IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Building the arch/powerpc tree currently gives me
two warnings with gcc-4.0:
arch/powerpc/mm/imalloc.c: In function '__im_get_area':
arch/powerpc/mm/imalloc.c:225: warning: 'tmp' may be used uninitialized in this function
arch/powerpc/mm/hugetlbpage.c: In function 'hugetlb_get_unmapped_area':
arch/powerpc/mm/hugetlbpage.c:608: warning: unused variable 'vma'
both fixes are trivial.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently, the powerpc version of hugetlb_get_unmapped_area() entirely
ignores the hint address. The only way to get a hugepage mapping at a
specified address is with MAP_FIXED, in which case there's no way
(short of parsing /proc/self/maps) for userspace to tell if it will
clobber an existing mapping. This is inconvenient, so the patch below
makes hugepage mappings use the given hint address if possible.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On ppc64, when opening a new hugepage region, we need to make sure any
old normal-page SLBs for the area are flushed on all CPUs. There was
a bug in this logic - after putting the new hugepage area masks into
the thread structure, we copied it into the paca (read by the SLB miss
handler) only on one CPU, not on all. This could cause incorrect SLB
entries to be loaded when a multithreaded program was running
simultaneously on several CPUs. This patch corrects the error,
copying the context information into the PACA on all CPUs using the mm
in question before flushing any existing SLB entries.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On most powerpc CPUs, the dcache and icache are not coherent so
between writing and executing a page, the caches must be flushed.
Userspace programs assume pages given to them by the kernel are icache
clean, so we must do this flush between the kernel clearing a page and
it being mapped into userspace for execute. We were not doing this
for hugepages, this patch corrects the situation.
We use the same lazy mechanism as we use for normal pages, delaying
the flush until userspace actually attempts to execute from the page
in question.
Tested on G5.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The 64k pages patch changed the meaning of one argument passed to the
low level hash functions (from "large" it became "psize" or page size
index), but one of the call sites wasn't properly updated, causing
potential random weird problems with huge pages. This fixes it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Blah. The patch [0] I recently sent fixing errors with
in_hugepage_area() and prepare_hugepage_range() for powerpc itself has
an off-by-one bug. Furthermore, the related functions
touches_hugepage_*_range() and within_hugepage_*_range() are also
buggy. Some of the bugs, like those addressed in [0] originated with
commit 7d24f0b8a5 where we tweaked the
semantics of where hugepages are allowed. Other bugs have been there
essentially forever, and are due to the undefined behaviour of '<<'
with shift counts greater than the type width (LOW_ESID_MASK could
return non-zero for high ranges with the right congruences).
The good news is that I now have a testsuite which should pick up
things like this if they creep in again.
[0] "powerpc-fix-for-hugepage-areas-straddling-4gb-boundary"
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Commit 7d24f0b8a5 fixed bugs in the ppc64 SLB
miss handler with respect to hugepage handling, and in the process tweaked
the semantics of the hugepage address masks in mm_context_t.
Unfortunately, it left out a couple of necessary changes to go with that
change. First, the in_hugepage_area() macro was not updated to match,
second prepare_hugepage_range() was not updated to correctly handle
hugepages regions which straddled the 4GB point.
The latter appears only to cause process-hangs when attempting to map such
a region, but the former can cause oopses if a get_user_pages() is
triggered at the wrong point. This patch addresses both bugs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Update comments (only) on page_table_lock and mmap_sem in arch/powerpc.
Removed the comment on page_table_lock from hash_huge_page: since it's no
longer taking page_table_lock itself, it's irrelevant whether others are; but
how it is safe (even against huge file truncation?) I can't say.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch, however, should be applied on top of the 64k-page-size patch to
fix some problems with hugepage (some pre-existing, another introduced by
this patch).
The patch fixes a bug in the SLB miss handler for hugepages on ppc64
introduced by the dynamic hugepage patch (commit id
c594adad56) due to a misunderstanding of the
srd instruction's behaviour (mea culpa). The problem arises when a 64-bit
process maps some hugepages in the low 4GB of the address space (unusual).
In this case, as well as the 256M segment in question being marked for
hugepages, other segments at 32G intervals will be incorrectly marked for
hugepages.
In the process, this patch tweaks the semantics of the hugepage bitmaps to
be more sensible. Previously, an address below 4G was marked for hugepages
if the appropriate segment bit in the "low areas" bitmask was set *or* if
the low bit in the "high areas" bitmap was set (which would mark all
addresses below 1TB for hugepage). With this patch, any given address is
governed by a single bitmap. Addresses below 4GB are marked for hugepage
if and only if their bit is set in the "low areas" bitmap (256M
granularity). Addresses between 4GB and 1TB are marked for hugepage iff
the low bit in the "high areas" bitmap is set. Higher addresses are marked
for hugepage iff their bit in the "high areas" bitmap is set (1TB
granularity).
To avoid conflicts, this patch must be applied on top of BenH's pending
patch for 64k base page size [0]. As such, this patch also addresses a
hugepage problem introduced by that patch. That patch allows hugepages of
1MB in size on hardware which supports it, however, that won't work when
using 4k pages (4 level pagetable), because in that case hugepage PTEs are
stored at the PMD level, and each PMD entry maps 2MB. This patch simply
disallows hugepages in that case (we can do something cleverer to re-enable
them some other day).
Built, booted, and a handful of hugepage related tests passed on POWER5
LPAR (both ARCH=powerpc and ARCH=ppc64).
[0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel
base page size to 64K. The resulting kernel still boots on any
hardware. On current machines with 4K pages support only, the kernel
will maintain 16 "subpages" for each 64K page transparently.
Note that while real 64K capable HW has been tested, the current patch
will not enable it yet as such hardware is not released yet, and I'm
still verifying with the firmware architects the proper to get the
information from the newer hypervisors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm,
and arranges that we use them when compiling with ARCH=ppc64.
Signed-off-by: Paul Mackerras <paulus@samba.org>