array of about 30
individual tests that will each output such measurements:
# Running 5x5-bw-thread, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1"
5x5-bw-thread, 20.276, secs, runtime-max/thread
5x5-bw-thread, 20.004, secs, runtime-min/thread
5x5-bw-thread, 20.155, secs, runtime-avg/thread
5x5-bw-thread, 0.671, %, spread-runtime/thread
5x5-bw-thread, 21.153, GB, data/thread
5x5-bw-thread, 528.818, GB, data-total
5x5-bw-thread, 0.959, nsecs, runtime/byte/thread
5x5-bw-thread, 1.043, GB/sec, thread-speed
5x5-bw-thread, 26.081, GB/sec, total-speed
See the help text and the code for more details.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
perf bench prints header message for bench suite before starting the
benchmark. However if the stdout is redirected to a file and bench
suite forks child processes this (and possibly other debugging
messages too) will be repeated multiple times.
$ perf bench sched messaging
# Running sched/messaging benchmark...
# 20 sender and receiver processes per group
# 10 groups == 400 processes run
Total time: 0.100 [sec]
$ perf bench sched messaging > result.txt
$ wc -l result.txt
391
In this file, there were so many "Running sched/messaging benchmark..."
lines. This was because stdout is converted to fully-buffered due to
the redirection and inherited child processes. Other lines are printed
after reaping all those tasks.
So fix it by flushing stdout before starting bench suites.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1357637966-8216-1-git-send-email-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
perf defines both __used and __unused variables to use for marking
unused variables. The variable __used is defined to
__attribute__((__unused__)), which contradicts the kernel definition to
__attribute__((__used__)) for new gcc versions. On Android, __used is
also defined in system headers and this leads to warnings like: warning:
'__used__' attribute ignored
__unused is not defined in the kernel and is not a standard definition.
If __unused is included everywhere instead of __used, this leads to
conflicts with glibc headers, since glibc has a variables with this name
in its headers.
The best approach is to use __maybe_unused, the definition used in the
kernel for __attribute__((unused)). In this way there is only one
definition in perf sources (instead of 2 definitions that point to the
same thing: __used and __unused) and it works on both Linux and Android.
This patch simply replaces all instances of __used and __unused with
__maybe_unused.
Signed-off-by: Irina Tirdea <irina.tirdea@intel.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1347315303-29906-7-git-send-email-irina.tirdea@intel.com
[ committer note: fixed up conflict with a116e05 in builtin-sched.c ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The current perf-bench documentation has a couple of typos and even
lacks entire description of mem subsystem. Fix it.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1340172486-17805-1-git-send-email-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
OPT_SET_INT was renamed to OPT_SET_UINT since the only use in these
tools is to set something that has an enum type, that is builtin
compatible with unsigned int.
Several string constifications were done to make OPT_STRING require a
const char * type.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Tom Zanussi <tzanussi@gmail.com>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch adds a new "all" pseudo subsystem and an "all" pseudo
suite. These are for testing all subsystem and its all suite, or
all suite of one subsystem.
(This patch also contains a few trivial comment fixes for
bench/* and output style fixes. I judged that there are no
necessity to make them into individual patch.)
Example of use:
| % ./perf bench sched all # Test all suites of sched subsystem
| # Running sched/messaging benchmark...
| # 20 sender and receiver processes per group
| # 10 groups == 400 processes run
|
| Total time: 0.414 [sec]
|
| # Running sched/pipe benchmark...
| # Extecuted 1000000 pipe operations between two tasks
|
| Total time: 10.999 [sec]
|
| 10.999317 usecs/op
| 90914 ops/sec
|
| % ./perf bench all # Test all suites of all subsystems
| # Running sched/messaging benchmark...
| # 20 sender and receiver processes per group
| # 10 groups == 400 processes run
|
| Total time: 0.420 [sec]
|
| # Running sched/pipe benchmark...
| # Extecuted 1000000 pipe operations between two tasks
|
| Total time: 11.741 [sec]
|
| 11.741346 usecs/op
| 85169 ops/sec
|
| # Running mem/memcpy benchmark...
| # Copying 1MB Bytes from 0x7ff33e920010 to 0x7ff3401ae010 ...
|
| 808.407437 MB/Sec
Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1260691319-4683-1-git-send-email-mitake@dcl.info.waseda.ac.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
'perf bench mem memcpy' is a benchmark suite for measuring memcpy()
performance.
Example on a Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz:
| % perf bench mem memcpy -l 1GB
| # Running mem/memcpy benchmark...
| # Copying 1MB Bytes from 0xb7d98008 to 0xb7e99008 ...
|
| 726.216412 MB/Sec
Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1258471212-30281-1-git-send-email-mitake@dcl.info.waseda.ac.jp>
[ v2: updated changelog, clarified history of builtin-bench.c ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>